detect_plate/main.py

379 lines
15 KiB
Python
Raw Permalink Normal View History

2024-08-07 09:32:38 +08:00
# -*- coding: UTF-8 -*-
import io
import base64
import time
from pathlib import Path
import os
import cv2
import torch
import torch.backends.cudnn as cudnn
2024-08-07 11:13:52 +08:00
import requests
2024-08-07 09:32:38 +08:00
from numpy import random
import copy
import numpy as np
from models.experimental import attempt_load
from utils.datasets import letterbox
from utils.general import check_img_size, non_max_suppression_face, apply_classifier, scale_coords, xyxy2xywh, \
strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized
from utils.cv_puttext import cv2ImgAddText
from plate_recognition.plate_rec import get_plate_result, allFilePath, init_model, cv_imread
# from plate_recognition.plate_cls import cv_imread
from plate_recognition.double_plate_split_merge import get_split_merge
2024-08-07 11:13:52 +08:00
from flask import Flask, request, jsonify
from PIL import Image
2024-08-07 09:32:38 +08:00
clors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (0, 255, 255)]
danger = ['', '']
def order_points(pts): # 四个点按照左上 右上 右下 左下排列
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def four_point_transform(image, pts): # 透视变换得到车牌小图
# rect = order_points(pts)
rect = pts.astype('float32')
(tl, tr, br, bl) = rect
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype="float32")
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
return warped
def load_model(weights, device): # 加载检测模型
model = attempt_load(weights, map_location=device) # load FP32 model
return model
def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None): # 返回到原图坐标
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
coords[:, [0, 2, 4, 6]] -= pad[0] # x padding
coords[:, [1, 3, 5, 7]] -= pad[1] # y padding
coords[:, :8] /= gain
# clip_coords(coords, img0_shape)
coords[:, 0].clamp_(0, img0_shape[1]) # x1
coords[:, 1].clamp_(0, img0_shape[0]) # y1
coords[:, 2].clamp_(0, img0_shape[1]) # x2
coords[:, 3].clamp_(0, img0_shape[0]) # y2
coords[:, 4].clamp_(0, img0_shape[1]) # x3
coords[:, 5].clamp_(0, img0_shape[0]) # y3
coords[:, 6].clamp_(0, img0_shape[1]) # x4
coords[:, 7].clamp_(0, img0_shape[0]) # y4
# coords[:, 8].clamp_(0, img0_shape[1]) # x5
# coords[:, 9].clamp_(0, img0_shape[0]) # y5
return coords
def get_plate_rec_landmark(img, xyxy, conf, landmarks, class_num, device, plate_rec_model,
is_color=False): # 获取车牌坐标以及四个角点坐标并获取车牌号
h, w, c = img.shape
Box = {}
result_dict = {}
tl = 1 or round(0.002 * (h + w) / 2) + 1 # line/font thickness
x1 = int(xyxy[0])
y1 = int(xyxy[1])
x2 = int(xyxy[2])
y2 = int(xyxy[3])
height = y2 - y1
landmarks_np = np.zeros((4, 2))
rect = [x1, y1, x2, y2]
for i in range(4):
point_x = int(landmarks[2 * i])
point_y = int(landmarks[2 * i + 1])
landmarks_np[i] = np.array([point_x, point_y])
class_label = int(class_num) # 车牌的的类型0代表单牌1代表双层车牌
roi_img = four_point_transform(img, landmarks_np) # 透视变换得到车牌小图
if class_label: # 判断是否是双层车牌,是双牌的话进行分割后然后拼接
roi_img = get_split_merge(roi_img)
if not is_color:
plate_number, rec_prob = get_plate_result(roi_img, device, plate_rec_model, is_color=is_color) # 对车牌小图进行识别
else:
plate_number, rec_prob, plate_color, color_conf = get_plate_result(roi_img, device, plate_rec_model,
is_color=is_color)
Box['X'] = landmarks_np[0][0].tolist() # 车牌角点坐标
Box['Y'] = landmarks_np[0][1].tolist()
Box['Width'] = rect[2] - rect[0]
Box['Height'] = rect[3] - rect[1]
# Box['label'] = plate_number # 车牌号
# Box['rect'] = rect
result_dict['rect'] = rect # 车牌roi区域
result_dict['detect_conf'] = conf # 检测区域得分
result_dict['landmarks'] = landmarks_np.tolist() # 车牌角点坐标
result_dict['plate_no'] = plate_number # 车牌号
result_dict['rec_conf'] = rec_prob # 每个字符的概率
