first commit

This commit is contained in:
552068321@qq.com 2022-11-04 17:37:08 +08:00
commit 6f7de660aa
192 changed files with 32574 additions and 0 deletions

299
.gitignore vendored Normal file
View File

@ -0,0 +1,299 @@
### Python template
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
### IntelliJ IDEA ###
.idea/
*.iws
*.iml
*.ipr
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# spec
manage.spec
# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
# Translations
*.mo
*.pot
# Django stuff:
staticfiles/
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# pyenv
.python-version
# Environments
.venv
venv/
ENV/
.vscode
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
### Node template
# Logs
logs
*.log
npm-debug.log*
yarn-debug.log*
yarn-error.log*
# Runtime data
pids
*.pid
*.seed
*.pid.lock
# Directory for instrumented libs generated by jscoverage/JSCover
lib-cov
# Coverage directory used by tools like istanbul
coverage
# nyc test coverage
.nyc_output
# Bower dependency directory (https://bower.io/)
bower_components
# node-waf configuration
.lock-wscript
# Compiled binary addons (http://nodejs.org/api/addons.html)
build/Release
# Dependency directories
node_modules/
jspm_packages/
# Typescript v1 declaration files
typings/
# Optional npm cache directory
.npm
# Optional eslint cache
.eslintcache
# Optional REPL history
.node_repl_history
# Output of 'npm pack'
*.tgz
# Yarn Integrity file
.yarn-integrity
### Linux template
*~
# temporary files which can be created if a process still has a handle open of a deleted file
.fuse_hidden*
# KDE directory preferences
.directory
# Linux trash folder which might appear on any partition or disk
.Trash-*
# .nfs files are created when an open file is removed but is still being accessed
.nfs*
### VisualStudioCode template
.vscode/*
!.vscode/settings.json
!.vscode/tasks.json
!.vscode/launch.json
!.vscode/extensions.json
### Windows template
# Windows thumbnail cache files
Thumbs.db
ehthumbs.db
ehthumbs_vista.db
# Dump file
*.stackdump
# Folder config file
Desktop.ini
# Recycle Bin used on file shares
$RECYCLE.BIN/
# Windows Installer files
*.cab
*.msi
*.msm
*.msp
# Windows shortcuts
*.lnk
### macOS template
# General
*.DS_Store
.AppleDouble
.LSOverride
# Icon must end with two \r
Icon
# Thumbnails
._*
# Files that might appear in the root of a volume
.DocumentRevisions-V100
.fseventsd
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns
.com.apple.timemachine.donotpresent
# Directories potentially created on remote AFP share
.AppleDB
.AppleDesktop
Network Trash Folder
Temporary Items
.apdisk
### SublimeText template
# Cache files for Sublime Text
*.tmlanguage.cache
*.tmPreferences.cache
*.stTheme.cache
# Workspace files are user-specific
*.sublime-workspace
# Project files should be checked into the repository, unless a significant
# proportion of contributors will probably not be using Sublime Text
# *.sublime-project
# SFTP configuration file
sftp-config.json
# Package control specific files
Package Control.last-run
Package Control.ca-list
Package Control.ca-bundle
Package Control.system-ca-bundle
Package Control.cache/
Package Control.ca-certs/
Package Control.merged-ca-bundle
Package Control.user-ca-bundle
oscrypto-ca-bundle.crt
bh_unicode_properties.cache
# Sublime-github package stores a github token in this file
# https://packagecontrol.io/packages/sublime-github
GitHub.sublime-settings
### Vim template
# Swap
[._]*.s[a-v][a-z]
[._]*.sw[a-p]
[._]s[a-v][a-z]
[._]sw[a-p]
# Session
Session.vim
# Temporary
.netrwhist
# Auto-generated tag files
tags
### VirtualEnv template
# Virtualenv
[Bb]in
[Ii]nclude
[Ll]ib
[Ll]ib64
[Ss]cripts
pyvenv.cfg
pip-selfcheck.json
.env
### Project template
izan/media/
.pytest_cache/
*.pt
*.pdparams

BIN
SetParams.zip Normal file

Binary file not shown.

View File

@ -0,0 +1,144 @@
import json
from .TypeDef import *
from typing import Union
from abc import abstractmethod
class BaseParam:
"""
参数基类
"""
def __init__(self):
"""
参数基类算法中所有需要参数的方法中使用的参数必须继承该类型
"""
self.file = ''
self.param_list = []
def save_to_file(self, file: str) -> None:
"""
将参数保存到文件
:param file: 文件完整路径
:return: None
"""
with open(file, 'w') as f:
f.write(str(self))
f.flush()
def add_param(self, p: Union[IntType, BoolType, FloatType, StringType, ListType, EnumType]) -> None:
"""
将数据添加到参数列表中以支持序列化
:param p: 单个数据必须为系统支持的参数类型之一IntType, BoolType, FloatType, StringType, ListType, EnumType
:return: None
"""
self.param_list.append(p)
def read_from_str(self, content: str) -> None:
"""
将字符串反序列化为对象中的参数
:param content: 要反序列化的字符串
:return: None
"""
self.param_list.clear()
objs = json.loads(content)
for obj in objs:
#try:
item = obj #json.loads(obj)
t = item["type"]
param = None
if t == "B":
param = BoolType(item["name"],
item["value"],
item["description"],
item["default"],
item["show"])
param.index = item["index"]
elif t == "I":
param = IntType(item["name"],
item["value"],
item["description"],
item["default"],
item["show"])
param.index = item["index"]
elif t == "F":
param = FloatType(item["name"],
item["value"],
item["description"],
item["default"],
item["show"])
param.index = item["index"]
#param.length = item["length"]
elif t == "S":
item['length']=len(item["value"])
param = StringType(item["name"],
item["value"],
item['length'],
item["description"],
item["default"],
item["show"])
param.index = item["index"]
elif t == "L":
param = ListType(item["name"],
item["value"],
item["description"],
item["default"],
item["show"])
param.index = item["index"]
#param.length = item["length"]
elif t == "E":
param = EnumType(item["name"],
item["value"],
item["items"],
item["description"],
item["default"],
item["show"])
param.index = item["index"]
if param:
self.param_list.append(param)
# except Exception as e:
# pass
def read_from_file(self, file: str) -> None:
"""
从文件读取序列化后的参数字符串并反序列化为对象
:param file: 文件完整路径
:return: None
"""
with open(file, 'r') as f:
content = f.read()
self.read_from_str(content)
@property
def param_string(self) -> str:
"""
获取Json格式的参数字符串
:return: 返回Json格式的参数字符串
"""
for i, p in enumerate(self.param_list):
p.index = i
return self.__str__()
def __str__(self) -> str:
"""
重写str方法用于将对象序列化为Json字符串
:return: 序列化后的JSON字符串
"""
ret = []
for index, item in enumerate(self.param_list):
obj = item.obj
if isinstance(obj, dict):
obj["index"] = index
item_obj = json.dumps(obj)
ret.append(item_obj)
return json.dumps(ret)
def get(self, name: str) -> Union[None, IntType, BoolType, FloatType, StringType, ListType, EnumType,]:
"""
根据数据名称获取指定的数据对象
:param name: 数据名称
:return:
"""
return next((x for x in self.param_list if x.name == name), None)

View File

@ -0,0 +1,21 @@
from .TypeDef import *
from .BaseParam import *
class TrainParams(BaseParam):
"""
训练参数示例使用时需要根据实际情况修改如有其他参数如推理函数的参数需要自定义并继承自 BaseParam
"""
def __init__(self):
super().__init__()
# 例如训练的时候需要传入以下参数
gpu_num = IntType("gpu_num", 2)
support_cpu = BoolType("support_cpu", True)
labels = EnumType("labels", 0, ["dog", "cat"])
labels.default = 0
self.add_param(gpu_num)
self.add_param(support_cpu)
self.add_param(labels)

View File

@ -0,0 +1,243 @@
import json
from typing import List
from abc import abstractmethod
class __BaseType:
def __init__(self,
name: str,
value: object,
description: str,
default: object,
show: bool):
"""
所有数据类型的基类
:param name: 数据名称
:param value: 数据值
:param description: 描述用于前端UI展示
:param default: 该参数的默认值
"""
self.name = name
self.description = description
self.index = -1
self.default = default
self.value = value
self.show = show
@property
@abstractmethod
def type(self) -> str:
"""
参数类型用于前端/后台的序列化与反序列化前端展示时也需要根据此字段类型绘制不同的控件
:return: 一般使用单个字母整型I布尔型B浮点型F字符串S列表L枚举E
"""
pass
@property
def _base_obj(self) -> dict:
"""
用于创建所有数据类型的共有对象字典
:return:
"""
return {
"index": self.index,
"name": self.name,
"value": self.value,
"description": self.description,
"default": self.default,
"type": self.type,
"show": self.show
}
@property
@abstractmethod
def obj(self) -> dict:
"""
抽象属性获取数据类型的对象字典
:return:
"""
return self._base_obj
def __str__(self):
"""
重写数据类型的字符串序列化方法
:return:
"""
return json.dumps(self.obj)
class BoolType(__BaseType):
def __init__(self,
name: str,
value: bool = False,
description: str = "",
default: bool = False,
show: bool = True):
"""
布尔类型数据
:param name: 数据名称
:param value: 数据值
:param description: 描述用于前端UI展示
:param default: 该参数的默认值
"""
super().__init__(name, value, description, default, show)
@property
def type(self) -> str:
return 'B'
@property
def obj(self) -> dict:
return super()._base_obj
class IntType(__BaseType):
def __init__(self,
name: str,
value: int = 0,
description: str = "",
default: int = 0,
show: bool = True):
"""
整数类型
:param name: 数据名称
:param value: 数据值
:param description: 描述用于前端UI展示
:param default: 该参数的默认值
"""
super().__init__(name, value, description, default, show)
@property
def type(self) -> str:
return 'I'
@property
def obj(self) -> dict:
return super()._base_obj
class FloatType(__BaseType):
def __init__(self,
name: str,
value: float = 0.,
description: str = "",
default: float = 0.,
show: bool = True):
"""
浮点类型
:param name: 数据名称
:param value: 数据值
:param description: 描述用于前端UI展示
:param default: 该参数的默认值
"""
super().__init__(name, value, description, default, show)
@property
def type(self) -> str:
return 'F'
@property
def obj(self) -> dict:
return super()._base_obj
class StringType(__BaseType):
def __init__(self,
name: str,
value: str = "",
length: int = -1,
description: str = "",
default: str = "",
show: bool = True):
"""
字符串类型
:param name: 数据名称用于程序内部标识该数据
:param value: 数据值
:param length: 字符串长度
:param description: 描述用于前端页面对该数据进行展示
:param default: 默认值
"""
super().__init__(name, value, description, default, show)
self.length = length
if length > 0:
self.value = value[:length]
else:
self.value = value
@property
def type(self) -> str:
return 'S'
@property
def obj(self) -> dict:
base_obj = super()._base_obj
base_obj["length"] = self.length
return base_obj
class ListType(__BaseType):
def __init__(self,
name: str,
value: list = None,
description: str = "",
default: list = None,
show: bool = True):
"""
列表类型
:param name: 数据名称用于程序内部标识该数据
:param value: 数据值
:param description: 描述用于前端页面对该数据进行展示
:param default: 默认值
"""
if not default:
default = []
if not value:
value = default
self.length = len(value)
super().__init__(name, value, description, default, show)
@property
def type(self) -> str:
return "L"
@property
def obj(self) -> dict:
base_obj = super()._base_obj
base_obj["length"] = self.length
return base_obj
class EnumType(__BaseType):
def __init__(self,
name: str,
value: int = -1,
items: List[str] = None,
description: str = "",
default: int = -1,
show: bool = True):
"""
枚举类型
:param name: 数据名称用于程序内部标识该数据
:param value: 数据值即选择了枚举列表中的第几项
:param items: 枚举范围枚举项必须为字符串类型
:param description: 描述用于前端页面对该数据进行展示
:param default: 默认值
"""
if not items:
items = []
default = -1
self.items = items
super().__init__(name, value, description, default, show)
@property
def type(self) -> str:
return "E"
@property
def obj(self) -> dict:
base_obj = super()._base_obj
base_obj["items"] = self.items
return base_obj

View File

View File

@ -0,0 +1 @@
["{\"index\": 0, \"name\": \"gpu_num\", \"value\": 2, \"description\": \"\", \"default\": 0, \"type\": \"I\"}", "{\"index\": 1, \"name\": \"support_cpu\", \"value\": true, \"description\": \"\", \"default\": false, \"type\": \"B\"}", "{\"index\": 2, \"name\": \"labels\", \"value\": 0, \"description\": \"\", \"default\": 0, \"type\": \"E\", \"items\": [\"dog\", \"cat\"]}"]

View File

@ -0,0 +1 @@
["{\"index\": 0, \"name\": \"num_classes\", \"value\": 0, \"description\": \"\", \"default\": 9, \"type\": \"I\"}", "{\"index\": 1, \"name\": \"lr\", \"value\": 0.0, \"description\": \"\", \"default\": 0.005, \"type\": \"F\"}", "{\"index\": 2, \"name\": \"lr_schedulerList\", \"value\": [30, 60], \"description\": \"\", \"default\": [30, 60], \"type\": \"L\", \"length\": 2}", "{\"index\": 3, \"name\": \"device\", \"value\": \"\", \"description\": \"\", \"default\": \"cpu\", \"type\": \"S\", \"length\": -1}", "{\"index\": 4, \"name\": \"DatasetDir\", \"value\": \"\", \"description\": \"\", \"default\": \"./datasets/M006B_duanmian\", \"type\": \"S\", \"length\": -1}", "{\"index\": 5, \"name\": \"saveModDir\", \"value\": \"\", \"description\": \"\", \"default\": \"./saved_model/M006B_duanmian.pt\", \"type\": \"S\", \"length\": -1}", "{\"index\": 6, \"name\": \"resumeModPath\", \"value\": \"\", \"description\": \"\", \"default\": \"\", \"type\": \"S\", \"length\": -1}", "{\"index\": 7, \"name\": \"epochnum\", \"value\": 0, \"description\": \"\", \"default\": 100, \"type\": \"I\"}", "{\"index\": 8, \"name\": \"saveEpoch\", \"value\": 0, \"description\": \"\", \"default\": 1, \"type\": \"I\"}"]

0
SetParams/__init__.py Normal file
View File

49
SetParams/main.py Normal file
View File

@ -0,0 +1,49 @@
from DataType.TypeDef import *
from DataType.ParamDef import *
def train(params: TrainParams):
"""
后台提交训练请求时可以参考此方法从前端传递的参数中取出需要的值
:param params:
:return:
"""
# 存在的参数可以使用name字段获取到
cpu_num = params.get("gpu_num")
print(cpu_num)
# 不存在的参数获取的时候返回None
th = params.get("th")
print(th)
def get_train_config_json():
"""
前端获取训练所需要的参数JSON字符串时使用str方法即可获取JSON字符串
:return:
"""
# 第一种方法:
# 创建新对象
params = TrainParams()
# 从指定文件名中读取配置
params.read_from_file("TrainParams.json")
# 转为字符串
print(str(params))
# 第二种方法
# 也可以直接将文本传递给前端,但是可能需要考虑转义符号(\)的处理
with open("TrainParams.json", "r") as f:
print(f.read())
return params
if __name__ == '__main__':
# 当前端需要获取参数列表时,参照此函数中的实现
get_train_config_json()
# 当前端传递回来参数的JSON字符串时使用下述方法将字符串反序列化为对象然后传递给对应的函数
params = TrainParams()
params.read_from_str(
'["{\\"index\\": 0, \\"name\\": \\"gpu_num\\", \\"value\\": 2, \\"description\\": \\"\\", \\"default\\": 0, \\"type\\": \\"I\\"}", "{\\"index\\": 1, \\"name\\": \\"support_cpu\\", \\"value\\": true, \\"description\\": \\"\\", \\"default\\": false, \\"type\\": \\"B\\"}", "{\\"index\\": 2, \\"name\\": \\"labels\\", \\"value\\": 0, \\"description\\": \\"\\", \\"default\\": 0, \\"type\\": \\"E\\", \\"items\\": [\\"dog\\", \\"cat\\"]}"]')
train(params)

65
SetParams_Demo.py Normal file
View File

@ -0,0 +1,65 @@
import sys
import json
from setparams import TrainParams
def ppx_train(params,id):
ppx_num_classes = params.get('num_classes').value
ppx_epoch = params.get('epochnum').value
ppx_saveEpoch = params.get('saveEpoch').value
ppx_device = params.get('device').value
ppx_DatasetDir = params.get('DatasetDir').value
ppx_saveModDir = params.get('saveModDir').value
ppx_lr = params.get('lr').value
ppx_lr_schedulerList = params.get('lr_schedulerList').value
ppx_resumeModPath = params.get('resumeModPath').value
ppx_id = id
if ppx_resumeModPath == '': ppx_resumeModPath= "/mnt/sdc/algorithm/AICheck-MaskRCNN/app/maskrcnn_ppx/pretrain/mask_rcnn_r50_fpn_2x_coco.pdparams" #'COCO'
model.train(
num_epochs=ppx_epoch, #***
save_interval_epochs=ppx_saveEpoch, #***
train_dataset=train_dataset, #***
train_batch_size=2,
eval_dataset=eval_dataset, #***
pretrain_weights=ppx_resumeModPath, #***
learning_rate=ppx_lr, #***
lr_decay_epochs=ppx_lr_schedulerList, #***
warmup_steps=10,
warmup_start_lr=0.0,
save_dir=ppx_saveModDir, #***
use_vdl=True)
#@start_train_algorithm
def main(params_str):
params = TrainParams()
params.read_from_str(params_str)
ppx_train(params,id='1')
if __name__ == "__main__":
params_list = [
{"index":0,"name":"num_classes","value":9,"description":'类别数(加背景)',"default":9,"type":"I", "show":True},
{"index":1,"name":"lr","value":0.0003,"description":'学习率',"default":0.0001,"type":"F", "show":True},
{"index":2,"name":"lr_schedulerList","value":[30,60],"description":'学习率衰减轮次',"default":[30,60],"type":"L", "show":True},
{"index":3,"name":"device","value":"cpu","description":'训练核心',"default":"cpu","type":"S", "show":True},
{"index":4,"name":"DatasetDir","value":"/mnt/sdc/algorithm/PaddleX/datasets/DDX_nb","description":'数据集路径',"default":"/mnt/sdc/algorithm/PaddleX/datasets/DDX_nb","type":"S", "show":False},
{"index":5,"name":"saveModDir","value":"/mnt/sdc/algorithm/PaddleX/output","description":'保存模型路径',"default":"/mnt/sdc/algorithm/PaddleX/output","type":"S", "show":False},
{"index":6,"name":"resumeModPath","value":'',"description":'继续训练路径',"default":'',"type":"S", "show":False},
{"index":7,"name":"epochnum","value":100,"description":'训练轮次',"default":100,"type":"I", "show":True},
{"index":8,"name":"saveEpoch","value":2,"description":'保存模型轮次',"default":2,"type":"I", "show":True}]
params_str = json.dumps(params_list)
print(params_str)
main(params_str)

0
__init__.py Normal file
View File

0
app/__init__.py Normal file
View File

0
app/configs/__init__.py Normal file
View File

29
app/configs/default.py Normal file
View File

@ -0,0 +1,29 @@
import os
# 根目录
ROOT_PATH = os.path.split(os.path.abspath(__name__))[0]
# 开启debug
DEBUG = True
# 密钥
SECRET_KEY = 'WugjsfiYBEVsiQfiSwEbIOEAGnOIFYqoOYHEIK'
# 数据库配置
# SQLALCHEMY_DATABASE_URI = 'postgresql+psycopg2://deepLearner:dp2021@124.71.203.3:5432/demo'
SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://demo:demo123@192.168.2.9:3306/flask_demo'
SQLALCHEMY_TRACK_MODIFICATIONS = False
# 查询时会显示原始SQL语句
SQLALCHEMY_ECHO = True
# SQLALCHEMY_DATABASE_URI = 'sqlite:///{}'.format(os.path.join(ROOT_PATH, 'demo.db'))
# SQLALCHEMY_TRACK_MODIFICATIONS = False
# 数据库配置
db = {
'host': '127.0.0.1',
'user': 'root',
'password': '',
'port': 6379,
'database': 'school',
'charset': 'utf8',
'db': 0
}

