66 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Docker
		
	
	
	
	
	
			
		
		
	
	
			66 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Docker
		
	
	
	
	
	
| # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
 | |
| # Builds ultralytics/yolov5:latest image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
 | |
| # Image is CUDA-optimized for YOLOv5 single/multi-GPU training and inference
 | |
| 
 | |
| # Start FROM NVIDIA PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
 | |
| FROM nvcr.io/nvidia/pytorch:22.07-py3
 | |
| RUN rm -rf /opt/pytorch  # remove 1.2GB dir
 | |
| 
 | |
| # Downloads to user config dir
 | |
| ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
 | |
| 
 | |
| # Install linux packages
 | |
| RUN apt update && apt install --no-install-recommends -y zip htop screen libgl1-mesa-glx
 | |
| 
 | |
| # Install pip packages
 | |
| COPY requirements.txt .
 | |
| RUN python -m pip install --upgrade pip wheel
 | |
| RUN pip uninstall -y Pillow torchtext torch torchvision
 | |
| RUN pip install --no-cache -r requirements.txt albumentations wandb gsutil notebook Pillow>=9.1.0 \
 | |
|     'opencv-python<4.6.0.66' \
 | |
|     --extra-index-url https://download.pytorch.org/whl/cu113
 | |
| 
 | |
| # Create working directory
 | |
| RUN mkdir -p /usr/src/app
 | |
| WORKDIR /usr/src/app
 | |
| 
 | |
| # Copy contents
 | |
| # COPY . /usr/src/app  (issues as not a .git directory)
 | |
| RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app
 | |
| 
 | |
| # Set environment variables
 | |
| ENV OMP_NUM_THREADS=8
 | |
| 
 | |
| 
 | |
| # Usage Examples -------------------------------------------------------------------------------------------------------
 | |
| 
 | |
| # Build and Push
 | |
| # t=ultralytics/yolov5:latest && sudo docker build -f utils/docker/Dockerfile -t $t . && sudo docker push $t
 | |
| 
 | |
| # Pull and Run
 | |
| # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
 | |
| 
 | |
| # Pull and Run with local directory access
 | |
| # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
 | |
| 
 | |
| # Kill all
 | |
| # sudo docker kill $(sudo docker ps -q)
 | |
| 
 | |
| # Kill all image-based
 | |
| # sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
 | |
| 
 | |
| # DockerHub tag update
 | |
| # t=ultralytics/yolov5:latest tnew=ultralytics/yolov5:v6.2 && sudo docker pull $t && sudo docker tag $t $tnew && sudo docker push $tnew
 | |
| 
 | |
| # Clean up
 | |
| # docker system prune -a --volumes
 | |
| 
 | |
| # Update Ubuntu drivers
 | |
| # https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
 | |
| 
 | |
| # DDP test
 | |
| # python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
 | |
| 
 | |
| # GCP VM from Image
 | |
| # docker.io/ultralytics/yolov5:latest
 |