result_dict['roi_height'] = roi_img.shape[0] # 车牌高度
result_dict['plate_color'] = ""
if is_color:
result_dict['plate_color'] = plate_color # 车牌颜色
result_dict['color_conf'] = color_conf # 颜色得分
result_dict['plate_type'] = class_label # 单双层 0单层 1双层
score = conf.tolist()
return plate_number, score, Box, result_dict
def detect_Recognition_plate(model, orgimg, device, plate_rec_model, img_size, is_color=False): # 获取车牌信息
# Load model
# img_size = opt_img_size
conf_thres = 0.3 # 得分阈值
iou_thres = 0.5 # nms的iou值
dict_list = []
result_jpg = []
# orgimg = cv2.imread(image_path) # BGR
img0 = copy.deepcopy(orgimg)
assert orgimg is not None, 'Image Not Found '
h0, w0 = orgimg.shape[:2] # orig hw
r = img_size / max(h0, w0) # resize image to img_size
if r != 1: # always resize down, only resize up if training with augmentation
interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR
img0 = cv2.resize(img0, (int(w0 * r), int(h0 * r)), interpolation=interp)
imgsz = check_img_size(img_size, s=model.stride.max()) # check img_size
img = letterbox(img0, new_shape=imgsz)[0] # 检测前处理图片长宽变为32倍数比如变为640X640
# img =process_data(img0)
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1).copy() # BGR to RGB, to 3x416x416 图片的BGR排列转为RGB,然后将图片的H,W,C排列变为C,H,W排列
# Run inference
t0 = time.time()
img = torch.from_numpy(img).to(device)
img = img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
pred = model(img)[0]
# Apply NMS
pred = non_max_suppression_face(pred, conf_thres, iou_thres)
# result_jpg.insert(0, pred)
# Process detections
for i, det in enumerate(pred): # detections per image
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], orgimg.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
det[:, 5:13] = scale_coords_landmarks(img.shape[2:], det[:, 5:13], orgimg.shape).round()
for j in range(det.size()[0]):
xyxy = det[j, :4].view(-1).tolist()
conf = det[j, 4].cpu().numpy()
landmarks = det[j, 5:13].view(-1).tolist()
class_num = det[j, 13].cpu().numpy()
label, score, Box, result_dict = get_plate_rec_landmark(orgimg, xyxy, conf, landmarks, class_num,
device, plate_rec_model, is_color=is_color)
dict_list.append(result_dict)
result_jpg.append(Box)
result_jpg.append(score)
result_jpg.append(label)
return dict_list, result_jpg
# cv2.imwrite('result.jpg', orgimg)
def draw_result(orgimg, dict_list, is_color=False): # 车牌结果画出来
result_str = ""
for result in dict_list:
rect_area = result['rect']
x, y, w, h = rect_area[0], rect_area[1], rect_area[2] - rect_area[0], rect_area[3] - rect_area[1]
padding_w = 0.05 * w
padding_h = 0.11 * h
rect_area[0] = max(0, int(x - padding_w))
rect_area[1] = max(0, int(y - padding_h))
rect_area[2] = min(orgimg.shape[1], int(rect_area[2] + padding_w))
rect_area[3] = min(orgimg.shape[0], int(rect_area[3] + padding_h))
height_area = result['roi_height']
landmarks = result['landmarks']
result_p = result['plate_no']
if result['plate_type'] == 0: # 单层
result_p += " " + result['plate_color']
else: # 双层
result_p += " " + result['plate_color'] + "双层"
result_str += result_p + " "
for i in range(4): # 关键点
cv2.circle(orgimg, (int(landmarks[i][0]), int(landmarks[i][1])), 5, clors[i], -1)
cv2.rectangle(orgimg, (rect_area[0], rect_area[1]), (rect_area[2], rect_area[3]), (0, 0, 255), 2) # 画框
labelSize = cv2.getTextSize(result_p, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) # 获得字体的大小
if rect_area[0] + labelSize[0][0] > orgimg.shape[1]: # 防止显示的文字越界
rect_area[0] = int(orgimg.shape[1] - labelSize[0][0])
orgimg = cv2.rectangle(orgimg, (rect_area[0], int(rect_area[1] - round(1.6 * labelSize[0][1]))),
(int(rect_area[0] + round(1.2 * labelSize[0][0])), rect_area[1] + labelSize[1]),
(255, 255, 255), cv2.FILLED) # 画文字框,背景白色
if len(result) >= 1:
orgimg = cv2ImgAddText(orgimg, result_p, rect_area[0], int(rect_area[1] - round(1.6 * labelSize[0][1])),