View File

@ -0,0 +1,8 @@
from .default import * # NOQA F401
# 数据库配置
SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://demo:demo123@192.168.2.9:3306/flask_demo'
# SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://demo:demo123@192.168.2.9:3306/flask_demo?allowPublicKeyRetrieval=true&useUnicode=true&characterEncoding=UTF-8&useSSL=false&serverTimezone=Asia/Shanghai'
SQLALCHEMY_TRACK_MODIFICATIONS = False
# 查询时会显示原始SQL语句
SQLALCHEMY_ECHO = True

View File

@ -0,0 +1,3 @@
from .default import * # NOQA F401
DEBUG = False

14
app/configs/testing.py Normal file
View File

@ -0,0 +1,14 @@
import os
from .default import ROOT_PATH
from .default import * # NOQA F401
TEST_BASE_DIR = os.path.join(ROOT_PATH, '.test')
SQLALCHEMY_DATABASE_URI = 'sqlite:///{}'.format(
os.path.join(TEST_BASE_DIR, 'demo.db'))
# SQLALCHEMY_ECHO = True
TESTING = True
if not os.path.exists(TEST_BASE_DIR):
os.makedirs(TEST_BASE_DIR)

View File

@ -0,0 +1,412 @@
"""
@Time 2022/9/20 16:17
@Auth
@File AlgorithmController.py
@IDE PyCharm
@MottoABC(Always Be Coding)
@Desc算法接口
"""
import json
from functools import wraps
from threading import Thread
from flask import Blueprint, request
from app.schemas.TrainResult import Report, ProcessValueList
from app.utils.RedisMQTool import Task
from app.utils.StandardizedOutput import output_wrapped
from app.utils.redis_config import redis_client
from app.utils.websocket_tool import manager
import sys
from pathlib import Path
# from pynvml import *
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
# sys.path.append("/mnt/sdc/algorithm/AICheck-MaskRCNN/app/maskrcnn_ppx")
# import ppx as pdx
bp = Blueprint('AlgorithmController', __name__)
def start_train_algorithm():
"""
调用训练算法
"""
def wrapTheFunction(func):
@wraps(func)
@bp.route('/start_train_algorithm', methods=['get'])
def wrapped_function():
param = request.args.get('param')
id = request.args.get('id')
t = Thread(target=func, args=(param, id))
t.start()
return output_wrapped(0, 'success', '成功')
return wrapped_function
return wrapTheFunction
def start_test_algorithm():
"""
调用验证算法
"""
def wrapTheFunction(func):
@wraps(func)
@bp.route('/start_test_algorithm', methods=['get'])
def wrapped_function_test():
param = request.args.get('param')
id = request.args.get('id')
t = Thread(target=func, args=(param, id))
t.start()
return output_wrapped(0, 'success', '成功')
return wrapped_function_test
return wrapTheFunction
def start_detect_algorithm():
"""
调用检测算法
"""
def wrapTheFunction(func):
@wraps(func)
@bp.route('/start_detect_algorithm', methods=['get'])
def wrapped_function_detect():
param = request.args.get('param')
id = request.args.get('id')
t = Thread(target=func, args=(param, id))
t.start()
return output_wrapped(0, 'success', '成功')
return wrapped_function_detect
return wrapTheFunction
def start_download_pt():
"""
下载模型
"""
def wrapTheFunction(func):
@wraps(func)
@bp.route('/start_download_pt', methods=['get'])
def wrapped_function_start_download_pt():
param = request.args.get('param')
func(param)
return output_wrapped(0, 'success', '成功')
return wrapped_function_start_download_pt
return wrapTheFunction
def algorithm_process_value():
"""
获取中间值, redis订阅发布
"""
def wrapTheFunction(func):
@wraps(func)
def wrapped_function(*args, **kwargs):
data = func(*args, **kwargs)
print(data)
Task(redis_conn=redis_client.get_redis(), channel="ceshi").publish_task(
data={'code': 0, 'msg': 'success', 'data': data})
return output_wrapped(0, 'success', data)
return wrapped_function
return wrapTheFunction
def algorithm_process_value_websocket():
"""
获取中间值, websocket发布
"""
def wrapTheFunction(func):
@wraps(func)
def wrapped_function(*args, **kwargs):
data = func(*args, **kwargs)
id = data["id"]
data_res = {'code': 0, "type": 'connected', 'msg': 'success', 'data': data}
manager.send_message_proj_json(message=data_res, id=id)
return data
return wrapped_function
return wrapTheFunction
def obtain_train_param():
"""
获取训练参数
"""
def wrapTheFunction(func):
@wraps(func)
@bp.route('/obtain_train_param', methods=['get'])
def wrapped_function_train_param(*args, **kwargs):
data = func(*args, **kwargs)
return output_wrapped(0, 'success', data)
return wrapped_function_train_param
return wrapTheFunction
def obtain_test_param():
"""
获取验证参数
"""
def wrapTheFunction(func):
@wraps(func)
@bp.route('/obtain_test_param', methods=['get'])
def wrapped_function_test_param(*args, **kwargs):
data = func(*args, **kwargs)
return output_wrapped(0, 'success', data)
return wrapped_function_test_param
return wrapTheFunction
def obtain_detect_param():
"""
获取测试参数
"""
def wrapTheFunction(func):
@wraps(func)
@bp.route('/obtain_detect_param', methods=['get'])
def wrapped_function_inf_param(*args, **kwargs):
data = func(*args, **kwargs)
return output_wrapped(0, 'success', data)
return wrapped_function_inf_param
return wrapTheFunction
def obtain_download_pt_param():
"""
获取下载模型参数
"""
def wrapTheFunction(func):
@wraps(func)
@bp.route('/obtain_download_pt_param', methods=['get'])
def wrapped_function_obtain_download_pt_param(*args, **kwargs):
data = func(*args, **kwargs)
return output_wrapped(0, 'success', data)
return wrapped_function_obtain_download_pt_param
return wrapTheFunction
# @start_train_algorithm()
# def start(param: str):
# """
# 例子
# """
# print(param)
# process_value_list = ProcessValueList(name='1', value=[])
# report = Report(rate_of_progess=0, process_value=[process_value_list], id='1')
#
# @algorithm_process_value_websocket()
# def process(v: int):
# print(v)
# report.rate_of_progess = ((v + 1) / 10) * 100
# report.precision[0].value.append(v)
# return report.dict()
#
# for i in range(10):
# process(i)
# return report.dict()
from setparams import TrainParams
import os
from app.schemas.TrainResult import DetectProcessValueDice, DetectReport
from app import file_tool
# 启动训练
@start_train_algorithm()
def train_R0DY(params_str, id):
from app.yolov5.train_server import train_start
params = TrainParams()
params.read_from_str(params_str)
print(params.get('device').default)
data_list = file_tool.get_file(ori_path=params.get('DatasetDir').value, type_list=params.get('classname').value)
weights = params.get('resumeModPath').value # 初始化模型绝对路径
img_size = params.get('img_size').value
savemodel = os.path.splitext(params.get('saveModDir').value)[0] + '_' + img_size + '.pt' # 模型命名加上图像参数
epoches = params.get('epochnum').value
batch_size = params.get('batch_size').value
device = params.get('device').value
train_start(weights, savemodel, epoches, img_size, batch_size, device, data_list, id)
# 启动验证程序
@start_test_algorithm()
def validate_RODY(params_str, id):
from app.yolov5.validate_server import validate_start
params = TrainParams()
params.read_from_str(params_str)
weights = params.get('modPath').value # 验证模型绝对路径
(filename, extension) = os.path.splitext(weights) # 文件名与后缀名分开
img_size = int(filename.split('ROD')[1].split('_')[2]) # 获取图像参数
# v_num = int(filename.split('ROD')[1].split('_')[1]) #获取版本号
output = params.get('outputPath').value
batch_size = params.get('batch_size').default
device = params.get('device').value
validate_start(weights, img_size, batch_size, device, output, id)
@start_detect_algorithm()
def detect_RODY(params_str, id):
from app.yolov5.detect_server import detect_start
params = TrainParams()
params.read_from_str(params_str)
weights = params.get('modPath').value # 检测模型绝对路径
input = params.get('inputPath').value
outpath = params.get('outputPath').value
# (filename, extension) = os.path.splitext(weights) # 文件名与后缀名分开
# img_size = int(filename.split('ROD')[1].split('_')[2]) #获取图像参数
# v_num = int(filename.split('ROD')[1].split('_')[1]) #获取版本号
# batch_size = params.get('batch_size').default
device = params.get('device').value
detect_start(input, weights, outpath, device, id)
@start_download_pt()
def Export_model_RODY(params_str):
from app.yolov5.export import Start_Model_Export
import zipfile
params = TrainParams()
params.read_from_str(params_str)
exp_inputPath = params.get('exp_inputPath').value # 模型路径
exp_device = params.get('device').value
modellist = Start_Model_Export(exp_inputPath, exp_device)
exp_outputPath = exp_inputPath.replace('pt', 'zip') # 压缩文件
zipf = zipfile.ZipFile(exp_outputPath, 'w')
for file in modellist:
zipf.write(file, arcname=Path(file).name) # 将torchscript和onnx模型压缩
return exp_outputPath
# zipf.write(modellist[1], arcname=modellist[1])
# zip_inputpath = os.path.join(exp_outputPath, "inference_model")
# zip_outputPath = os.path.join(exp_outputPath, "inference_model.zip")
@obtain_train_param()
def returnTrainParams():
# nvmlInit()
# gpuDeviceCount = nvmlDeviceGetCount() # 获取Nvidia GPU块数
# _kernel = [f"cuda:{a}" for a in range(gpuDeviceCount)]
params_list = [
{"index": 0, "name": "epochnum", "value": 10, "description": '训练轮次', "default": 100, "type": "I", 'show': True},
{"index": 1, "name": "batch_size", "value": 4, "description": '批次图像数量', "default": 1, "type": "I",
'show': True},
{"index": 2, "name": "img_size", "value": 640, "description": '训练图像大小', "default": 640, "type": "I",
'show': True},
{"index": 3, "name": "device", "value": "0", "description": '训练核心', "default": "cuda", "type": "S",
"items": '', 'show': True}, # _kernel
{"index": 4, "name": "saveModDir", "value": "E:/alg_demo-master/alg_demo/app/yolov5/best.pt",
"description": '保存模型路径',
"default": "./app/maskrcnn/saved_model/test.pt", "type": "S", 'show': False},
{"index": 5, "name": "resumeModPath", "value": 'E:/alg_demo-master/alg_demo/app/yolov5/yolov5s.pt',
"description": '继续训练路径', "default": '', "type": "S",
'show': False},
{"index": 6, "name": "resumeMod", "value": '', "description": '继续训练模型', "default": '', "type": "E", "items": '',
'show': True},
{"index": 7, "name": "classname", "value": ['logo', '3C'], "description": '类别名称', "default": '', "type": "L",
"items": '',
'show': False},
{"index": 8, "name": "DatasetDir", "value": "E:/aicheck/data_set/11442136178662604800/ori/",
"description": '数据集路径',
"default": "./app/maskrcnn/datasets/test", "type": "S", 'show': False} # ORI_PATH
]
# {"index": 9, "name": "saveEpoch", "value": 2, "description": '保存模型轮次', "default": 2, "type": "I", 'show': True}]
params_str = json.dumps(params_list)
return params_str
@obtain_test_param()
def returnValidateParams():
# nvmlInit()
# gpuDeviceCount = nvmlDeviceGetCount() # 获取Nvidia GPU块数
# _kernel = [f"cuda:{a}" for a in range(gpuDeviceCount)]
params_list = [
{"index": 0, "name": "modPath", "value": "E:/alg_demo-master/alg_demo/app/yolov5/圆孔_123_RODY_1_640.pt",
"description": '验证模型路径', "default": "./app/maskrcnn/saved_model/test.pt", "type": "S", 'show': False},
{"index": 1, "name": "batch_size", "value": 1, "description": '批次图像数量', "default": 1, "type": "I",
'show': False},
{"index": 2, "name": "img_size", "value": 640, "description": '训练图像大小', "default": 640, "type": "I",
'show': False},
{"index": 3, "name": "outputPath", "value": 'E:/aicheck/data_set/11442136178662604800/val_results/',
"description": '输出结果路径',
"default": './app/maskrcnn/datasets/M006B_waibi/res', "type": "S", 'show': False},
{"index": 4, "name": "device", "value": "0", "description": '训练核心', "default": "cuda", "type": "S",
"items": '', 'show': False} # _kernel
]
# {"index": 9, "name": "saveEpoch", "value": 2, "description": '保存模型轮次', "default": 2, "type": "I", 'show': True}]
params_str = json.dumps(params_list)
return params_str
@obtain_detect_param()
def returnDetectParams():
# nvmlInit()
# gpuDeviceCount = nvmlDeviceGetCount() # 获取Nvidia GPU块数
# _kernel = [f"cuda:{a}" for a in range(gpuDeviceCount)]
params_list = [
{"index": 0, "name": "inputPath", "value": 'E:/aicheck/data_set/11442136178662604800/input/',
"description": '输入图像路径', "default": './app/maskrcnn/datasets/M006B_waibi/JPEGImages', "type": "S",
'show': False},
{"index": 1, "name": "outputPath", "value": 'E:/aicheck/data_set/11442136178662604800/val_results/',
"description": '输出结果路径',
"default": './app/maskrcnn/datasets/M006B_waibi/res', "type": "S", 'show': False},
{"index": 0, "name": "modPath", "value": "E:/alg_demo-master/alg_demo/app/yolov5/圆孔_123_RODY_1_640.pt",
"description": '模型路径', "default": "./app/maskrcnn/saved_model/test.pt", "type": "S", 'show': False},
{"index": 3, "name": "device", "value": "0", "description": '推理核', "default": "cpu", "type": "S",
'show': False},
]
# {"index": 9, "name": "saveEpoch", "value": 2, "description": '保存模型轮次', "default": 2, "type": "I", 'show': True}]
params_str = json.dumps(params_list)
return params_str
@obtain_download_pt_param()
def returnDownloadParams():
params_list = [
{"index": 0, "name": "exp_inputPath", "value": 'E:/alg_demo-master/alg_demo/app/yolov5/圆孔_123_RODY_1_640.pt',
"description": '转化模型输入路径',
"default": '/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights/new磁环检测test_183504733393264640_R-DDM_11.pt/',
"type": "S", 'show': False},
{"index": 1, "name": "device", "value": 'gpu', "description": 'CPU或GPU', "default": 'gpu', "type": "S",
'show': False}
]
params_str = json.dumps(params_list)
return params_str
if __name__ == '__main__':
par = returnDownloadParams()
print(par)
Export_model_RODY(par)

View File

@ -0,0 +1,33 @@
import logging
from flask import Blueprint, app
from app.exts import redisClient
from app.utils.StandardizedOutput import output_wrapped
bp = Blueprint('WebStatus', __name__)
@bp.route('/ping', methods=['GET'])
def ping():
""" For health check.
"""
res = output_wrapped(0, 'pong', '')
return res
@bp.route('/redis/set', methods=['post'])
def redis_set():
redisClient.set('foo', 'bar', ex=60*60*6)
res = output_wrapped(0, 'set foo', '')
return res
@bp.route('/redis/get', methods=['get'])
def redis_get():
""" For health check.
"""
the_food = redisClient.get('foo')
if not the_food:
return output_wrapped(5006, 'foo', "")
return output_wrapped(0, 'foo', the_food.decode("utf-8"))

View File

@ -0,0 +1,4 @@
from app.core.common_utils import import_subs
__all__ = import_subs(locals(), modules_only=True)

Binary file not shown.

0
app/core/__init__.py Normal file
View File

319
app/core/common_utils.py Normal file
View File

@ -0,0 +1,319 @@
import orjson
try:
from collections import Mapping
except: # noqa E722
from collections.abc import Mapping
import inspect
import importlib
import os
import re
import sys
from typing import Any, Dict, List, Optional
from unicodedata import normalize
from distutils.version import LooseVersion
import logging
import datetime
from flask import request
from flask_sqlalchemy import model
from sqlalchemy import UniqueConstraint
import marshmallow
from marshmallow import Schema
from .webargs import use_kwargs as base_use_kwargs, parser
from flask.json import JSONEncoder
logger = logging.getLogger(__name__)
class ParamsDict(dict):
"""Just available update func.
Example::
@use_kwargs(PageParams.update({...}))
def list_users(page, page_size, order_by):
pass
"""
def update(self, other=None):
"""Update self by other Mapping and return self.
"""
ret = ParamsDict(self.copy())
if other is not None:
for k, v in other.items() if isinstance(other, Mapping) else other:
ret[k] = v
return ret
# Function version
def row2dict(row):
return {
c.name: str(getattr(row, c.name))
for c in row.__table__.columns
}
class dict2object(dict):
"""
Dict to fake object that can use getattr.
"""
def __getattr__(self, name: str) -> Any:
if name in self.keys():
return self[name]
raise AttributeError('object has no attribute {}'.format(name))
def __setattr__(self, name: str, value: Any) -> None:
if not isinstance(name, str):
raise TypeError('key must be string type.')
self[name] = value
def secure_filename(filename: str) -> str:
"""Borrowed from werkzeug.utils.secure_filename.
Pass it a filename and it will return a secure version of it. This
filename can then safely be stored on a regular file system and passed
to :func:`os.path.join`.
On windows systems the function also makes sure that the file is not
named after one of the special device files.
>>> secure_filename(u'哈哈.zip')
'哈哈.zip'
>>> secure_filename('My cool movie.mov')
'My_cool_movie.mov'
>>> secure_filename('../../../etc/passwd')
'etc_passwd'
>>> secure_filename(u'i contain cool \xfcml\xe4uts.txt')
'i_contain_cool_umlauts.txt'
"""
for sep in os.path.sep, os.path.altsep:
if sep:
filename = filename.replace(sep, ' ')
filename = normalize('NFKD', '_'.join(filename.split()))
filename_strip_re = re.compile(u'[^A-Za-z0-9\u4e00-\u9fa5_.-]')
filename = filename_strip_re.sub('', filename).strip('._')
# on nt a couple of special files are present in each folder. We
# have to ensure that the target file is not such a filename. In
# this case we prepend an underline
windows_device_files = (
'CON', 'AUX', 'COM1', 'COM2', 'COM3', 'COM4', 'LPT1',
'LPT2', 'LPT3', 'PRN', 'NUL',
)
if os.name == 'nt' and filename and \
filename.split('.')[0].upper() in windows_device_files:
filename = '_' + filename
return filename
def _get_init_args(instance, base_class):
"""Get instance's __init__ args and it's value when __call__.
"""
getargspec = inspect.getfullargspec
argspec = getargspec(base_class.__init__)
defaults = argspec.defaults
kwargs = {}
if defaults is not None:
no_defaults = argspec.args[:-len(defaults)]
has_defaults = argspec.args[-len(defaults):]
kwargs = {k: getattr(instance, k) for k in no_defaults
if k != 'self' and hasattr(instance, k)}
kwargs.update({k: getattr(instance, k) if hasattr(instance, k) else
getattr(instance, k, defaults[i])
for i, k in enumerate(has_defaults)})
assert len(kwargs) == len(argspec.args) - 1, 'exclude `self`'
return kwargs
def use_kwargs(argmap, schema_kwargs: Optional[Dict] = None, **kwargs: Any):
"""For fix ``Schema(partial=True)`` not work when used with
``@webargs.flaskparser.use_kwargs``. More details ``see webargs.core``.
Args:
argmap (marshmallow.Schema,dict,callable): Either a
`marshmallow.Schema`, `dict` of argname ->
`marshmallow.fields.Field` pairs, or a callable that returns a
`marshmallow.Schema` instance.
schema_kwargs (dict): kwargs for argmap.
Returns:
dict: A dictionary of parsed arguments.
"""
schema_kwargs = schema_kwargs or {}
argmap = parser._get_schema(argmap, request)
if not (argmap.partial or schema_kwargs.get('partial')):
return base_use_kwargs(argmap, **kwargs)
def factory(request):
argmap_kwargs = _get_init_args(argmap, Schema)
argmap_kwargs.update(schema_kwargs)
# force set force_all=False
only = parser.parse(argmap, request).keys()
argmap_kwargs.update({
'partial': False, # fix missing=None not work
'only': only or None,
'context': {"request": request},
})
if tuple(LooseVersion(marshmallow.__version__).version)[0] < 3:
argmap_kwargs['strict'] = True
return argmap.__class__(**argmap_kwargs)
return base_use_kwargs(factory, **kwargs)
def import_subs(locals_, modules_only: bool = False) -> List[str]:
""" Auto import submodules, used in __init__.py.
Args:
locals_: `locals()`.
modules_only: Only collect modules to __all__.
Examples::
# app/models/__init__.py
from hobbit_core.utils import import_subs
__all__ = import_subs(locals())
Auto collect Model's subclass, Schema's subclass and instance.
Others objects must defined in submodule.__all__.
"""
package = locals_['__package__']
path = locals_['__path__']
top_mudule = sys.modules[package]
all_ = []
for name in os.listdir(path[0]):
if not name.endswith(('.py', '.pyc')) or name.startswith('__init__.'):
continue
module_name = name.split('.')[0]
submodule = importlib.import_module(f".{module_name}", package)
all_.append(module_name)
if modules_only:
continue
if hasattr(submodule, '__all__'):
for name in getattr(submodule, '__all__'):
if not isinstance(name, str):
raise Exception(f'Invalid object {name} in __all__, '
f'must contain only strings.')
setattr(top_mudule, name, getattr(submodule, name))
all_.append(name)
else:
for name, obj in submodule.__dict__.items():
if isinstance(obj, (model.DefaultMeta, Schema)) or \
(inspect.isclass(obj) and
(issubclass(obj, Schema) or
obj.__name__.endswith('Service'))):
setattr(top_mudule, name, obj)
all_.append(name)
return all_
def bulk_create_or_update_on_duplicate(
db, model_cls, items, updated_at='updated_at', batch_size=500):
""" Support MySQL and postgreSQL.
https://dev.mysql.com/doc/refman/8.0/en/insert-on-duplicate.html
Args:
db: Instance of `SQLAlchemy`.
model_cls: Model object.
items: List of data,[ example: `[{key: value}, {key: value}, ...]`.
updated_at: Field which recording row update time.
batch_size: Batch size is max rows per execute.
Returns:
dict: A dictionary contains rowcount and items_count.
"""
if not items:
logger.warning("bulk_create_or_update_on_duplicate save to "
f"{model_cls} failed, empty items")
return {'rowcount': 0, 'items_count': 0}
items_count = len(items)
table_name = model_cls.__tablename__
fields = list(items[0].keys())
unique_keys = [c.name for i in model_cls.__table_args__ if isinstance(
i, UniqueConstraint) for c in i]
columns = [c.name for c in model_cls.__table__.columns if c.name not in (
'id', 'created_at')]
if updated_at in columns and updated_at not in fields:
fields.append(updated_at)
updated_at_time = datetime.datetime.now()
for item in items:
item[updated_at] = updated_at_time
assert set(fields) == set(columns), \
'item fields not equal to columns in modelsnew: ' + \
f'{set(fields) - set(columns)}, delete: {set(columns) - set(fields)}'
for item in items:
for column in unique_keys:
if column in item and item[column] is None:
item[column] = ''
engine = db.get_engine(bind=getattr(model_cls, '__bind_key__', None))
if engine.name == 'postgresql':
sql_on_update = ', '.join([
f' {field} = excluded.{field}'
for field in fields if field not in unique_keys])
sql = f"""INSERT INTO {table_name} ({", ".join(fields)}) VALUES
({", ".join([f':{key}' for key in fields])})
ON CONFLICT ({", ".join(unique_keys)}) DO UPDATE SET
{sql_on_update}"""
elif engine.name == 'mysql':
sql_on_update = '`, `'.join([
f' `{field}` = new.{field}' for field in fields
if field not in unique_keys])
sql = f"""INSERT INTO {table_name} (`{"`, `".join(fields)}`) VALUES
({", ".join([f':{key}' for key in fields])}) AS new
ON DUPLICATE KEY UPDATE
{sql_on_update}"""
else:
raise Exception(f'not support db: {engine.name}')
rowcounts = 0
while len(items) > 0:
batch, items = items[:batch_size], items[batch_size:]
try:
result = db.session.execute(sql, batch, bind=engine)
except Exception as e:
logger.error(e, exc_info=True)
logger.info(sql)
raise e
rowcounts += result.rowcount
logger.info(f'{model_cls} save_data: rowcount={rowcounts}, '
f'items_count: {items_count}')
return {'rowcount': rowcounts, 'items_count': items_count}
def orjson_serializer(obj):
"""
Note that `orjson.dumps()` return byte array, while sqlalchemy expects string, thus `decode()` call.
"""
return orjson.dumps(obj, option=orjson.OPT_SERIALIZE_NUMPY | orjson.OPT_NAIVE_UTC).decode()

68
app/core/err_handler.py Normal file
View File

@ -0,0 +1,68 @@
import logging
from flask import jsonify, request, make_response, abort
from marshmallow import ValidationError
logger = logging.getLogger(__name__)
# 处理404错误
def page_not_found(e):
# if a request is in our blog URL space
if request.path.startswith('/blog/'):
# we return a custom blog 404 page
return jsonify({
"code": e.code,
"message": e.name,
"description": e.description,
"data": ""
}), 404
else:
# otherwise we return our generic site-wide 404 page
return jsonify({
"code": e.code,
"message": e.name,
"description": e.description,
"data": ""
}), 404
# 处理405错误
def method_not_allowed(e):
# otherwise we return a generic site-wide 405 page
return jsonify({
"code": e.code,
"message": e.name,
"description": e.description,
"data": ""
}), 405
# 处理其他400错误
def exception_400(e):
# otherwise we return a generic site-wide 405 page
return jsonify({
"code": e.code,
"message": e.name,
"description": e.description,
"data": ""
}), 400
# 处理其他状态码错误
def exception_500(e):
print(e)
return jsonify({
"code": e.code,
"message": e.name,
"description": e.description,
"data": ""
}), e.code
# 处理参数校验错误
def check_data(schema, data):
try:
return schema().load(data)
except ValidationError as e:
abort(make_response(jsonify(code=400, message=str(e.messages), data=None), 400))

26
app/core/webargs.py Normal file
View File

@ -0,0 +1,26 @@
from collections.abc import Mapping
from webargs.flaskparser import FlaskParser
def strip_whitespace(value):
if isinstance(value, str):
value = value.strip()
# you'll be getting a MultiDictProxy here potentially, but it should work
elif isinstance(value, Mapping):
return {k: strip_whitespace(value[k]) for k in value}
elif isinstance(value, (list, set)):
return type(value)(map(strip_whitespace, value))
return value
class CustomParser(FlaskParser):
def _load_location_data(self, **kwargs):
data = super()._load_location_data(**kwargs)
return strip_whitespace(data)
parser = CustomParser()
use_args = parser.use_args
use_kwargs = parser.use_kwargs

12
app/exts.py Normal file
View File

@ -0,0 +1,12 @@
import redis
from flask_sqlalchemy import SQLAlchemy
from flask_migrate import Migrate
from flask_marshmallow import Marshmallow
db = SQLAlchemy()
migrate = Migrate()
ma = Marshmallow()
pool = redis.ConnectionPool(host='localhost', password='sdust2020', port=6379, db=8)
redisClient = redis.Redis(connection_pool=pool)

253
app/file_tool.py Normal file
View File

@ -0,0 +1,253 @@
import json
import os
import shutil
from math import ceil
from typing import List, Optional, Union
#from ai_platform.common.config import settings
# from ai_platform.model.crud import image_label_crud as ilc, project_list_crud as plc, \
# image_dataset_curd as idc
#from ai_platform.common.logger import logger
# from ai_platform.model.database import session
from app.core.common_utils import logger
from app.json_util import write_info
# root_path = settings.root_path
# root_path = '/home/wd/server/ai_platform/data_set/'
#db = session
def delete_file(files: List[str]):
"""
删除文件
:param files:
:return:
"""
for file in files:
if os.path.exists(file):
os.remove(file)
def get_file_then_delete_file(path: str):
"""
删除指定路径下的所有文件
:param path:
:return:
"""
(filedir, filename) = os.path.split(path)
if os.path.exists(filedir):
del_files = []
for (dirpath, dirnames, filenames) in os.walk(filedir):
for filename in filenames:
del_files.append(os.path.join(dirpath, filename))
# del_files = os.listdir(filedir)
delete_file(files=del_files)
return filedir
def delete_dir_file(files: List[str], json_files: List[str]):
"""
若训练集测试机验证集的存放文件夹不为空 删除文件夹下所有文件
:param json_files:
:param files:
:return:
"""
logger.info('删除图片数据')
train_target_path = files[0].replace('ori/images', 'trained/images/train')
train_filedir = get_file_then_delete_file(train_target_path)
val_target_path = files[0].replace('ori/images', 'trained/images/val')
val_filedir = get_file_then_delete_file(val_target_path)
test_target_path = files[0].replace('ori/images', 'trained/images/test')
test_filedir = get_file_then_delete_file(test_target_path)
if len(json_files) == 0:
logger.info('无json数据')
else:
logger.info('删除json数据')
train_target_path = json_files[0].replace('ori/labels', 'trained/labels/train')
get_file_then_delete_file(train_target_path)
val_target_path = json_files[0].replace('ori/labels', 'trained/labels/val')
get_file_then_delete_file(val_target_path)
val_target_path = json_files[0].replace('ori/labels', 'trained/labels/test')
get_file_then_delete_file(val_target_path)
return [train_filedir + '/', val_filedir + '/', test_filedir + '/']
def mv_file(train_files: List[str], test_files: List[str], r_v_rate: Optional[float] = 0.9,
t_t_rate: Optional[float] = 0.9):
"""
移动图片标签到指定位置
:param train_files:测试集
:param test_files:验证集
:param r_v_rate:训练集内部比例
:param t_t_rate:训练-验证比例
:return:
"""
train_img_files = [i for i in train_files if not i.endswith('.json')]
train_json_files = [i for i in train_files if i.endswith('.json')]
test_img_files = [i for i in test_files if not i.endswith('.json')]
test_json_files = [i for i in test_files if i.endswith('.json')]
# 训练集、验证集、测试集
#logger.info('训练集、验证集、测试集开始划分')
train_len_all = len(train_img_files)
if t_t_rate is not None:
test_len_all = len(test_img_files)
len_all = train_len_all + test_len_all
t_t_rate_c = test_len_all / len_all
if t_t_rate_c > t_t_rate:
train_len_all = ceil(len_all * t_t_rate)
test_files.extend(train_img_files[train_len_all:])
train_len = ceil(train_len_all * r_v_rate)
# t_files: 训练集, val_files:验证集
t_files = train_img_files[0:train_len]
val_files = train_img_files[train_len:train_len_all]
# 判断目标文件夹是否存在, 存在则删除目录下文件
#logger.info('判断目标文件夹是否存在, 存在则删除目录下文件')
target_path = delete_dir_file(files=train_img_files, json_files=train_json_files)
# 放到指定文件夹
#logger.info('放到指定文件夹')
# t_files:训练集开始移动
for file in t_files:
if os.path.exists(file):
file_path = file.replace('ori/images', 'trained/images/train')
# /3148803620347904/ori/images/4.jpg
(filedir, filename) = os.path.split(file_path)
if not os.path.exists(filedir):
os.makedirs(filedir)
shutil.copyfile(file, file_path)
# json 放到指定文件夹下
json_file = os.path.splitext(file)[0].replace('images', 'labels') + '.json'
if json_file in train_json_files:
file_path = json_file.replace('ori/labels', 'trained/labels/train')
# /3148803620347904/ori/labels/4.jpg.json
(filedir, filename) = os.path.split(file_path)
if not os.path.exists(filedir):
os.makedirs(filedir)
shutil.copyfile(json_file, file_path)
# 测试集开始
for file in val_files:
if os.path.exists(file):
file_path = file.replace('ori/images', 'trained/images/val')
(filedir, filename) = os.path.split(file_path)
if not os.path.exists(filedir):
os.makedirs(filedir)
shutil.copyfile(file, file_path)
# json 放到指定文件夹下
json_file = os.path.splitext(file)[0].replace('images', 'labels') + '.json'
if json_file in train_json_files:
file_path = json_file.replace('ori/labels', 'trained/labels/val')
(filedir, filename) = os.path.split(file_path)
if not os.path.exists(filedir):
os.makedirs(filedir)
shutil.copyfile(json_file, file_path)
for file in test_img_files:
if os.path.exists(file):
file_path = file.replace('ori/images', 'trained/images/test')
# /3148803620347904/ori/images/4.jpg
(filedir, filename) = os.path.split(file_path)
if not os.path.exists(filedir):
os.makedirs(filedir)
shutil.copyfile(file, file_path)
# json 放到指定文件夹下
json_file = os.path.splitext(file)[0].replace('images', 'labels') + '.json'
if json_file in test_json_files:
file_path = json_file.replace('ori/labels', 'trained/labels/test')
# /3148803620347904/ori/labels/4.jpg.json
(filedir, filename) = os.path.split(file_path)
if not os.path.exists(filedir):
os.makedirs(filedir)
shutil.copyfile(json_file, file_path)
return target_path
def get_file(ori_path: str, type_list: Union[object,str]):
# imgs = idc.get_image_all_proj_no(proj_no=proj_no, db=db)
imgs = os.listdir(ori_path + '/images')
train_files = []
test_files = []
# 训练、测试比例强制91
for img in imgs[0:1]:
path = ori_path + 'images/' +img
# print(os.path.exists(path))
if os.path.exists(path):
test_files.append(path)
#label = ori_path + 'labels/' + os.path.split(path)[1]
(filename1, extension) = os.path.splitext(img) # 文件名与后缀名分开
label = ori_path + 'labels/' + filename1 + '.json'
if label is not None:
#train_files.append(label)
test_files.append(label)
for img in imgs[1:]:
path = ori_path + 'images/' +img
if os.path.exists(path):
train_files.append(path)
(filename2, extension) = os.path.splitext(img) # 文件名与后缀名分开
label = ori_path + 'labels/' + filename2 + '.json'
if label is not None:
train_files.append(label)
if len(train_files) == 0 or len(test_files) == 0:
return False
# proj = plc.get_proj_by_proj_no(proj_no=proj_no, db=db)
target_path = mv_file(train_files=train_files, test_files=test_files)
# 生成标签
# img_types = ilc.get_label_by_proj_no(proj_no=proj_no, db=db)
# type_list = []
# for img_type in img_types:
# type_list.append(img_type.lebel_type)
type_dict = {'classes': type_list}
str_json = json.dumps(type_dict)
path = os.path.dirname(ori_path) + '/img_label_type'
# path = root_path + proj_no + '/img_label_type'
write_info(file_name=path, file_info=json.loads(str_json))
target_path.append(path + '.json')
return target_path
# def get_file_path(proj_no: str):
# """
# 识别算法,给算法传递图片路径
# :param proj_no:
# :return:
# """
# path = root_path + '/' + proj_no
# img_path = path
# # 创建他们所需的文件夹
# vgg_path = path + '/vgg'
# if not os.path.exists(vgg_path):
# # vgg不存在创建
# train_path = vgg_path + '/train'
# test_path = vgg_path + '/test'
# os.makedirs(train_path)
# os.makedirs(test_path)
# # 生成标签
# img_types = ilc.get_label_by_proj_no(proj_no=proj_no, db=db)
# type_list = []
# for img_type in img_types:
# type_list.append(img_type.lebel_type)
# type_dict = {'classes': type_list}
# str_json = json.dumps(type_dict)
# path = root_path + proj_no + '/img_label_type'
# write_info(file_name=path, file_info=json.loads(str_json))
# return img_path, path + '.json'
if __name__ == '__main__':
# s = os.path.exists('D:/pythonProject/DeepLearnAiPlatform/data_set/868503011860480/ori/images/1.png')
# print(s)
# file = 'D:/pythonProject/DeepLearnAiPlatform/data_set/3148803620347904/ori/labels/36.json'
# file_path = 'D:/pythonProject/DeepLearnAiPlatform/data_set/3148803620347904/trained/labels/36.json'
s = get_file(proj_no='3148803620347904')
# shutil.copyfile(file, file_path)
print(s)

28
app/json_util.py Normal file
View File

@ -0,0 +1,28 @@
import json
import os
def write_info(file_name, file_info):
dir = os.path.dirname(file_name)
if not os.path.exists(dir):
os.makedirs(dir)
with open('{}.json'.format(file_name), 'w', encoding='UTF-8') as fp:
json.dump(file_info, fp, indent=4, sort_keys=False)
fp.close()
def read_json(file_path):
with open(file_path, 'r') as f:
data = json.load(f)
f.close()
return data
if __name__ == "__main__":
path = os.path.abspath(os.path.dirname(__file__))
print(path)
# write_info('', dict(report_data))
# read_json('d://report.json')
# s = '/group1/628740635893760/ori/images/7 (1).png'
# s1 = s.replace('images', 'labels')
# print(s[2])

3
app/models/__init__.py Normal file
View File

@ -0,0 +1,3 @@
from app.core.common_utils import import_subs
__all__ = import_subs(locals())

130
app/run.py Normal file
View File

@ -0,0 +1,130 @@
import datetime
import importlib
import json
import logging
from typing import List, Dict, Union
from flask import Flask, request
from flask.helpers import get_env
from flask_sockets import Sockets
import sys
#sys.path.append("/mnt/sdc/algorithm/AICheck-MaskRCNN")
from app.core.common_utils import logger
from app.core.err_handler import page_not_found, method_not_allowed, exception_500, exception_400
from app.exts import db, migrate, ma
from app.utils.redis_config import redis_client
from app.utils.websocket_tool import manager
def register_extensions(app):
db.init_app(app)
migrate.init_app(app, db)
ma.init_app(app)
def register_blueprints(app):
from app import controller
for name in controller.__all__:
bp = getattr(importlib.import_module(f'app.controller.{name}'), 'bp', None)
if bp is not None:
app.register_blueprint(
bp, url_prefix=f"/api{bp.url_prefix if bp.url_prefix else ''}")
def register_error_handler(app):
app.register_error_handler(404, page_not_found)
app.register_error_handler(405, method_not_allowed)
app.register_error_handler(400, exception_400)
# app.register_error_handler(500, exception_500)
def register_cmds(app):
pass
def register_log(app):
logging.root.handlers = []
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO, filename='ex.log')
# set up logging to console
console = logging.StreamHandler()
console.setLevel(logging.ERROR)
# set a format which is simpler for console use
formatter = logging.Formatter('%(asctime)s : %(levelname)s : %(message)s')
console.setFormatter(formatter)
logging.getLogger("").addHandler(console)
# logging.debug('debug')
# logging.info('info')
# logging.warning('warning')
# logging.error('error')
# logging.exception('exp')
def register_redis(app):
redis_client.init_redis_connect()
# socketio = SocketIO()
def create_app():
app = Flask(__name__, instance_relative_config=True)
app.config.from_object('app.configs.{}'.format(get_env()))
app.debug = False
# app.json_encoder = CustomJSONEncoder
with app.app_context():
register_extensions(app)
register_blueprints(app)
register_error_handler(app)
db.create_all()
register_cmds(app)
register_log(app)
register_redis(app)
@app.before_request
def log_request_info():
logger = logging.getLogger('werkzeug')
if request.method in ['POST', 'PUT']:
logger.info('Request Body: %s', request.get_data())
return app
app = create_app()
sockets = Sockets(app)
@sockets.route('/echo/<id>')
def echo_socket(ws, id: str):
# 保存ws对象根据
manager.connect(ws=ws, id=id)
logger.info('------进入websocket')
while not ws.closed:
msg = ws.receive()
print(msg)
res = {'code': 1, 'type': 'init', 'msg': '建立连接成功', 'data': '1'}
try:
ws.send(json.dumps(res), callable(success())) # 发送数据
except:
manager.disconnect(ws=ws, id=id)
# ws.send(now) # 发送数据
def success():
logger.info('-----------回调消息成功------------')
@app.route('/')
def hello_world():
return 'Hello World!'
if __name__ == '__main__':
from gevent import pywsgi
from geventwebsocket.handler import WebSocketHandler
#8080 6913 '192.168.0.20'
server = pywsgi.WSGIServer(('192.168.2.118', 6914), app, handler_class=WebSocketHandler)
server.serve_forever()