(0, 0, 0), 21)
# orgimg=cv2ImgAddText(orgimg,result_p,rect_area[0]-height_area,rect_area[1]-height_area-10,(0,255,0),height_area)
print(result_str) # 打印结果
return orgimg, result_str
def get_second(capture):
if capture.isOpened():
rate = capture.get(5) # 帧速率
FrameNumber = capture.get(7) # 视频文件的帧数
duration = FrameNumber / rate # 帧速率/视频总帧数 是时间除以60之后单位是分钟
return int(rate), int(FrameNumber), int(duration)
2024-08-07 11:13:52 +08:00
2024-08-07 09:32:38 +08:00
def process_images(detect_model_path, rec_model_path, is_color, img, img_size, output, video_path):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 创建保存结果的文件夹
save_path = output
if not os.path.exists(save_path):
os.mkdir(save_path)
# 加载模型
detect_model = load_model(detect_model_path, device)
plate_rec_model = init_model(device, rec_model_path, is_color=is_color)
# img = cv_imread(image_path)
if img.shape[-1] == 4:
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
dict_list, result_jpg = detect_Recognition_plate(detect_model, img, device, plate_rec_model, img_size,
2024-08-07 11:13:52 +08:00
is_color=is_color)
2024-08-07 09:32:38 +08:00
# ori_img = draw_result(img, dict_list)
# ori_list=ori_img[0].tolist()
# result_jpg.insert(0,ori_list)
result_jpg.insert(0, [[1, 0, 0], [0, 1, 0], [0, 0, 1]])
return result_jpg
2024-08-07 11:13:52 +08:00
def download_and_read_file(url):
response = requests.get(url)
if response.status_code == 200:
with open('keywords.txt', 'wb') as file:
file.write(response.content)
with open('keywords.txt', 'r') as file:
content = file.read().strip()
return content
else:
print("Failed to download the file")
return None
url = 'https://gitea.star-rising.cn/zty8080123/detect_plate_key/raw/main/keywords.txt'
2024-08-07 09:32:38 +08:00
app = Flask(__name__)
2024-08-07 11:13:52 +08:00
2024-08-07 09:32:38 +08:00
def base64_to_image(base64_str):
# 去掉base64编码中的头部信息
base64_str = base64_str.split(",")[-1]
# 解码base64字符串
image_data = base64.b64decode(base64_str)
# 转换为numpy数组
nparr = np.frombuffer(image_data, np.uint8)
# 解码为OpenCV格式的图片对象
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
return image
2024-08-07 11:13:52 +08:00
2024-08-07 09:32:38 +08:00
@app.route('/upload', methods=['POST'])
def upload_image():
2024-08-07 11:13:52 +08:00
# return "sadkjfhdskjhgfkj"
2024-08-07 09:32:38 +08:00
try:
# 从请求中获取base64编码的图片数据
data = request.json
# print(data)
base64_str = data.get('image')
# print(base64_str)
if not base64_str:
return jsonify({'error': 'No image data provided'}), 400
# 将base64编码转换为图片
image = base64_to_image(base64_str)
result_jpg = process_images(
detect_model_path='weights/plate_detect.pt',
rec_model_path='weights/plate_rec_color.pth',
is_color=True,
img=image,
img_size=640,
output='result',
video_path='' # 如果处理图片,视频路径留空
)
# 构建一个字典来存储结果
results = []
# 添加注册矩阵
register_matrix = [
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]
]
results.append({"RegisterMatrix": register_matrix})
# 添加检测结果
for i in range(1, len(result_jpg), 3):
box, score, label = result_jpg[i:i + 3]
box_data = box
detection_result = {
"Box": box_data,
"Score": score,
"label": label
}
results.append(detection_result)
# print(detection_result)
# 返回处理结果
return jsonify({"result.jpg": results})
except Exception as e:
# 打印异常信息以帮助诊断
print(f"Caught an exception: {type(e).__name__}: {str(e)}")
return jsonify({"error_msg": "Content processing is incorrect",
"error_code": "AIS.0404"})
if __name__ == '__main__':
2024-08-07 11:13:52 +08:00
content = download_and_read_file(url)
if content is not None:
if content == '1':
print("Executing the code...")
app.run(debug=False, host="172.16.10.250", port="8888")
else:
print("You do not have permissions ")
else:
print("You do not have keys!!!!!!!")