View File

@ -0,0 +1,64 @@
"""
@Time 2022/9/29 11:39
@Auth
@File TrainResult.py
@IDE PyCharm
@MottoABC(Always Be Coding)
@Desc训练报告结果类
"""
import datetime
from typing import List, Dict
from pydantic import BaseModel, Field
class ProcessValueList(BaseModel):
name: str = Field(..., description='名称')
value: List[int] = Field(..., description='过程值,如损失值,精度等')
class Report(BaseModel):
"""
训练算法返回值规范
"""
id: str = Field(..., description='唯一值')
rate_of_progess: float = Field(..., description='进度,保留一位小数')
precision: List[ProcessValueList] = Field(..., description="过程值列表")
sum: int = Field(..., description='总轮次')
progress: int = Field(..., description='当前轮次')
isfinish: int = Field(0, description="是否结束")
num_train_img: int = Field(..., description="参与训练图像数量")
train_mod_savepath: str = Field(..., description="模型保存路径")
start_time: datetime.date = Field(datetime.datetime.now(), description="开始时间")
end_time: datetime.date = Field(datetime.datetime.now(), description="结束时间")
class ReportDict(BaseModel):
"""
验证算法返回值规范
"""
id: str = Field(..., description='唯一值')
rate_of_progess: float = Field(..., description='进度,保留一位小数')
precision: List[Dict] = Field(..., description="过程值列表")
start_time: datetime.date = Field(datetime.datetime.now(), description="开始时间")
end_time: datetime.date = Field(datetime.datetime.now(), description="结束时间")
class DetectProcessValueDice(BaseModel):
"""
检测算法中间值
"""
ori_img: str = Field(..., description='原时图片路径, 绝对路径')
res_img: str = Field(..., description='结果图片路径, 绝对路径')
class DetectReport(BaseModel):
"""
检测算法返回值规范
"""
id: str = Field(..., description='唯一值')
rate_of_progess: float = Field(..., description='进度,保留一位小数')
precision: List[DetectProcessValueDice] = Field(..., description="过程值列表")
start_time: datetime.date = Field(datetime.datetime.now(), description="开始时间")
end_time: datetime.date = Field(datetime.datetime.now(), description="结束时间")

5
app/schemas/__init__.py Normal file
View File

@ -0,0 +1,5 @@
from app.core.common_utils import import_subs
__all__ = import_subs(locals())

View File

@ -0,0 +1,46 @@
"""
@Time 2022/10/9 11:53
@Auth
@File RedisClient.py
@IDE PyCharm
@MottoABC(Always Be Coding)
@Desc
"""
# coding:utf-8
import time
import redis
def redisClient():
rc = redis.StrictRedis(host="localhost", port="6379", db=0, password="sdust2020")
ps = rc.pubsub()
ps.subscribe("liao") # 订阅消息
a = 0
for item in ps.listen(): # 监听状态:有消息发布了就拿过来
print(item)
data = item['data']
if type(data) == bytes:
data = item['data'].decode()
print(data)
if data == '300030 -1':
ps.unsubscribe("liao")
print(1)
class Task(object):
def __init__(self, redis_conn, channel):
self.rcon = redis_conn
self.ps = self.rcon.pubsub()
self.key = 'task:pubsub:%s' % channel
self.ps.subscribe(self.key)
def listen_task(self):
for i in self.ps.listen():
if i['type'] == 'message':
print("Task get ", i["data"])
def del_listen(self):
self.ps.unsubscribe(self.key)

View File

@ -0,0 +1,21 @@
"""
@Time 2022/10/9 11:53
@Auth
@File RedisService.py
@IDE PyCharm
@MottoABC(Always Be Coding)
@Desc
"""
# coding:utf-8
import json
import time
import redis
number_list = ['300033', '300032', '300031', '300030']
signal = ['1', '-1', '1', '-1']
# rc = redis.StrictRedis(host='127.0.0.1', port='6379', db=3, password='sdust2020')
# for i in range(len(number_list)):
# value_new = {"ceshi": "测试"}
# rc.publish("liao", json.dumps(value_new)) # 发布消息到liao

54
app/services/RpcClient.py Normal file
View File

@ -0,0 +1,54 @@
"""
@Time 2022/9/30 17:09
@Auth
@File RpcClient.py
@IDE PyCharm
@MottoABC(Always Be Coding)
@DescRPC客户端
"""
import json
import socket
import time
class TCPClient(object):
def __init__(self):
self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
def connect(self, host, port):
"""链接Server端"""
self.sock.connect((host, port))
def send(self, data):
"""将数据发送到Server端"""
self.sock.send(data)
def recv(self, length):
"""接受Server端回传的数据"""
return self.sock.recv(length)
class RPCStub(object):
def __getattr__(self, function):
def _func(*args, **kwargs):
d = {'method_name': function, 'method_args': args, 'method_kwargs': kwargs}
self.send(json.dumps(d).encode('utf-8')) # 发送数据
data = self.recv(1024) # 接收方法执行后返回的结果
return data.decode('utf-8')
setattr(self, function, _func)
return _func
class RPCClient(TCPClient, RPCStub):
pass
# c = RPCClient()
# c.connect('127.0.0.1', 5003)
# print(c.add(1, 2, 3))
# print(c.setData({"sss": "ssss", "list": [5, 2, 3, 4]}))

View File

@ -0,0 +1,55 @@
"""
@Time 2022/9/30 17:09
@Auth
@File RpcClient.py
@IDE PyCharm
@MottoABC(Always Be Coding)
@DescRPC客户端
"""
import json
import socket
import time
class TCPClient(object):
def __init__(self):
self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
def connect(self, host, port):
"""链接Server端"""
self.sock.connect((host, port))
def send(self, data):
"""将数据发送到Server端"""
self.sock.send(data)
def recv(self, length):
"""接受Server端回传的数据"""
return self.sock.recv(length)
class RPCStub(object):
def __getattr__(self, function):
def _func(*args, **kwargs):
d = {'method_name': function, 'method_args': args, 'method_kwargs': kwargs}
self.send(json.dumps(d).encode('utf-8')) # 发送数据
data = self.recv(1024) # 接收方法执行后返回的结果
return data.decode('utf-8')
setattr(self, function, _func)
return _func
class RPCClient(TCPClient, RPCStub):
pass
# c = RPCClient()
# c.connect('127.0.0.1', 5003)
# print(c.start('1'))
# print(c.add(1, 2, 3))
# print(c.setData({"sss": "ssss", "list": [1, 2, 3, 4]}))

154
app/services/RpcService.py Normal file
View File

@ -0,0 +1,154 @@
"""
@Time 2022/9/30 11:28
@Auth
@File RpcService.py
@IDE PyCharm
@MottoABC(Always Be Coding)
@DescRPC服务端
"""
import asyncio
import json
import socket
from functools import wraps
from app.schemas.TrainResult import ProcessValueList, Report
from app.utils.RedisMQTool import Task
from app.utils.StandardizedOutput import output_wrapped
from app.utils.redis_config import redis_client
funcs = {}
def register_function(func):
"""
server端方法注册client端只能调用注册的方法
"""
name = func.__name__
funcs[name] = func
def mq_send(func, *args, **kwargs):
data = func(*args, **kwargs)
print(data)
class TCPServer(object):
def __init__(self):
self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.client_socket = None
def bind_listen(self, port=4999):
self.sock.bind(('0.0.0.0', port))
self.sock.listen(5)
def accept_receive_close(self):
"""
接收client的消息
"""
if self.client_socket is None:
(self.client_socket, address) = self.sock.accept()
if self.client_socket:
msg = self.client_socket.recv(1024)
data = self.on_msg(msg)
self.client_socket.send(data)
def on_msg(self, msg):
pass
class RPCStub(object):
def __init__(self):
self.data = None
def call_method(self, data):
"""
解析函数调用对应的方法便将该方法的执行结果返回
"""
if len(data) == 0:
return json.dumps("something wrong").encode('utf-8')
self.data = json.loads(data.decode('utf-8'))
method_name = self.data['method_name']
method_args = self.data['method_args']
method_kwargs = self.data['method_kwargs']
res = funcs[method_name](*method_args, **method_kwargs)
return json.dumps(res).encode('utf-8')
class RPCServer(TCPServer, RPCStub):
def __init__(self):
TCPServer.__init__(self)
RPCStub.__init__(self)
def loop(self, port):
"""
循环监听 4999端口
"""
self.bind_listen(port)
while True:
try:
self.accept_receive_close()
except Exception:
self.client_socket.close()
self.client_socket = None
print(Exception)
continue
def on_msg(self, data):
return self.call_method(data)
def redisMQSend():
def wrapTheFunction(func):
@wraps(func)
def wrapped_function(*args, **kwargs):
data = func(*args, **kwargs)
print(data)
Task(redis_conn=redis_client.get_redis(), channel="ceshi").publish_task(data=output_wrapped(0, 'success', data))
return wrapped_function
return wrapTheFunction
@register_function
def add(a, b, c=10):
sum = a + b + c
print(sum)
return sum
@register_function
def start(param: str):
"""
例子
"""
print(param)
process_value_list = ProcessValueList(name='1', value=[])
report = Report(rate_of_progess=0, process_value=[process_value_list])
@mq_send
def process(v: int):
print(v)
report.rate_of_progess = ((v + 1) / 10) * 100
report.process_value[0].value.append(v)
for i in range(10):
process(i)
print(report.dict())
return report.dict()
@register_function
def setData(data):
print(data)
return data
if __name__ == '__main__':
# 开启redis连接
redis_client.init_redis_connect()
s = RPCServer()
s.loop(5003) # 传入要监听的端口

View File

@ -0,0 +1,134 @@
import datetime
from functools import wraps
from flask import g, jsonify, request
import jwt
from app.configs.default import SECRET_KEY
from flask_httpauth import HTTPTokenAuth, HTTPAuth
# 生成token,有效时间为 60*60 秒
from app.exts import db
def generate_auth_token(user_name, expiration=3600):
reset_token = jwt.encode(
{
"user_name": user_name,
"exp": datetime.datetime.now(tz=datetime.timezone.utc) + datetime.timedelta(seconds=expiration)
},
SECRET_KEY,
algorithm="HS256"
)
return reset_token
# 重写 HTTPTokenAuth
class HTTPTokenAuthReReturn(HTTPTokenAuth):
def __init__(self, scheme=None, realm=None, header=None):
super().__init__(scheme, realm, header)
# 重写default_auth_error, 或者也可以重新定义一个函数
# def default_auth_error(status):
# return jsonify(data={}, message="token 错误!", code=status), status
def default_auth_error(status, message):
return jsonify(data={}, message=message, code=status), status
# 如果重新定义函数的话,这里就传入新定义的函数名
super().error_handler(default_auth_error)
# 重写 login_required
def login_required(self, f=None, role=None, optional=None):
if f is not None and \
(role is not None or optional is not None): # pragma: no cover
raise ValueError(
'role and optional are the only supported arguments')
def login_required_internal(f):
@wraps(f)
def decorated(*args, **kwargs):
auth = self.get_auth()
if request.method != 'OPTIONS':
password = self.get_auth_password(auth)
status = None # 添加状态信息
message = None
user = self.authenticate(auth, password)
# 这里判断verify_token的返回值是否是这里的一员
if user in (False, None, 'BadSignature', 'SignatureExpired'):
status = 401
if user == 'BadSignature':
message = "Bad Signature"
elif user == 'SignatureExpired':
message = "Signature Expired"
elif not self.authorize(role, user, auth):
status = 403
message = "Forbidden"
if not optional and status:
# Clear TCP receive buffer of any pending data
request.data
try:
# 因为之前重写了default_auth_error所以多传入一个message
return self.auth_error_callback(status, message)
except TypeError:
return self.auth_error_callback()
g.flask_httpauth_user = user if user is not True \
else auth.username if auth else None
return f(*args, **kwargs)
return decorated
if f:
return login_required_internal(f)
return login_required_internal
auth = HTTPTokenAuthReReturn(scheme="Bearer")
# 获取用户权限
@auth.get_user_roles
def get_user_roles(user):
the_role = get_role_token(user["token"])
return the_role.role_key
# 验证token
@auth.verify_token
def verify_token(token):
try:
print(token)
data = jwt.decode(token, SECRET_KEY, algorithms=["HS256"])
print(data)
except jwt.ExpiredSignatureError:
print("token过期")
# 这里不用False而是用自定义字符串
return "SignatureExpired"
except jwt.PyJWTError:
print("token错误")
# 这里不用False而是用自定义字符串
return "BadSignature"
return True
# 解析token不加密部分
def token_parse(token):
the_token = str.replace(str(token), 'Bearer ', '')
decoded = jwt.decode(the_token, options={"verify_signature": False})
return decoded
# 根据 username 获取角色
def get_role_username(username: str):
return []
# 根据 username 获取角色
def get_role_token(token: str):
user_info = token_parse(token)
username = user_info["user_name"]
the_role = get_role_username(username)
return the_role

5
app/services/__init__.py Normal file
View File

@ -0,0 +1,5 @@
from app.core.common_utils import import_subs
__all__ = import_subs(locals())

125
app/utils/DateTimeUtil.py Normal file
View File

@ -0,0 +1,125 @@
# coding:utf-8
import time
import datetime
def gap_day(time_str, date=None, format="%Y-%m-%d"):
"""
:判断自然日差几天
:param time_str: 2019-02-19 21:49:20
:return:
"""
if not date:
date = time.strftime(format)
now_day_stamps = time.mktime(time.strptime(date, format))
if " " in format:
format = format.split(" ")[0]
input_stamps = time.mktime(time.strptime(time_str.split(" ")[0], format))
return int(abs((now_day_stamps - input_stamps)) // 86400)
def gap_stamps_day(time_str, now_day_stamps=None):
"""
:判断绝对时间差几天
:param time_str: 2019-02-19 21:49:20
:return:
"""
if not now_day_stamps:
now_day_stamps = time.time()
input_stamps = time.mktime(time.strptime(time_str, "%Y-%m-%d %H:%M:%S"))
return int(abs((now_day_stamps - input_stamps)) // 86400)
def gap_stamps_hour(time_str):
"""
:判断绝对上差几个小时
:param time_str: 2019-02-19 21:49:20
:return:
"""
now = int(time.time())
input_stamps = time.mktime(time.strptime(time_str, "%Y-%m-%d %H:%M:%S"))
return int(abs((now - input_stamps)) // 3600)
def gap_stamps_minute(time_str):
"""
:判断绝对上差几个分钟
:param time_str: 2019-02-19 21:49:20
:return:
"""
now = int(time.time())
input_stamps = time.mktime(time.strptime(time_str, "%Y-%m-%d %H:%M:%S"))
return int(abs((now - input_stamps)) // 60)
def get_now():
"""
获取当前时间 YYYY-MM-DD HH:mm:ss
:param
:return:
"""
current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
return current_time
def get_time_stamp(timeStr, format="%Y-%m-%d %H:%M:%S"):
"""
获取时间戳
:param timeStr: 2019-05-12 09:00:00
:param format: "%Y-%m-%d %H:%M:%S"
:return:
"""
timeArray = time.strptime(timeStr, format)
timestamp = time.mktime(timeArray)
return int(timestamp)
def gap_stamps_sec(time_str):
"""
:判断绝对上差几秒
:param time_str: 2019-02-19 21:49:20
:return:
"""
now = int(time.time())
input_stamps = time.mktime(time.strptime(time_str, "%Y-%m-%d %H:%M:%S"))
return int(abs((now - input_stamps)))
def get_day_jia(date, n, format='%Y-%m-%d'):
"""
时间加n天
:param date:
:param n:
:return:
"""
jia_date = datetime.datetime.strptime(date, format)
jia_date = jia_date + datetime.timedelta(days=n)
return jia_date.strftime(format)
def get_sec_jia(seconds, format="%Y-%m-%d %H:%M:%S"):
"""
当前时间加多少秒
:param seconds:
:param format:
:return: 2019-12-30 19:25:30
"""
return (datetime.datetime.now() + datetime.timedelta(seconds=seconds)).strftime(format)
def get_ts_to_time(ts):
"""时间戳转字符串"""
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(ts))
def day_long(time1, time2):
"""
计算时间差
:return: 相差的天数
"""
ts1 = get_time_stamp(time1)
ts2 = get_time_stamp(time2)
date1 = datetime.datetime.fromtimestamp(ts1)
date2 = datetime.datetime.fromtimestamp(ts2)
return abs(int((date2 - date1).days))

View File

@ -0,0 +1,24 @@
import hashlib
import uuid
def sha256_encode(contents: str):
res = hashlib.sha256(b"%b" % contents.encode("utf8")).hexdigest()
return res
def sha3_256_encode(contents: str):
res = hashlib.sha3_256(b"%b" % contents.encode("utf8")).hexdigest()
return res
def generate_uuid():
return uuid.uuid4()
if __name__ == "__main__":
print(hashlib.algorithms_guaranteed)
print(hashlib.algorithms_available)
print(sha256("res"))
print(sha3_256("res" + generate_uuid().hex))
print(generate_uuid().hex)

View File

@ -0,0 +1,21 @@
"""
@Time 2022/10/17 10:12
@Auth
@File JSONEncodeTools.py
@IDE PyCharm
@MottoABC(Always Be Coding)
@Desc
"""
import datetime
import json
class MyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, bytes):
return str(obj, encoding='utf-8')
if isinstance(obj, datetime.datetime):
return str(obj)
return json.JSONEncoder.default(self, obj)

42
app/utils/RedisMQTool.py Normal file
View File

@ -0,0 +1,42 @@
"""
@Time 2022/10/9 17:50
@Auth
@File RedisMQTool.py
@IDE PyCharm
@MottoABC(Always Be Coding)
@Desc
"""
import json
import redis
class Task(object):
def __init__(self, redis_conn, channel):
self.rcon = redis_conn
self.ps = self.rcon.pubsub()
self.key = 'task:pubsub:%s' % channel
self.ps.subscribe(self.key)
def listen_task(self):
for i in self.ps.listen():
if i['type'] == 'message':
print("Task get ", i["data"])
def publish_task(self, data):
self.rcon.publish(self.key, json.dumps(data))
def del_listen(self):
self.ps.unsubscribe(self.key)
if __name__ == '__main__':
print("listen task channel")
pool = redis.ConnectionPool(host='127.0.0.1',
port=6379, db=5,)
redis_conn = redis.StrictRedis(connection_pool=pool)
Task(redis_conn, 'channel').listen_task()

View File

@ -0,0 +1,95 @@
# coding: utf-8
# Authortajochen
import sqlite3
import os
class SimpleSQLite3Tool:
"""
simpleToolSql for sqlite3
简单数据库工具类
编写这个类主要是为了封装sqlite继承此类复用方法
"""
def __init__(self, filename="stsql"):
"""
初始化数据库默认文件名 stsql.db
filename文件名
"""
self.filename = filename
self.db = sqlite3.connect(self.filename)
self.c = self.db.cursor()
def close(self):
"""
关闭数据库
"""
self.c.close()
self.db.close()
def execute(self, sql, param=None):
"""
执行数据库的增
sqlsql语句
param数据可以是list或tuple亦可是None
return成功返回True
"""
try:
if param is None:
self.c.execute(sql)
else:
if type(param) is list:
self.c.executemany(sql, param)
else:
self.c.execute(sql, param)
count = self.db.total_changes
self.db.commit()
except Exception as e:
print(e)
return False, e
if count > 0:
return True
else:
return False
def query(self, sql, param=None):
"""
查询语句
sqlsql语句
param参数,可为None
return成功返回True
"""
if param is None:
self.c.execute(sql)
else:
self.c.execute(sql, param)
return self.c.fetchall()
# def set(self,table,field=" * ",where="",isWhere=False):
# self.table = table
# self.filed = field
# if where != "" :
# self.where = where
# self.isWhere = True
# return True
if __name__ == "__main__":
# 数据库文件位置
sql = SimpleSQLite3Tool("../test.db")
f = sql.execute("create table test (id int not null,name text not null,age int);")
print("ok")
sql.execute("insert into test (id,name,age) values (?,?,?);", [(1, 'abc', 15), (2, 'bca', 16)])
res = sql.query("select * from test;")
print(res)
sql.execute("insert into test (id,name) values (?,?);", (3, 'bac'))
res = sql.query("select * from test where id=?;", (3,))
res = sql.query("select * from data_collection_info;")
print(res)
sql.close()

View File

@ -0,0 +1,82 @@
# -*- coding: utf-8 -*-
"""
@author: cxyfreedom
@desc: 基于 snowflake 生成分布式ID
"""
import time
# 每一部分占用的位数
TIMESTAMP_BIT = 41 # 时间戳占用位数
MACHINE_BIT = 5 # 机器标识占用的位数
DATACENTER_BIT = 5 # 数据中心占用的位数
SEQUENCE_BIT = 12 # 序列号占用的位数
# 每一部分的最大值
MAX_DATACENTER_NUM = -1 ^ (-1 << DATACENTER_BIT)
MAX_MACHINE_NUM = -1 ^ (-1 << MACHINE_BIT)
MAX_SEQUENCE = -1 ^ (-1 << SEQUENCE_BIT)
# 每一部分向左的位移
MACHINE_LEFT = SEQUENCE_BIT
DATACENTER_LEFT = MACHINE_BIT + SEQUENCE_BIT
TIMESTAMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT
class SnowFlake:
class OverflowError(TypeError):
"""
分布式ID生成算法占位符溢出异常会导致生成ID为负数
"""
pass
class RuntimeError(TypeError):
"""
运行时间错误在此项目中当前运行时间小于上一次运行时间
"""
pass
def __init__(self):
if TIMESTAMP_BIT + SEQUENCE_BIT + MACHINE_BIT + DATACENTER_BIT != 63:
raise self.OverflowError(
"TIMESTAMP_BIT + SEQUENCE_BIT + MACHINE_BIT + DATACENTER_BIT not equal to 63bit")
self.datacenter_id = 0 # 数据中心编号
self.machineId = 0 # 机器标识编号
self.sequence = 0 # 序列号
self.last_stamp = -1 # 上一次时间戳
def nextId(self):
"""生成下一个ID"""
cur_stamp = self.get_new_stamp()
if cur_stamp < self.last_stamp:
raise self.RuntimeError(
"Clock moved backwards. Refusing to generate id")
if cur_stamp == self.last_stamp:
# 相同毫秒内,序列号自增
self.sequence = (self.sequence + 1) & MAX_SEQUENCE
# 同一秒的序列数已经达到最大
if self.sequence == 0:
cur_stamp = self.get_next_mill()
else:
# 不同秒内序列号为0
self.sequence = 0
self.last_stamp = cur_stamp
return (cur_stamp << TIMESTAMP_LEFT) | (
self.datacenter_id << DATACENTER_LEFT) | (
self.machineId << MACHINE_LEFT) | self.sequence
def get_next_mill(self):
mill = self.get_new_stamp()
while mill <= self.last_stamp:
mill = self.get_new_stamp()
return mill
@staticmethod
def get_new_stamp():
now = lambda: int(time.time() * 1000)
return now()
if __name__ == "__main__":
print(SnowFlake().nextId())

View File

@ -0,0 +1,5 @@
from flask import jsonify
def output_wrapped(status: int = 0, message: str = "", data: object = None):
return jsonify(code=status, message=message, data=data)

53
app/utils/UDPReceive.py Normal file
View File

@ -0,0 +1,53 @@
#!/usr/bin/python3
# coding= utf-8
import socket
import sys
import struct
import json
# 本机信息
import time
host_ip = socket.gethostbyname(socket.gethostname())
# 组播组IP和端口
mcast_group_ip = '224.1.1.1'
mcast_group_port = 2234
def receiver():
# 建立接收 udp socket
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
# linux能绑定网卡这里绑定组播IP地址不会服错windows没法绑定网卡只能绑定本网卡IP地址
if "linux" in sys.platform:
# 绑定到的网卡名如果自己的不是eth0则修改
nic_name = 0
# 监听的组播地址
sock.setsockopt(socket.SOL_SOCKET, 25, nic_name)
sock.bind((mcast_group_ip, mcast_group_port))
else:
sock.bind((host_ip, mcast_group_port))
# 加入组播组
mq_request = struct.pack("=4sl", socket.inet_aton(mcast_group_ip), socket.INADDR_ANY)
sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, mq_request)
# 设置非阻塞
sock.setblocking(True)
while True:
try:
data, address = sock.recvfrom(4096)
data2 = json.loads(data)
# 若组播数据不正确
if len(data2) < 3:
return
except socket.error as e:
print(f"while receive message error occur:{e}")
else:
print("Receive Data!")
print("FROM: ", address)
print("DATA: ", data.decode('utf-8'))
if __name__ == "__main__":
receiver()

32
app/utils/UDPSender.py Normal file
View File

@ -0,0 +1,32 @@
#!/usr/bin/python3
# coding= utf-8
import time
import struct
import socket
# 本机信息
host_ip = socket.gethostname()
host_port = 6501
# 组播组IP和端口
mcast_group_ip = '239.255.255.252'
mcast_group_port = 5678
def sender():
send_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP)
send_sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
send_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
send_sock.bind((host_ip, host_port))
# 设置存活时长
ttl_bin = struct.pack('@i', 255)
send_sock.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_TTL, ttl_bin)
while True:
data = '12345 english 汉字#测试'
send_sock.sendto(str(data).encode('utf-8'), (mcast_group_ip, mcast_group_port))
print(f'{time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())}: send finish.')
time.sleep(10)
if __name__ == "__main__":
sender()

View File

@ -0,0 +1,29 @@
"""
@Time 2022/10/11 16:43
@Auth
@File WebsocketClient.py
@IDE PyCharm
@MottoABC(Always Be Coding)
@Desc
"""
from threading import Thread
import websocket
def connect(self, apiKey, secretKey, trace=False):
self.host = OKEX_USD_CONTRACT
self.apiKey = apiKey
self.secretKey = secretKey
self.trace = trace
websocket.enableTrace(trace)
self.ws = websocket.WebSocketApp(self.host,
on_message=self.onMessage,
on_error=self.onError,
on_close=self.onClose,
on_open=self.onOpen)
self.thread = Thread(target=self.ws.run_forever, args=(None, None, 60, 30))
self.thread.start()

40
app/utils/YamlTool.py Normal file
View File

@ -0,0 +1,40 @@
import yaml
import os
# 单个文档
def get_yaml_data(yaml_file):
# 打开yaml文件
file = open(yaml_file, 'r', encoding='utf-8')
file_data = file.read()
file.close()
# 将字符串转化为字典或列表
data = yaml.safe_load(file_data) # safe_loadsafe_load,unsafe_load
return data
# yaml文件中含多个文档时分别获取文档中数据
def get_yaml_load_all(yaml_file):
# 打开文件
file = open(yaml_file, 'r', encoding='utf-8')
file_data = file.read()
file.close()
all_data = yaml.load_all(file_data, Loader=yaml.FullLoader)
for data in all_data:
print('data-----', data)
# 生成yaml文档
def generate_yaml_doc(yaml_file):
py_ob = {"school": "zhang", "students": ['a', 'b']}
file = open(yaml_file, 'w', encoding='utf-8')
yaml.dump(py_ob, file)
file.close()
if __name__ == '__main__':
current_path = os.path.abspath("../../")
yaml_path = os.path.join(current_path, "config.yaml")
print('--------------------', yaml_path)
get_yaml_data(yaml_path)

0
app/utils/__init__.py Normal file
View File

66
app/utils/redis_config.py Normal file
View File

@ -0,0 +1,66 @@
"""
redis 配置类
"""
import sys
import redis
from ..configs import default
class RedisCli(object):
def __init__(self, *, host: str, port: str, password: str, db: int, socket_timeout=5):
# redis对象在 @app.on_event('startup') 中连接创建
self._redis_client = None
self.host = host
self.port = port
self.password = password
self.db = db
self.socket_timeout = socket_timeout
def init_redis_connect(self) -> None:
"""
初始化链接
:return:
"""
try:
r = redis.ConnectionPool(
host=self.host,
port=self.port,
password=self.password,
db=self.db,
socket_timeout=self.socket_timeout,
decode_responses=True # 解码
)
self._redis_client = redis.StrictRedis(connection_pool=r)
if not self._redis_client.ping():
print('连接超时')
sys.exit()
except (redis.AuthenticationError, Exception) as e:
print('连接redis异常')
sys.exit()
def get_redis(self):
return self._redis_client
# 使实例化后的对象赋予redis对象的方法和属性
def __getattr__(self, item):
return self._redis_client.has_key(item)
def __getitem__(self, item):
return self._redis_client[item]
def __setitem__(self, key, value):
self._redis_client[key] = value
def __delitem__(self, key):
del self._redis_client[key]
redis_client = RedisCli(
host=default.db['host'],
port=default.db['port'],
password=default.db['password'],
db=default.db['db'],
)

View File

@ -0,0 +1,60 @@
"""
@Time 2022/10/12 17:55
@Auth
@File websocket_tool.py
@IDE PyCharm
@MottoABC(Always Be Coding)
@Desc
"""
import json
from typing import Union, List, Dict
from app.core.common_utils import logger
from app.utils.JSONEncodeTools import MyEncoder
class WebsocketUtil:
def __init__(self):
self.active_connections: List = []
self.active_connections_dist: Dict = {}
def connect(self, ws, id: str):
# 等待连接
msg = ws.receive()
# 存储ws连接对象
self.active_connections.append(ws)
if id in self.active_connections_dist:
self.active_connections_dist[id].append(ws)
else:
ws_list = [ws, ]
self.active_connections_dist[id] = ws_list
def disconnect(self, ws, id):
# ws关闭时 移除ws对象
if ws.closed:
if ws in self.active_connections_dist.values():
self.active_connections.remove(ws)
self.active_connections_dist[id].pop(ws)
@staticmethod
async def send_personal_message(message: str, ws):
# 发送个人消息
await ws.send(message)
def broadcast(self, message: str):
# 广播消息
for connection in self.active_connections:
connection.send(message)
def send_message_proj_json(self, message: Union[str, int, List, Dict], id: str):
# 广播该项目的消息
for connection in self.active_connections_dist[id]:
try:
connection.send(json.dumps(message, cls=MyEncoder, indent=4), )
except Exception as e:
logger.error("websocket异常断开{}", e)
self.disconnect(ws=connection, id=id)
manager = WebsocketUtil()

222
app/yolov5/.dockerignore Normal file
View File

@ -0,0 +1,222 @@
# Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
.git
.cache
.idea
runs
output
coco
storage.googleapis.com
data/samples/*
**/results*.csv
*.jpg
# Neural Network weights -----------------------------------------------------------------------------------------------
**/*.pt
**/*.pth
**/*.onnx
**/*.engine
**/*.mlmodel
**/*.torchscript
**/*.torchscript.pt
**/*.tflite
**/*.h5
**/*.pb
*_saved_model/
*_web_model/
*_openvino_model/
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
env/
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
wandb/
.installed.cfg
*.egg
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# pyenv
.python-version
# celery beat schedule file
celerybeat-schedule
# SageMath parsed files
*.sage.py
# dotenv
.env
# virtualenv
.venv*
venv*/
ENV*/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
# General
.DS_Store
.AppleDouble
.LSOverride
# Icon must end with two \r
Icon
Icon?
# Thumbnails
._*
# Files that might appear in the root of a volume
.DocumentRevisions-V100
.fseventsd
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns
.com.apple.timemachine.donotpresent
# Directories potentially created on remote AFP share
.AppleDB
.AppleDesktop
Network Trash Folder
Temporary Items
.apdisk
# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
# User-specific stuff:
.idea/*
.idea/**/workspace.xml
.idea/**/tasks.xml
.idea/dictionaries
.html # Bokeh Plots
.pg # TensorFlow Frozen Graphs
.avi # videos
# Sensitive or high-churn files:
.idea/**/dataSources/
.idea/**/dataSources.ids
.idea/**/dataSources.local.xml
.idea/**/sqlDataSources.xml
.idea/**/dynamic.xml
.idea/**/uiDesigner.xml
# Gradle:
.idea/**/gradle.xml
.idea/**/libraries
# CMake
cmake-build-debug/
cmake-build-release/
# Mongo Explorer plugin:
.idea/**/mongoSettings.xml
## File-based project format:
*.iws
## Plugin-specific files:
# IntelliJ
out/
# mpeltonen/sbt-idea plugin
.idea_modules/
# JIRA plugin
atlassian-ide-plugin.xml
# Cursive Clojure plugin
.idea/replstate.xml
# Crashlytics plugin (for Android Studio and IntelliJ)
com_crashlytics_export_strings.xml
crashlytics.properties
crashlytics-build.properties
fabric.properties

2
app/yolov5/.gitattributes vendored Normal file
View File

@ -0,0 +1,2 @@
# this drop notebooks from GitHub language stats
*.ipynb linguist-vendored

128
app/yolov5/.github/CODE_OF_CONDUCT.md vendored Normal file
View File

@ -0,0 +1,128 @@
# YOLOv5 🚀 Contributor Covenant Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
- Demonstrating empathy and kindness toward other people
- Being respectful of differing opinions, viewpoints, and experiences
- Giving and gracefully accepting constructive feedback
- Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
- Focusing on what is best not just for us as individuals, but for the
overall community
Examples of unacceptable behavior include:
- The use of sexualized language or imagery, and sexual attention or
advances of any kind
- Trolling, insulting or derogatory comments, and personal or political attacks
- Public or private harassment
- Publishing others' private information, such as a physical or email
address, without their explicit permission
- Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
hello@ultralytics.com.
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series
of actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within
the community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
Community Impact Guidelines were inspired by [Mozilla's code of conduct
enforcement ladder](https://github.com/mozilla/diversity).
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.
[homepage]: https://www.contributor-covenant.org

View File

@ -0,0 +1,85 @@
name: 🐛 Bug Report
# title: " "
description: Problems with YOLOv5
labels: [bug, triage]
body:
- type: markdown
attributes:
value: |
Thank you for submitting a YOLOv5 🐛 Bug Report!
- type: checkboxes
attributes:
label: Search before asking
description: >
Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar bug report already exists.
options:
- label: >
I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar bug report.
required: true
- type: dropdown
attributes:
label: YOLOv5 Component
description: |
Please select the part of YOLOv5 where you found the bug.
multiple: true
options:
- "Training"
- "Validation"
- "Detection"
- "Export"
- "PyTorch Hub"
- "Multi-GPU"
- "Evolution"
- "Integrations"
- "Other"
validations:
required: false
- type: textarea
attributes:
label: Bug
description: Provide console output with error messages and/or screenshots of the bug.
placeholder: |
💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
validations:
required: true
- type: textarea
attributes:
label: Environment
description: Please specify the software and hardware you used to produce the bug.
placeholder: |
- YOLO: YOLOv5 🚀 v6.0-67-g60e42e1 torch 1.9.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB)
- OS: Ubuntu 20.04
- Python: 3.9.0
validations:
required: false
- type: textarea
attributes:
label: Minimal Reproducible Example
description: >
When asking a question, people will be better able to provide help if you provide code that they can easily understand and use to **reproduce** the problem.
This is referred to by community members as creating a [minimal reproducible example](https://stackoverflow.com/help/minimal-reproducible-example).
placeholder: |
```
# Code to reproduce your issue here
```
validations:
required: false
- type: textarea
attributes:
label: Additional
description: Anything else you would like to share?
- type: checkboxes
attributes:
label: Are you willing to submit a PR?
description: >
(Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature.
See the YOLOv5 [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) to get started.
options:
- label: Yes I'd like to help by submitting a PR!

View File

@ -0,0 +1,8 @@
blank_issues_enabled: true
contact_links:
- name: 💬 Forum
url: https://community.ultralytics.com/
about: Ask on Ultralytics Community Forum
- name: Stack Overflow
url: https://stackoverflow.com/search?q=YOLOv5
about: Ask on Stack Overflow with 'YOLOv5' tag

View File

@ -0,0 +1,50 @@
name: 🚀 Feature Request
description: Suggest a YOLOv5 idea
# title: " "
labels: [enhancement]
body:
- type: markdown
attributes:
value: |
Thank you for submitting a YOLOv5 🚀 Feature Request!
- type: checkboxes
attributes:
label: Search before asking
description: >
Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar feature request already exists.
options:
- label: >
I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar feature requests.
required: true
- type: textarea
attributes:
label: Description
description: A short description of your feature.
placeholder: |
What new feature would you like to see in YOLOv5?
validations:
required: true
- type: textarea
attributes:
label: Use case
description: |
Describe the use case of your feature request. It will help us understand and prioritize the feature request.
placeholder: |
How would this feature be used, and who would use it?
- type: textarea
attributes:
label: Additional
description: Anything else you would like to share?
- type: checkboxes
attributes:
label: Are you willing to submit a PR?
description: >
(Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature.
See the YOLOv5 [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) to get started.
options:
- label: Yes I'd like to help by submitting a PR!

View File

@ -0,0 +1,33 @@
name: ❓ Question
description: Ask a YOLOv5 question
# title: " "
labels: [question]
body:
- type: markdown
attributes:
value: |
Thank you for asking a YOLOv5 ❓ Question!
- type: checkboxes
attributes:
label: Search before asking
description: >
Please search the [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) to see if a similar question already exists.
options:
- label: >
I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions.
required: true
- type: textarea
attributes:
label: Question
description: What is your question?
placeholder: |
💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
validations:
required: true
- type: textarea
attributes:
label: Additional
description: Anything else you would like to share?

View File

@ -0,0 +1,9 @@
<!--
Thank you for submitting a YOLOv5 🚀 Pull Request! We want to make contributing to YOLOv5 as easy and transparent as possible. A few tips to get you started:
- Search existing YOLOv5 [PRs](https://github.com/ultralytics/yolov5/pull) to see if a similar PR already exists.
- Link this PR to a YOLOv5 [issue](https://github.com/ultralytics/yolov5/issues) to help us understand what bug fix or feature is being implemented.
- Provide before and after profiling/inference/training results to help us quantify the improvement your PR provides (if applicable).
Please see our ✅ [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) for more details.
-->

356
app/yolov5/.github/README_cn.md vendored Normal file
View File

@ -0,0 +1,356 @@
<div align="center">
<p>
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/assets/raw/master/yolov5/v62/splash_readme.png"></a>
<br><br>
<a href="https://play.google.com/store/apps/details?id=com.ultralytics.ultralytics_app" style="text-decoration:none;">
<img src="https://raw.githubusercontent.com/ultralytics/assets/master/app/google-play.svg" width="15%" alt="" /></a>&nbsp;
<a href="https://apps.apple.com/xk/app/ultralytics/id1583935240" style="text-decoration:none;">
<img src="https://raw.githubusercontent.com/ultralytics/assets/master/app/app-store.svg" width="15%" alt="" /></a>
</p>
[English](../README.md) | 简体中文
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<p>
YOLOv5🚀是一个在COCO数据集上预训练的物体检测架构和模型系列它代表了<a href="https://ultralytics.com">Ultralytics</a>对未来视觉AI方法的公开研究其中包含了在数千小时的研究和开发中所获得的经验和最佳实践。
</p>
<div align="center">
<a href="https://github.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="2%" alt="" /></a>
</div>
</div>
## <div align="center">文件</div>
请参阅[YOLOv5 Docs](https://docs.ultralytics.com),了解有关训练、测试和部署的完整文件。
## <div align="center">快速开始案例</div>
<details open>
<summary>安装</summary>
在[**Python>=3.7.0**](https://www.python.org/) 的环境中克隆版本仓并安装 [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt),包括[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/)。
```bash
git clone https://github.com/ultralytics/yolov5 # 克隆
cd yolov5
pip install -r requirements.txt # 安装
```
</details>
<details open>
<summary>推理</summary>
YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 推理. [模型](https://github.com/ultralytics/yolov5/tree/master/models) 自动从最新YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases)下载。
```python
import torch
# 模型
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom
# 图像
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# 推理
results = model(img)
# 结果
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>用 detect.py 进行推理</summary>
`detect.py` 在各种数据源上运行推理, 其会从最新的 YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases) 中自动下载 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 并将检测结果保存到 `runs/detect` 目录。
```bash
python detect.py --source 0 # 网络摄像头
img.jpg # 图像
vid.mp4 # 视频
path/ # 文件夹
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP 流
```
</details>
<details>
<summary>训练</summary>
以下指令再现了 YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
数据集结果. [模型](https://github.com/ultralytics/yolov5/tree/master/models) 和 [数据集](https://github.com/ultralytics/yolov5/tree/master/data) 自动从最新的YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases) 中下载。YOLOv5n/s/m/l/x的训练时间在V100 GPU上是 1/2/4/6/8天多GPU倍速. 尽可能使用最大的 `--batch-size`, 或通过 `--batch-size -1` 来实现 YOLOv5 [自动批处理](https://github.com/ultralytics/yolov5/pull/5092). 批量大小显示为 V100-16GB。
```bash
python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
yolov5s 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>教程</summary>
- [训练自定义数据集](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 🚀 推荐
- [获得最佳训练效果的技巧](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) ☘️
推荐
- [多GPU训练](https://github.com/ultralytics/yolov5/issues/475)
- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 🌟 新
- [TFLite, ONNX, CoreML, TensorRT 输出](https://github.com/ultralytics/yolov5/issues/251) 🚀
- [测试时数据增强 (TTA)](https://github.com/ultralytics/yolov5/issues/303)
- [模型集成](https://github.com/ultralytics/yolov5/issues/318)
- [模型剪枝/稀疏性](https://github.com/ultralytics/yolov5/issues/304)
- [超参数进化](https://github.com/ultralytics/yolov5/issues/607)
- [带有冻结层的迁移学习](https://github.com/ultralytics/yolov5/issues/1314)
- [架构概要](https://github.com/ultralytics/yolov5/issues/6998) 🌟 新
- [使用Weights & Biases 记录实验](https://github.com/ultralytics/yolov5/issues/1289)
- [Roboflow数据集标签和主动学习](https://github.com/ultralytics/yolov5/issues/4975) 🌟 新
- [使用ClearML 记录实验](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) 🌟 新
- [Deci 平台](https://github.com/ultralytics/yolov5/wiki/Deci-Platform) 🌟 新
</details>
## <div align="center">环境</div>
使用经过我们验证的环境,几秒钟就可以开始。点击下面的每个图标了解详情。
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
</a>
</div>
## <div align="center">如何与第三方集成</div>
<div align="center">
<a href="https://bit.ly/yolov5-deci-platform">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-deci.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" />
<a href="https://cutt.ly/yolov5-readme-clearml">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-clearml.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" />
<a href="https://roboflow.com/?ref=ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" />
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb.png" width="10%" /></a>
</div>
|Deci ⭐ NEW|ClearML ⭐ NEW|Roboflow|Weights & Biases
|:-:|:-:|:-:|:-:|
|在[Deci](https://bit.ly/yolov5-deci-platform)一键自动编译和量化YOLOv5以提高推理性能|使用[ClearML](https://cutt.ly/yolov5-readme-clearml) (开源!)自动追踪可视化以及远程训练YOLOv5|标记并将您的自定义数据直接导出到YOLOv5后用[Roboflow](https://roboflow.com/?ref=ultralytics)进行训练 |通过[Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)自动跟踪以及可视化你在云端所有的YOLOv5训练运行情况
## <div align="center">为什么选择 YOLOv5</div>
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
<details>
<summary>YOLOv5-P5 640 图像 (点击扩展)</summary>
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
</details>
<details>
<summary>图片注释 (点击扩展)</summary>
- **COCO AP val** 表示 mAP@0.5:0.95 在5000张图像的[COCO val2017](http://cocodataset.org)数据集上在256到1536的不同推理大小上测量的指标。
- **GPU Speed** 衡量的是在 [COCO val2017](http://cocodataset.org) 数据集上使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100实例在批量大小为32时每张图像的平均推理时间。
- **EfficientDet** 数据来自 [google/automl](https://github.com/google/automl) ,批量大小设置为 8。
- 复现 mAP 方法: `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
</details>
### 预训练检查点
| 模型 | 规模<br><sup>(像素) | mAP<sup>验证<br>0.5:0.95 | mAP<sup>验证<br>0.5 | 速度<br><sup>CPU b1<br>(ms) | 速度<br><sup>V100 b1<br>(ms) | 速度<br><sup>V100 b32<br>(ms) | 参数<br><sup>(M) | 浮点运算<br><sup>@640 (B) |
|------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|--------------------|------------------------------|-------------------------------|--------------------------------|--------------------|------------------------|
| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** |
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
| | | | | | | | | |
| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 |
| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 |
| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x6.pt)<br>+ [TTA][TTA] | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- |
<details>
<summary>表格注释 (点击扩展)</summary>
- 所有检查点都以默认设置训练到300个时期. Nano和Small模型用 [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, 其他模型使用 [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
- **mAP<sup>val</sup>** 值是 [COCO val2017](http://cocodataset.org) 数据集上的单模型单尺度的值。
<br>复现方法: `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
- 使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) 实例对COCO val图像的平均速度。不包括NMS时间~1 ms/img)
<br>复现方法: `python val.py --data coco.yaml --img 640 --task speed --batch 1`
- **TTA** [测试时数据增强](https://github.com/ultralytics/yolov5/issues/303) 包括反射和比例增强.
<br>复现方法: `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
</details>
## <div align="center">分类 ⭐ 新</div>
YOLOv5发布的[v6.2版本](https://github.com/ultralytics/yolov5/releases) 支持训练,验证,预测和输出分类模型!这使得训练分类器模型非常简单。点击下面开始尝试!
<details>
<summary>分类检查点 (点击展开)</summary>
<br>
我们在ImageNet上使用了4xA100的实例训练YOLOv5-cls分类模型90个epochs并以相同的默认设置同时训练了ResNet和EfficientNet模型来进行比较。我们将所有的模型导出到ONNX FP32进行CPU速度测试又导出到TensorRT FP16进行GPU速度测试。最后为了方便重现我们在[Google Colab Pro](https://colab.research.google.com/signup)上进行了所有的速度测试。
| 模型 | 规模<br><sup>(像素) | 准确度<br><sup>第一 | 准确度<br><sup>前五 | 训练<br><sup>90 epochs<br>4xA100 (小时) | 速度<br><sup>ONNX CPU<br>(ms) | 速度<br><sup>TensorRT V100<br>(ms) | 参数<br><sup>(M) | 浮点运算<br><sup>@224 (B) |
|----------------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|----------------------------------------------|--------------------------------|-------------------------------------|--------------------|------------------------|
| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** |
| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 |
| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 |
| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 |
| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 |
| |
| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 |
| [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 |
| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 |
| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 |
| |
| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 |
| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 |
| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 |
| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 |
<details>
<summary>表格注释 (点击扩展)</summary>
- 所有检查点都被SGD优化器训练到90 epochs, `lr0=0.001``weight_decay=5e-5` 图像大小为224全为默认设置。<br>运行数据记录于 https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2。
- **准确度** 值为[ImageNet-1k](https://www.image-net.org/index.php)数据集上的单模型单尺度。<br>通过`python classify/val.py --data ../datasets/imagenet --img 224`进行复制。
- 使用Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM实例得出的100张推理图像的平均**速度**。<br>通过 `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`进行复制。
- 用`export.py`**导出**到FP32的ONNX和FP16的TensorRT。<br>通过 `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`进行复制。
</details>
</details>
<details>
<summary>分类使用实例 (点击展开)</summary>
### 训练
YOLOv5分类训练支持自动下载MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof和ImageNet数据集并使用`--data` 参数. 打个比方在MNIST上使用`--data mnist`开始训练。
```bash
# 单GPU
python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
# 多-GPU DDP
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
```
### 验证
在ImageNet-1k数据集上验证YOLOv5m-cl的准确性:
```bash
bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate
```
### 预测
用提前训练好的YOLOv5s-cls.pt去预测bus.jpg:
```bash
python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg
```
```python
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s-cls.pt') # load from PyTorch Hub
```
### 导出
导出一组训练好的YOLOv5s-cls, ResNet和EfficientNet模型到ONNX和TensorRT:
```bash
python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
```
</details>
## <div align="center">贡献</div>
我们重视您的意见! 我们希望给大家提供尽可能的简单和透明的方式对 YOLOv5 做出贡献。开始之前请先点击并查看我们的 [贡献指南](CONTRIBUTING.md),填写[YOLOv5调查问卷](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) 来向我们发送您的经验反馈。真诚感谢我们所有的贡献者!
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/image-contributors-1280.png" /></a>
## <div align="center">联系</div>
关于YOLOv5的漏洞和功能问题请访问 [GitHub Issues](https://github.com/ultralytics/yolov5/issues)。商业咨询或技术支持服务请访问[https://ultralytics.com/contact](https://ultralytics.com/contact)。
<br>
<div align="center">
<a href="https://github.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="3%" alt="" /></a>
</div>
[assets]: https://github.com/ultralytics/yolov5/releases
[tta]: https://github.com/ultralytics/yolov5/issues/303

7
app/yolov5/.github/SECURITY.md vendored Normal file
View File

@ -0,0 +1,7 @@
# Security Policy
We aim to make YOLOv5 🚀 as secure as possible! If you find potential vulnerabilities or have any concerns please let us know so we can investigate and take corrective action if needed.
### Reporting a Vulnerability
To report vulnerabilities please email us at hello@ultralytics.com or visit https://ultralytics.com/contact. Thank you!

23
app/yolov5/.github/dependabot.yml vendored Normal file
View File

@ -0,0 +1,23 @@
version: 2
updates:
- package-ecosystem: pip
directory: "/"
schedule:
interval: weekly
time: "04:00"
open-pull-requests-limit: 10
reviewers:
- glenn-jocher
labels:
- dependencies
- package-ecosystem: github-actions
directory: "/"
schedule:
interval: weekly
time: "04:00"
open-pull-requests-limit: 5
reviewers:
- glenn-jocher
labels:
- dependencies

View File

@ -0,0 +1,140 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# YOLOv5 Continuous Integration (CI) GitHub Actions tests
name: YOLOv5 CI
on:
push:
branches: [ master ]
pull_request:
branches: [ master ]
schedule:
- cron: '0 0 * * *' # runs at 00:00 UTC every day
jobs:
Benchmarks:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ ubuntu-latest ]
python-version: [ '3.9' ] # requires python<=3.9
model: [ yolov5n ]
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
#- name: Cache pip
# uses: actions/cache@v3
# with:
# path: ~/.cache/pip
# key: ${{ runner.os }}-Benchmarks-${{ hashFiles('requirements.txt') }}
# restore-keys: ${{ runner.os }}-Benchmarks-
- name: Install requirements
run: |
python -m pip install --upgrade pip wheel
pip install -r requirements.txt coremltools openvino-dev tensorflow-cpu --extra-index-url https://download.pytorch.org/whl/cpu
python --version
pip --version
pip list
- name: Run benchmarks
run: |
python utils/benchmarks.py --weights ${{ matrix.model }}.pt --img 320 --hard-fail 0.29
Tests:
timeout-minutes: 60
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ ubuntu-latest, windows-latest ] # macos-latest bug https://github.com/ultralytics/yolov5/pull/9049
python-version: [ '3.10' ]
model: [ yolov5n ]
include:
- os: ubuntu-latest
python-version: '3.7' # '3.6.8' min
model: yolov5n
- os: ubuntu-latest
python-version: '3.8'
model: yolov5n
- os: ubuntu-latest
python-version: '3.9'
model: yolov5n
- os: ubuntu-latest
python-version: '3.8' # torch 1.7.0 requires python >=3.6, <=3.8
model: yolov5n
torch: '1.7.0' # min torch version CI https://pypi.org/project/torchvision/
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Get cache dir
# https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow
id: pip-cache
run: echo "::set-output name=dir::$(pip cache dir)"
- name: Cache pip
uses: actions/cache@v3
with:
path: ${{ steps.pip-cache.outputs.dir }}
key: ${{ runner.os }}-${{ matrix.python-version }}-pip-${{ hashFiles('requirements.txt') }}
restore-keys: ${{ runner.os }}-${{ matrix.python-version }}-pip-
- name: Install requirements
run: |
python -m pip install --upgrade pip wheel
if [ "${{ matrix.torch }}" == "1.7.0" ]; then
pip install -r requirements.txt torch==1.7.0 torchvision==0.8.1 --extra-index-url https://download.pytorch.org/whl/cpu
else
pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cpu
fi
shell: bash # for Windows compatibility
- name: Check environment
run: |
python -c "import utils; utils.notebook_init()"
echo "RUNNER_OS is ${{ runner.os }}"
echo "GITHUB_EVENT_NAME is ${{ github.event_name }}"
echo "GITHUB_WORKFLOW is ${{ github.workflow }}"
echo "GITHUB_ACTOR is ${{ github.actor }}"
echo "GITHUB_REPOSITORY is ${{ github.repository }}"
echo "GITHUB_REPOSITORY_OWNER is ${{ github.repository_owner }}"
python --version
pip --version
pip list
- name: Test detection
shell: bash # for Windows compatibility
run: |
# export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories
m=${{ matrix.model }} # official weights
b=runs/train/exp/weights/best # best.pt checkpoint
python train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train
for d in cpu; do # devices
for w in $m $b; do # weights
python val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val
python detect.py --imgsz 64 --weights $w.pt --device $d # detect
done
done
python hubconf.py --model $m # hub
# python models/tf.py --weights $m.pt # build TF model
python models/yolo.py --cfg $m.yaml # build PyTorch model
python export.py --weights $m.pt --img 64 --include torchscript # export
python - <<EOF
import torch
for path in '$m', '$b':
model = torch.hub.load('.', 'custom', path=path, source='local')
print(model('data/images/bus.jpg'))
EOF
- name: Test classification
shell: bash # for Windows compatibility
run: |
m=${{ matrix.model }}-cls.pt # official weights
b=runs/train-cls/exp/weights/best.pt # best.pt checkpoint
python classify/train.py --imgsz 32 --model $m --data mnist2560 --epochs 1 # train
python classify/val.py --imgsz 32 --weights $b --data ../datasets/mnist2560 # val
python classify/predict.py --imgsz 32 --weights $b --source ../datasets/mnist2560/test/7/60.png # predict
python classify/predict.py --imgsz 32 --weights $m --source data/images/bus.jpg # predict
python export.py --weights $b --img 64 --imgsz 224 --include torchscript # export
python - <<EOF
import torch
for path in '$m', '$b':
model = torch.hub.load('.', 'custom', path=path, source='local')
EOF

View File

@ -0,0 +1,54 @@
# This action runs GitHub's industry-leading static analysis engine, CodeQL, against a repository's source code to find security vulnerabilities.
# https://github.com/github/codeql-action
name: "CodeQL"
on:
schedule:
- cron: '0 0 1 * *' # Runs at 00:00 UTC on the 1st of every month
jobs:
analyze:
name: Analyze
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
language: ['python']
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
# Learn more:
# https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
steps:
- name: Checkout repository
uses: actions/checkout@v3
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@v2
with:
languages: ${{ matrix.language }}
# If you wish to specify custom queries, you can do so here or in a config file.
# By default, queries listed here will override any specified in a config file.
# Prefix the list here with "+" to use these queries and those in the config file.
# queries: ./path/to/local/query, your-org/your-repo/queries@main
# Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
# If this step fails, then you should remove it and run the build manually (see below)
- name: Autobuild
uses: github/codeql-action/autobuild@v2
# Command-line programs to run using the OS shell.
# 📚 https://git.io/JvXDl
# ✏️ If the Autobuild fails above, remove it and uncomment the following three lines
# and modify them (or add more) to build your code if your project
# uses a compiled language
#- run: |
# make bootstrap
# make release
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@v2

54
app/yolov5/.github/workflows/docker.yml vendored Normal file
View File

@ -0,0 +1,54 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Builds ultralytics/yolov5:latest images on DockerHub https://hub.docker.com/r/ultralytics/yolov5
name: Publish Docker Images
on:
push:
branches: [ master ]
jobs:
docker:
if: github.repository == 'ultralytics/yolov5'
name: Push Docker image to Docker Hub
runs-on: ubuntu-latest
steps:
- name: Checkout repo
uses: actions/checkout@v3
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Login to Docker Hub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build and push arm64 image
uses: docker/build-push-action@v3
with:
context: .
platforms: linux/arm64
file: utils/docker/Dockerfile-arm64
push: true
tags: ultralytics/yolov5:latest-arm64
- name: Build and push CPU image
uses: docker/build-push-action@v3
with:
context: .
file: utils/docker/Dockerfile-cpu
push: true
tags: ultralytics/yolov5:latest-cpu
- name: Build and push GPU image
uses: docker/build-push-action@v3
with:
context: .
file: utils/docker/Dockerfile
push: true
tags: ultralytics/yolov5:latest

View File

@ -0,0 +1,57 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
name: Greetings
on:
pull_request_target:
types: [opened]
issues:
types: [opened]
jobs:
greeting:
runs-on: ubuntu-latest
steps:
- uses: actions/first-interaction@v1
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
pr-message: |
👋 Hello @${{ github.actor }}, thank you for submitting a YOLOv5 🚀 PR! To allow your work to be integrated as seamlessly as possible, we advise you to:
- ✅ Verify your PR is **up-to-date** with `ultralytics/yolov5` `master` branch. If your PR is behind you can update your code by clicking the 'Update branch' button or by running `git pull` and `git merge master` locally.
- ✅ Verify all YOLOv5 Continuous Integration (CI) **checks are passing**.
- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee
issue-message: |
👋 Hello @${{ github.actor }}, thank you for your interest in YOLOv5 🚀! Please visit our ⭐️ [Tutorials](https://github.com/ultralytics/yolov5/wiki#tutorials) to get started, where you can find quickstart guides for simple tasks like [Custom Data Training](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) all the way to advanced concepts like [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607).
If this is a 🐛 Bug Report, please provide screenshots and **minimum viable code to reproduce your issue**, otherwise we can not help you.
If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online [W&B logging](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data#visualize) if available.
For business inquiries or professional support requests please visit https://ultralytics.com or email support@ultralytics.com.
## Requirements
[**Python>=3.7.0**](https://www.python.org/) with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). To get started:
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
## Environments
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
## Status
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a>
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), validation ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.

40
app/yolov5/.github/workflows/stale.yml vendored Normal file
View File

@ -0,0 +1,40 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
name: Close stale issues
on:
schedule:
- cron: '0 0 * * *' # Runs at 00:00 UTC every day
jobs:
stale:
runs-on: ubuntu-latest
steps:
- uses: actions/stale@v5
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
stale-issue-message: |
👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs.
Access additional [YOLOv5](https://ultralytics.com/yolov5) 🚀 resources:
- **Wiki** https://github.com/ultralytics/yolov5/wiki
- **Tutorials** https://github.com/ultralytics/yolov5#tutorials
- **Docs** https://docs.ultralytics.com
Access additional [Ultralytics](https://ultralytics.com) ⚡ resources:
- **Ultralytics HUB** https://ultralytics.com/hub
- **Vision API** https://ultralytics.com/yolov5
- **About Us** https://ultralytics.com/about
- **Join Our Team** https://ultralytics.com/work
- **Contact Us** https://ultralytics.com/contact
Feel free to inform us of any other **issues** you discover or **feature requests** that come to mind in the future. Pull Requests (PRs) are also always welcomed!
Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐!
stale-pr-message: 'This pull request has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions YOLOv5 🚀 and Vision AI ⭐.'
days-before-issue-stale: 30
days-before-issue-close: 10
days-before-pr-stale: 90
days-before-pr-close: 30
exempt-issue-labels: 'documentation,tutorial,TODO'
operations-per-run: 300 # The maximum number of operations per run, used to control rate limiting.

256
app/yolov5/.gitignore vendored Normal file
View File

@ -0,0 +1,256 @@
# Repo-specific GitIgnore ----------------------------------------------------------------------------------------------
*.jpg
*.jpeg
*.png
*.bmp
*.tif
*.tiff
*.heic
*.JPG
*.JPEG
*.PNG
*.BMP
*.TIF
*.TIFF
*.HEIC
*.mp4
*.mov
*.MOV
*.avi
*.data
*.json
*.cfg
!setup.cfg
!cfg/yolov3*.cfg
storage.googleapis.com
runs/*
data/*
data/images/*
!data/*.yaml
!data/hyps
!data/scripts
!data/images
!data/images/zidane.jpg
!data/images/bus.jpg
!data/*.sh
results*.csv
# Datasets -------------------------------------------------------------------------------------------------------------
coco/
coco128/
VOC/
# MATLAB GitIgnore -----------------------------------------------------------------------------------------------------
*.m~
*.mat
!targets*.mat
# Neural Network weights -----------------------------------------------------------------------------------------------
*.weights
*.pt
*.pb
*.onnx
*.engine
*.mlmodel
*.torchscript
*.tflite
*.h5
*_saved_model/
*_web_model/
*_openvino_model/
darknet53.conv.74
yolov3-tiny.conv.15
# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
env/
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
/wandb/
.installed.cfg
*.egg
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# pyenv
.python-version
# celery beat schedule file
celerybeat-schedule
# SageMath parsed files
*.sage.py
# dotenv
.env
# virtualenv
.venv*
venv*/
ENV*/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
# General
.DS_Store
.AppleDouble
.LSOverride
# Icon must end with two \r
Icon
Icon?
# Thumbnails
._*
# Files that might appear in the root of a volume
.DocumentRevisions-V100
.fseventsd
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns
.com.apple.timemachine.donotpresent
# Directories potentially created on remote AFP share
.AppleDB
.AppleDesktop
Network Trash Folder
Temporary Items
.apdisk
# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
# User-specific stuff:
.idea/*
.idea/**/workspace.xml
.idea/**/tasks.xml
.idea/dictionaries
.html # Bokeh Plots
.pg # TensorFlow Frozen Graphs
.avi # videos
# Sensitive or high-churn files:
.idea/**/dataSources/
.idea/**/dataSources.ids
.idea/**/dataSources.local.xml
.idea/**/sqlDataSources.xml
.idea/**/dynamic.xml
.idea/**/uiDesigner.xml
# Gradle:
.idea/**/gradle.xml
.idea/**/libraries
# CMake
cmake-build-debug/
cmake-build-release/
# Mongo Explorer plugin:
.idea/**/mongoSettings.xml
## File-based project format:
*.iws
## Plugin-specific files:
# IntelliJ
out/
# mpeltonen/sbt-idea plugin
.idea_modules/
# JIRA plugin
atlassian-ide-plugin.xml
# Cursive Clojure plugin
.idea/replstate.xml
# Crashlytics plugin (for Android Studio and IntelliJ)
com_crashlytics_export_strings.xml
crashlytics.properties
crashlytics-build.properties
fabric.properties

View File

@ -0,0 +1,64 @@
# Define hooks for code formations
# Will be applied on any updated commit files if a user has installed and linked commit hook
default_language_version:
python: python3.8
# Define bot property if installed via https://github.com/marketplace/pre-commit-ci
ci:
autofix_prs: true
autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
autoupdate_schedule: monthly
# submodules: true
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.3.0
hooks:
# - id: end-of-file-fixer
- id: trailing-whitespace
- id: check-case-conflict
- id: check-yaml
- id: check-toml
- id: pretty-format-json
- id: check-docstring-first
- repo: https://github.com/asottile/pyupgrade
rev: v2.37.3
hooks:
- id: pyupgrade
name: Upgrade code
args: [ --py37-plus ]
- repo: https://github.com/PyCQA/isort
rev: 5.10.1
hooks:
- id: isort
name: Sort imports
- repo: https://github.com/pre-commit/mirrors-yapf
rev: v0.32.0
hooks:
- id: yapf
name: YAPF formatting
- repo: https://github.com/executablebooks/mdformat
rev: 0.7.14
hooks:
- id: mdformat
name: MD formatting
additional_dependencies:
- mdformat-gfm
- mdformat-black
exclude: "README.md|README_cn.md"
- repo: https://github.com/asottile/yesqa
rev: v1.3.0
hooks:
- id: yesqa
- repo: https://github.com/PyCQA/flake8
rev: 5.0.2
hooks:
- id: flake8
name: PEP8

View File

@ -0,0 +1,93 @@
## Contributing to YOLOv5 🚀
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's:
- Reporting a bug
- Discussing the current state of the code
- Submitting a fix
- Proposing a new feature
- Becoming a maintainer
YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be
helping push the frontiers of what's possible in AI 😃!
## Submitting a Pull Request (PR) 🛠️
Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps:
### 1. Select File to Update
Select `requirements.txt` to update by clicking on it in GitHub.
<p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
### 2. Click 'Edit this file'
Button is in top-right corner.
<p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
### 3. Make Changes
Change `matplotlib` version from `3.2.2` to `3.3`.
<p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
### 4. Preview Changes and Submit PR
Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch**
for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose
changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃!
<p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
### PR recommendations
To allow your work to be integrated as seamlessly as possible, we advise you to:
- ✅ Verify your PR is **up-to-date** with `ultralytics/yolov5` `master` branch. If your PR is behind you can update
your code by clicking the 'Update branch' button or by running `git pull` and `git merge master` locally.
<p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 15" src="https://user-images.githubusercontent.com/26833433/187295893-50ed9f44-b2c9-4138-a614-de69bd1753d7.png"></p>
- ✅ Verify all YOLOv5 Continuous Integration (CI) **checks are passing**.
<p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 03" src="https://user-images.githubusercontent.com/26833433/187296922-545c5498-f64a-4d8c-8300-5fa764360da6.png"></p>
- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase
but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee
## Submitting a Bug Report 🐛
If you spot a problem with YOLOv5 please submit a Bug Report!
For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few
short guidelines below to help users provide what we need in order to get started.
When asking a question, people will be better able to provide help if you provide **code** that they can easily
understand and use to **reproduce** the problem. This is referred to by community members as creating
a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces
the problem should be:
- ✅ **Minimal** Use as little code as possible that still produces the same problem
- ✅ **Complete** Provide **all** parts someone else needs to reproduce your problem in the question itself
- ✅ **Reproducible** Test the code you're about to provide to make sure it reproduces the problem
In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code
should be:
- ✅ **Current** Verify that your code is up-to-date with current
GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new
copy to ensure your problem has not already been resolved by previous commits.
- ✅ **Unmodified** Your problem must be reproducible without any modifications to the codebase in this
repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️.
If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛
**Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing
a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better
understand and diagnose your problem.
## License
By contributing, you agree that your contributions will be licensed under
the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/)

674
app/yolov5/LICENSE Normal file
View File

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

363
app/yolov5/README.md Normal file
View File

@ -0,0 +1,363 @@
<div align="center">
<p>
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/assets/raw/master/yolov5/v62/splash_readme.png"></a>
<br><br>
<a href="https://play.google.com/store/apps/details?id=com.ultralytics.ultralytics_app" style="text-decoration:none;">
<img src="https://raw.githubusercontent.com/ultralytics/assets/master/app/google-play.svg" width="15%" alt="" /></a>&nbsp;
<a href="https://apps.apple.com/xk/app/ultralytics/id1583935240" style="text-decoration:none;">
<img src="https://raw.githubusercontent.com/ultralytics/assets/master/app/app-store.svg" width="15%" alt="" /></a>
</p>
English | [简体中文](.github/README_cn.md)
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<p>
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<div align="center">
<a href="https://github.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="2%" alt="" /></a>
</div>
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
[**Python>=3.7.0**](https://www.python.org/) environment, including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
</details>
<details open>
<summary>Inference</summary>
YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
largest `--batch-size` possible, or pass `--batch-size -1` for
YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
```bash
python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
yolov5s 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
- [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)  🚀 RECOMMENDED
- [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)  ☘️
RECOMMENDED
- [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 🌟 NEW
- [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 🚀
- [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
- [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
- [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
- [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
- [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)
- [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998) 🌟 NEW
- [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)
- [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)  🌟 NEW
- [ClearML Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) 🌟 NEW
- [Deci Platform](https://github.com/ultralytics/yolov5/wiki/Deci-Platform) 🌟 NEW
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="5%" alt="" />
<a href="https://www.kaggle.com/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="5%" alt="" />
<a href="https://hub.docker.com/r/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="5%" alt="" />
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="5%" alt="" />
<a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="10%" /></a>
</div>
## <div align="center">Integrations</div>
<div align="center">
<a href="https://bit.ly/yolov5-deci-platform">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-deci.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" />
<a href="https://cutt.ly/yolov5-readme-clearml">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-clearml.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" />
<a href="https://roboflow.com/?ref=ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" />
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb.png" width="10%" /></a>
</div>
|Deci ⭐ NEW|ClearML ⭐ NEW|Roboflow|Weights & Biases
|:-:|:-:|:-:|:-:|
|Automatically compile and quantize YOLOv5 for better inference performance in one click at [Deci](https://bit.ly/yolov5-deci-platform)|Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)
## <div align="center">Why YOLOv5</div>
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
<details>
<summary>YOLOv5-P5 640 Figure (click to expand)</summary>
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
</details>
<details>
<summary>Figure Notes (click to expand)</summary>
- **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
- **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
- **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
- **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
</details>
### Pretrained Checkpoints
| Model | size<br><sup>(pixels) | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Speed<br><sup>CPU b1<br>(ms) | Speed<br><sup>V100 b1<br>(ms) | Speed<br><sup>V100 b32<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
|------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|--------------------|------------------------------|-------------------------------|--------------------------------|--------------------|------------------------|
| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** |
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
| | | | | | | | | |
| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 |
| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 |
| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x6.pt)<br>+ [TTA][TTA] | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- |
<details>
<summary>Table Notes (click to expand)</summary>
- All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
- **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
- **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
</details>
## <div align="center">Classification ⭐ NEW</div>
YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) brings support for classification model training, validation, prediction and export! We've made training classifier models super simple. Click below to get started.
<details>
<summary>Classification Checkpoints (click to expand)</summary>
<br>
We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) for easy reproducibility.
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Training<br><sup>90 epochs<br>4xA100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TensorRT V100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@224 (B) |
|----------------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|----------------------------------------------|--------------------------------|-------------------------------------|--------------------|------------------------|
| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** |
| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 |
| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 |
| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 |
| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 |
| |
| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 |
| [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 |
| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 |
| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 |
| |
| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 |
| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 |
| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 |
| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 |
<details>
<summary>Table Notes (click to expand)</summary>
- All checkpoints are trained to 90 epochs with SGD optimizer with `lr0=0.001` and `weight_decay=5e-5` at image size 224 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2
- **Accuracy** values are for single-model single-scale on [ImageNet-1k](https://www.image-net.org/index.php) dataset.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224`
- **Speed** averaged over 100 inference images using a Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM instance.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
</details>
</details>
<details>
<summary>Classification Usage Examples (click to expand)</summary>
### Train
YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the `--data` argument. To start training on MNIST for example use `--data mnist`.
```bash
# Single-GPU
python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
# Multi-GPU DDP
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
```
### Val
Validate YOLOv5m-cls accuracy on ImageNet-1k dataset:
```bash
bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate
```
### Predict
Use pretrained YOLOv5s-cls.pt to predict bus.jpg:
```bash
python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg
```
```python
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s-cls.pt') # load from PyTorch Hub
```
### Export
Export a group of trained YOLOv5s-cls, ResNet and EfficientNet models to ONNX and TensorRT:
```bash
python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
```
</details>
## <div align="center">Contribute</div>
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/image-contributors-1280.png" /></a>
## <div align="center">Contact</div>
For YOLOv5 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business inquiries or
professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact).
<br>
<div align="center">
<a href="https://github.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="3%" alt="" /></a>
</div>
[assets]: https://github.com/ultralytics/yolov5/releases
[tta]: https://github.com/ultralytics/yolov5/issues/303

View File

@ -0,0 +1,214 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
Usage - sources:
$ python classify/predict.py --weights yolov5s-cls.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Usage - formats:
$ python classify/predict.py --weights yolov5s-cls.pt # PyTorch
yolov5s-cls.torchscript # TorchScript
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s-cls.xml # OpenVINO
yolov5s-cls.engine # TensorRT
yolov5s-cls.mlmodel # CoreML (macOS-only)
yolov5s-cls_saved_model # TensorFlow SavedModel
yolov5s-cls.pb # TensorFlow GraphDef
yolov5s-cls.tflite # TensorFlow Lite
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
"""
import argparse
import os
import platform
import sys
from pathlib import Path
import torch
import torch.nn.functional as F
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.augmentations import classify_transforms
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
increment_path, print_args, strip_optimizer)
from utils.plots import Annotator
from utils.torch_utils import select_device, smart_inference_mode
@smart_inference_mode()
def run(
weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
imgsz=(224, 224), # inference size (height, width)
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
nosave=False, # do not save images/videos
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / 'runs/predict-cls', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
):
source = str(source)
save_img = not nosave and not source.endswith('.txt') # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
if is_url and is_file:
source = check_file(source) # download
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
if webcam:
view_img = check_imshow()
dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
bs = len(dataset) # batch_size
else:
dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
bs = 1 # batch_size
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.Tensor(im).to(device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
if len(im.shape) == 3:
im = im[None] # expand for batch dim
# Inference
with dt[1]:
results = model(im)
# Post-process
with dt[2]:
pred = F.softmax(results, dim=1) # probabilities
# Process predictions
for i, prob in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, im0 = path[i], im0s[i].copy()
s += f'{i}: '
else:
p, im0 = path, im0s.copy()
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
s += '%gx%g ' % im.shape[2:] # print string
annotator = Annotator(im0, example=str(names), pil=True)
# Print results
top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, "
# Write results
if save_img or view_img: # Add bbox to image
text = '\n'.join(f'{prob[j]:.2f} {names[j]}' for j in top5i)
annotator.text((32, 32), text, txt_color=(255, 255, 255))
# Stream results
im0 = annotator.result()
if view_img:
if platform.system() == 'Linux' and p not in windows:
windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)
# Print time (inference-only)
LOGGER.info(f"{s}{dt[1].dt * 1E3:.1f}ms")
# Print results
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model path(s)')
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[224], help='inference size h,w')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='show results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default=ROOT / 'runs/predict-cls', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt
def main(opt):
check_requirements(exclude=('tensorboard', 'thop'))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)

View File

@ -0,0 +1,331 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Train a YOLOv5 classifier model on a classification dataset
Usage - Single-GPU training:
$ python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 128
Usage - Multi-GPU DDP training:
$ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
Datasets: --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/data'
YOLOv5-cls models: --model yolov5n-cls.pt, yolov5s-cls.pt, yolov5m-cls.pt, yolov5l-cls.pt, yolov5x-cls.pt
Torchvision models: --model resnet50, efficientnet_b0, etc. See https://pytorch.org/vision/stable/models.html
"""
import argparse
import os
import subprocess
import sys
import time
from copy import deepcopy
from datetime import datetime
from pathlib import Path
import torch
import torch.distributed as dist
import torch.hub as hub
import torch.optim.lr_scheduler as lr_scheduler
import torchvision
from torch.cuda import amp
from tqdm import tqdm
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from classify import val as validate
from models.experimental import attempt_load
from models.yolo import ClassificationModel, DetectionModel
from utils.dataloaders import create_classification_dataloader
from utils.general import (DATASETS_DIR, LOGGER, WorkingDirectory, check_git_status, check_requirements, colorstr,
download, increment_path, init_seeds, print_args, yaml_save)
from utils.loggers import GenericLogger
from utils.plots import imshow_cls
from utils.torch_utils import (ModelEMA, model_info, reshape_classifier_output, select_device, smart_DDP,
smart_optimizer, smartCrossEntropyLoss, torch_distributed_zero_first)
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv('RANK', -1))
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
def train(opt, device):
init_seeds(opt.seed + 1 + RANK, deterministic=True)
save_dir, data, bs, epochs, nw, imgsz, pretrained = \
opt.save_dir, Path(opt.data), opt.batch_size, opt.epochs, min(os.cpu_count() - 1, opt.workers), \
opt.imgsz, str(opt.pretrained).lower() == 'true'
cuda = device.type != 'cpu'
# Directories
wdir = save_dir / 'weights'
wdir.mkdir(parents=True, exist_ok=True) # make dir
last, best = wdir / 'last.pt', wdir / 'best.pt'
# Save run settings
yaml_save(save_dir / 'opt.yaml', vars(opt))
# Logger
logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None
# Download Dataset
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
data_dir = data if data.is_dir() else (DATASETS_DIR / data)
if not data_dir.is_dir():
LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
t = time.time()
if str(data) == 'imagenet':
subprocess.run(f"bash {ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
else:
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{data}.zip'
download(url, dir=data_dir.parent)
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
LOGGER.info(s)
# Dataloaders
nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes
trainloader = create_classification_dataloader(path=data_dir / 'train',
imgsz=imgsz,
batch_size=bs // WORLD_SIZE,
augment=True,
cache=opt.cache,
rank=LOCAL_RANK,
workers=nw)
test_dir = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val
if RANK in {-1, 0}:
testloader = create_classification_dataloader(path=test_dir,
imgsz=imgsz,
batch_size=bs // WORLD_SIZE * 2,
augment=False,
cache=opt.cache,
rank=-1,
workers=nw)
# Model
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
if Path(opt.model).is_file() or opt.model.endswith('.pt'):
model = attempt_load(opt.model, device='cpu', fuse=False)
elif opt.model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0
model = torchvision.models.__dict__[opt.model](weights='IMAGENET1K_V1' if pretrained else None)
else:
m = hub.list('ultralytics/yolov5') # + hub.list('pytorch/vision') # models
raise ModuleNotFoundError(f'--model {opt.model} not found. Available models are: \n' + '\n'.join(m))
if isinstance(model, DetectionModel):
LOGGER.warning("WARNING: pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'")
model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10) # convert to classification model
reshape_classifier_output(model, nc) # update class count
for m in model.modules():
if not pretrained and hasattr(m, 'reset_parameters'):
m.reset_parameters()
if isinstance(m, torch.nn.Dropout) and opt.dropout is not None:
m.p = opt.dropout # set dropout
for p in model.parameters():
p.requires_grad = True # for training
model = model.to(device)
# Info
if RANK in {-1, 0}:
model.names = trainloader.dataset.classes # attach class names
model.transforms = testloader.dataset.torch_transforms # attach inference transforms
model_info(model)
if opt.verbose:
LOGGER.info(model)
images, labels = next(iter(trainloader))
file = imshow_cls(images[:25], labels[:25], names=model.names, f=save_dir / 'train_images.jpg')
logger.log_images(file, name='Train Examples')
logger.log_graph(model, imgsz) # log model
# Optimizer
optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=opt.decay)
# Scheduler
lrf = 0.01 # final lr (fraction of lr0)
# lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf # cosine
lf = lambda x: (1 - x / epochs) * (1 - lrf) + lrf # linear
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
# scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1,
# final_div_factor=1 / 25 / lrf)
# EMA
ema = ModelEMA(model) if RANK in {-1, 0} else None
# DDP mode
if cuda and RANK != -1:
model = smart_DDP(model)
# Train
t0 = time.time()
criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing) # loss function
best_fitness = 0.0
scaler = amp.GradScaler(enabled=cuda)
val = test_dir.stem # 'val' or 'test'
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} test\n'
f'Using {nw * WORLD_SIZE} dataloader workers\n'
f"Logging results to {colorstr('bold', save_dir)}\n"
f'Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n'
f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}")
for epoch in range(epochs): # loop over the dataset multiple times
tloss, vloss, fitness = 0.0, 0.0, 0.0 # train loss, val loss, fitness
model.train()
if RANK != -1:
trainloader.sampler.set_epoch(epoch)
pbar = enumerate(trainloader)
if RANK in {-1, 0}:
pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
for i, (images, labels) in pbar: # progress bar
images, labels = images.to(device, non_blocking=True), labels.to(device)
# Forward
with amp.autocast(enabled=cuda): # stability issues when enabled
loss = criterion(model(images), labels)
# Backward
scaler.scale(loss).backward()
# Optimize
scaler.unscale_(optimizer) # unscale gradients
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if ema:
ema.update(model)
if RANK in {-1, 0}:
# Print
tloss = (tloss * i + loss.item()) / (i + 1) # update mean losses
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + ' ' * 36
# Test
if i == len(pbar) - 1: # last batch
top1, top5, vloss = validate.run(model=ema.ema,
dataloader=testloader,
criterion=criterion,
pbar=pbar) # test accuracy, loss
fitness = top1 # define fitness as top1 accuracy
# Scheduler
scheduler.step()
# Log metrics
if RANK in {-1, 0}:
# Best fitness
if fitness > best_fitness:
best_fitness = fitness
# Log
metrics = {
"train/loss": tloss,
f"{val}/loss": vloss,
"metrics/accuracy_top1": top1,
"metrics/accuracy_top5": top5,
"lr/0": optimizer.param_groups[0]['lr']} # learning rate
logger.log_metrics(metrics, epoch)
# Save model
final_epoch = epoch + 1 == epochs
if (not opt.nosave) or final_epoch:
ckpt = {
'epoch': epoch,
'best_fitness': best_fitness,
'model': deepcopy(ema.ema).half(), # deepcopy(de_parallel(model)).half(),
'ema': None, # deepcopy(ema.ema).half(),
'updates': ema.updates,
'optimizer': None, # optimizer.state_dict(),
'opt': vars(opt),
'date': datetime.now().isoformat()}
# Save last, best and delete
torch.save(ckpt, last)
if best_fitness == fitness:
torch.save(ckpt, best)
del ckpt
# Train complete
if RANK in {-1, 0} and final_epoch:
LOGGER.info(f'\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)'
f"\nResults saved to {colorstr('bold', save_dir)}"
f"\nPredict: python classify/predict.py --weights {best} --source im.jpg"
f"\nValidate: python classify/val.py --weights {best} --data {data_dir}"
f"\nExport: python export.py --weights {best} --include onnx"
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')"
f"\nVisualize: https://netron.app\n")
# Plot examples
images, labels = (x[:25] for x in next(iter(testloader))) # first 25 images and labels
pred = torch.max(ema.ema(images.to(device)), 1)[1]
file = imshow_cls(images, labels, pred, model.names, verbose=False, f=save_dir / 'test_images.jpg')
# Log results
meta = {"epochs": epochs, "top1_acc": best_fitness, "date": datetime.now().isoformat()}
logger.log_images(file, name='Test Examples (true-predicted)', epoch=epoch)
logger.log_model(best, epochs, metadata=meta)
def parse_opt(known=False):
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='yolov5s-cls.pt', help='initial weights path')
parser.add_argument('--data', type=str, default='imagenette160', help='cifar10, cifar100, mnist, imagenet, ...')
parser.add_argument('--epochs', type=int, default=10, help='total training epochs')
parser.add_argument('--batch-size', type=int, default=64, help='total batch size for all GPUs')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=128, help='train, val image size (pixels)')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--project', default=ROOT / 'runs/train-cls', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--pretrained', nargs='?', const=True, default=True, help='start from i.e. --pretrained False')
parser.add_argument('--optimizer', choices=['SGD', 'Adam', 'AdamW', 'RMSProp'], default='Adam', help='optimizer')
parser.add_argument('--lr0', type=float, default=0.001, help='initial learning rate')
parser.add_argument('--decay', type=float, default=5e-5, help='weight decay')
parser.add_argument('--label-smoothing', type=float, default=0.1, help='Label smoothing epsilon')
parser.add_argument('--cutoff', type=int, default=None, help='Model layer cutoff index for Classify() head')
parser.add_argument('--dropout', type=float, default=None, help='Dropout (fraction)')
parser.add_argument('--verbose', action='store_true', help='Verbose mode')
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
return parser.parse_known_args()[0] if known else parser.parse_args()
def main(opt):
# Checks
if RANK in {-1, 0}:
print_args(vars(opt))
check_git_status()
check_requirements()
# DDP mode
device = select_device(opt.device, batch_size=opt.batch_size)
if LOCAL_RANK != -1:
assert opt.batch_size != -1, 'AutoBatch is coming soon for classification, please pass a valid --batch-size'
assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
torch.cuda.set_device(LOCAL_RANK)
device = torch.device('cuda', LOCAL_RANK)
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
# Parameters
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
# Train
train(opt, device)
def run(**kwargs):
# Usage: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m')
opt = parse_opt(True)
for k, v in kwargs.items():
setattr(opt, k, v)
main(opt)
return opt
if __name__ == "__main__":
opt = parse_opt()
main(opt)

168
app/yolov5/classify/val.py Normal file
View File

@ -0,0 +1,168 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Validate a trained YOLOv5 classification model on a classification dataset
Usage:
$ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
$ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet
Usage - formats:
$ python classify/val.py --weights yolov5s-cls.pt # PyTorch
yolov5s-cls.torchscript # TorchScript
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s-cls.xml # OpenVINO
yolov5s-cls.engine # TensorRT
yolov5s-cls.mlmodel # CoreML (macOS-only)
yolov5s-cls_saved_model # TensorFlow SavedModel
yolov5s-cls.pb # TensorFlow GraphDef
yolov5s-cls.tflite # TensorFlow Lite
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
"""
import argparse
import os
import sys
from pathlib import Path
import torch
from tqdm import tqdm
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.dataloaders import create_classification_dataloader
from utils.general import LOGGER, Profile, check_img_size, check_requirements, colorstr, increment_path, print_args
from utils.torch_utils import select_device, smart_inference_mode
@smart_inference_mode()
def run(
data=ROOT / '../datasets/mnist', # dataset dir
weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
batch_size=128, # batch size
imgsz=224, # inference size (pixels)
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
workers=8, # max dataloader workers (per RANK in DDP mode)
verbose=False, # verbose output
project=ROOT / 'runs/val-cls', # save to project/name
name='exp', # save to project/name
exist_ok=False, # existing project/name ok, do not increment
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
model=None,
dataloader=None,
criterion=None,
pbar=None,
):
# Initialize/load model and set device
training = model is not None
if training: # called by train.py
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
half &= device.type != 'cpu' # half precision only supported on CUDA
model.half() if half else model.float()
else: # called directly
device = select_device(device, batch_size=batch_size)
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
save_dir.mkdir(parents=True, exist_ok=True) # make dir
# Load model
model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
imgsz = check_img_size(imgsz, s=stride) # check image size
half = model.fp16 # FP16 supported on limited backends with CUDA
if engine:
batch_size = model.batch_size
else:
device = model.device
if not (pt or jit):
batch_size = 1 # export.py models default to batch-size 1
LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
# Dataloader
data = Path(data)
test_dir = data / 'test' if (data / 'test').exists() else data / 'val' # data/test or data/val
dataloader = create_classification_dataloader(path=test_dir,
imgsz=imgsz,
batch_size=batch_size,
augment=False,
rank=-1,
workers=workers)
model.eval()
pred, targets, loss, dt = [], [], 0, (Profile(), Profile(), Profile())
n = len(dataloader) # number of batches
action = 'validating' if dataloader.dataset.root.stem == 'val' else 'testing'
desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
bar = tqdm(dataloader, desc, n, not training, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}', position=0)
with torch.cuda.amp.autocast(enabled=device.type != 'cpu'):
for images, labels in bar:
with dt[0]:
images, labels = images.to(device, non_blocking=True), labels.to(device)
with dt[1]:
y = model(images)
with dt[2]:
pred.append(y.argsort(1, descending=True)[:, :5])
targets.append(labels)
if criterion:
loss += criterion(y, labels)
loss /= n
pred, targets = torch.cat(pred), torch.cat(targets)
correct = (targets[:, None] == pred).float()
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
top1, top5 = acc.mean(0).tolist()
if pbar:
pbar.desc = f"{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}"
if verbose: # all classes
LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}")
LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}")
for i, c in model.names.items():
aci = acc[targets == i]
top1i, top5i = aci.mean(0).tolist()
LOGGER.info(f"{c:>24}{aci.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}")
# Print results
t = tuple(x.t / len(dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image
shape = (1, 3, imgsz, imgsz)
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t)
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
return top1, top5, loss
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default=ROOT / '../datasets/mnist', help='dataset path')
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model.pt path(s)')
parser.add_argument('--batch-size', type=int, default=128, help='batch size')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='inference size (pixels)')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--verbose', nargs='?', const=True, default=True, help='verbose output')
parser.add_argument('--project', default=ROOT / 'runs/val-cls', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
opt = parser.parse_args()
print_args(vars(opt))
return opt
def main(opt):
check_requirements(exclude=('tensorboard', 'thop'))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)

View File

@ -0,0 +1,74 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
# Example usage: python train.py --data Argoverse.yaml
# parent
# ├── yolov5
# └── datasets
# └── Argoverse ← downloads here (31.3 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/Argoverse # dataset root dir
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: bus
5: truck
6: traffic_light
7: stop_sign
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import json
from tqdm import tqdm
from utils.general import download, Path
def argoverse2yolo(set):
labels = {}
a = json.load(open(set, "rb"))
for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
img_id = annot['image_id']
img_name = a['images'][img_id]['name']
img_label_name = f'{img_name[:-3]}txt'
cls = annot['category_id'] # instance class id
x_center, y_center, width, height = annot['bbox']
x_center = (x_center + width / 2) / 1920.0 # offset and scale
y_center = (y_center + height / 2) / 1200.0 # offset and scale
width /= 1920.0 # scale
height /= 1200.0 # scale
img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
if not img_dir.exists():
img_dir.mkdir(parents=True, exist_ok=True)
k = str(img_dir / img_label_name)
if k not in labels:
labels[k] = []
labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
for k in labels:
with open(k, "w") as f:
f.writelines(labels[k])
# Download
dir = Path('../datasets/Argoverse') # dataset root dir
urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
download(urls, dir=dir, delete=False)
# Convert
annotations_dir = 'Argoverse-HD/annotations/'
(dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
for d in "train.json", "val.json":
argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels

View File

@ -0,0 +1,54 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
# Example usage: python train.py --data GlobalWheat2020.yaml
# parent
# ├── yolov5
# └── datasets
# └── GlobalWheat2020 ← downloads here (7.0 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/GlobalWheat2020 # dataset root dir
train: # train images (relative to 'path') 3422 images
- images/arvalis_1
- images/arvalis_2
- images/arvalis_3
- images/ethz_1
- images/rres_1
- images/inrae_1
- images/usask_1
val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
- images/ethz_1
test: # test images (optional) 1276 images
- images/utokyo_1
- images/utokyo_2
- images/nau_1
- images/uq_1
# Classes
names:
0: wheat_head
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from utils.general import download, Path
# Download
dir = Path(yaml['path']) # dataset root dir
urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
download(urls, dir=dir)
# Make Directories
for p in 'annotations', 'images', 'labels':
(dir / p).mkdir(parents=True, exist_ok=True)
# Move
for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
(dir / p).rename(dir / 'images' / p) # move to /images
f = (dir / p).with_suffix('.json') # json file
if f.exists():
f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,438 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Objects365 dataset https://www.objects365.org/ by Megvii
# Example usage: python train.py --data Objects365.yaml
# parent
# ├── yolov5
# └── datasets
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/Objects365 # dataset root dir
train: images/train # train images (relative to 'path') 1742289 images
val: images/val # val images (relative to 'path') 80000 images
test: # test images (optional)
# Classes
names:
0: Person
1: Sneakers
2: Chair
3: Other Shoes
4: Hat
5: Car
6: Lamp
7: Glasses
8: Bottle
9: Desk
10: Cup
11: Street Lights
12: Cabinet/shelf
13: Handbag/Satchel
14: Bracelet
15: Plate
16: Picture/Frame
17: Helmet
18: Book
19: Gloves
20: Storage box
21: Boat
22: Leather Shoes
23: Flower
24: Bench
25: Potted Plant
26: Bowl/Basin
27: Flag
28: Pillow
29: Boots
30: Vase
31: Microphone
32: Necklace
33: Ring
34: SUV
35: Wine Glass
36: Belt
37: Monitor/TV
38: Backpack
39: Umbrella
40: Traffic Light
41: Speaker
42: Watch
43: Tie
44: Trash bin Can
45: Slippers
46: Bicycle
47: Stool
48: Barrel/bucket
49: Van
50: Couch
51: Sandals
52: Basket
53: Drum
54: Pen/Pencil
55: Bus
56: Wild Bird
57: High Heels
58: Motorcycle
59: Guitar
60: Carpet
61: Cell Phone
62: Bread
63: Camera
64: Canned
65: Truck
66: Traffic cone
67: Cymbal
68: Lifesaver
69: Towel
70: Stuffed Toy
71: Candle
72: Sailboat
73: Laptop
74: Awning
75: Bed
76: Faucet
77: Tent
78: Horse
79: Mirror
80: Power outlet
81: Sink
82: Apple
83: Air Conditioner
84: Knife
85: Hockey Stick
86: Paddle
87: Pickup Truck
88: Fork
89: Traffic Sign
90: Balloon
91: Tripod
92: Dog
93: Spoon
94: Clock
95: Pot
96: Cow
97: Cake
98: Dinning Table
99: Sheep
100: Hanger
101: Blackboard/Whiteboard
102: Napkin
103: Other Fish
104: Orange/Tangerine
105: Toiletry
106: Keyboard
107: Tomato
108: Lantern
109: Machinery Vehicle
110: Fan
111: Green Vegetables
112: Banana
113: Baseball Glove
114: Airplane
115: Mouse
116: Train
117: Pumpkin
118: Soccer
119: Skiboard
120: Luggage
121: Nightstand
122: Tea pot
123: Telephone
124: Trolley
125: Head Phone
126: Sports Car
127: Stop Sign
128: Dessert
129: Scooter
130: Stroller
131: Crane
132: Remote
133: Refrigerator
134: Oven
135: Lemon
136: Duck
137: Baseball Bat
138: Surveillance Camera
139: Cat
140: Jug
141: Broccoli
142: Piano
143: Pizza
144: Elephant
145: Skateboard
146: Surfboard
147: Gun
148: Skating and Skiing shoes
149: Gas stove
150: Donut
151: Bow Tie
152: Carrot
153: Toilet
154: Kite
155: Strawberry
156: Other Balls
157: Shovel
158: Pepper
159: Computer Box
160: Toilet Paper
161: Cleaning Products
162: Chopsticks
163: Microwave
164: Pigeon
165: Baseball
166: Cutting/chopping Board
167: Coffee Table
168: Side Table
169: Scissors
170: Marker
171: Pie
172: Ladder
173: Snowboard
174: Cookies
175: Radiator
176: Fire Hydrant
177: Basketball
178: Zebra
179: Grape
180: Giraffe
181: Potato
182: Sausage
183: Tricycle
184: Violin
185: Egg
186: Fire Extinguisher
187: Candy
188: Fire Truck
189: Billiards
190: Converter
191: Bathtub
192: Wheelchair
193: Golf Club
194: Briefcase
195: Cucumber
196: Cigar/Cigarette
197: Paint Brush
198: Pear
199: Heavy Truck
200: Hamburger
201: Extractor
202: Extension Cord
203: Tong
204: Tennis Racket
205: Folder
206: American Football
207: earphone
208: Mask
209: Kettle
210: Tennis
211: Ship
212: Swing
213: Coffee Machine
214: Slide
215: Carriage
216: Onion
217: Green beans
218: Projector
219: Frisbee
220: Washing Machine/Drying Machine
221: Chicken
222: Printer
223: Watermelon
224: Saxophone
225: Tissue
226: Toothbrush
227: Ice cream
228: Hot-air balloon
229: Cello
230: French Fries
231: Scale
232: Trophy
233: Cabbage
234: Hot dog
235: Blender
236: Peach
237: Rice
238: Wallet/Purse
239: Volleyball
240: Deer
241: Goose
242: Tape
243: Tablet
244: Cosmetics
245: Trumpet
246: Pineapple
247: Golf Ball
248: Ambulance
249: Parking meter
250: Mango
251: Key
252: Hurdle
253: Fishing Rod
254: Medal
255: Flute
256: Brush
257: Penguin
258: Megaphone
259: Corn
260: Lettuce
261: Garlic
262: Swan
263: Helicopter
264: Green Onion
265: Sandwich
266: Nuts
267: Speed Limit Sign
268: Induction Cooker
269: Broom
270: Trombone
271: Plum
272: Rickshaw
273: Goldfish
274: Kiwi fruit
275: Router/modem
276: Poker Card
277: Toaster
278: Shrimp
279: Sushi
280: Cheese
281: Notepaper
282: Cherry
283: Pliers
284: CD
285: Pasta
286: Hammer
287: Cue
288: Avocado
289: Hamimelon
290: Flask
291: Mushroom
292: Screwdriver
293: Soap
294: Recorder
295: Bear
296: Eggplant
297: Board Eraser
298: Coconut
299: Tape Measure/Ruler
300: Pig
301: Showerhead
302: Globe
303: Chips
304: Steak
305: Crosswalk Sign
306: Stapler
307: Camel
308: Formula 1
309: Pomegranate
310: Dishwasher
311: Crab
312: Hoverboard
313: Meat ball
314: Rice Cooker
315: Tuba
316: Calculator
317: Papaya
318: Antelope
319: Parrot
320: Seal
321: Butterfly
322: Dumbbell
323: Donkey
324: Lion
325: Urinal
326: Dolphin
327: Electric Drill
328: Hair Dryer
329: Egg tart
330: Jellyfish
331: Treadmill
332: Lighter
333: Grapefruit
334: Game board
335: Mop
336: Radish
337: Baozi
338: Target
339: French
340: Spring Rolls
341: Monkey
342: Rabbit
343: Pencil Case
344: Yak
345: Red Cabbage
346: Binoculars
347: Asparagus
348: Barbell
349: Scallop
350: Noddles
351: Comb
352: Dumpling
353: Oyster
354: Table Tennis paddle
355: Cosmetics Brush/Eyeliner Pencil
356: Chainsaw
357: Eraser
358: Lobster
359: Durian
360: Okra
361: Lipstick
362: Cosmetics Mirror
363: Curling
364: Table Tennis
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from tqdm import tqdm
from utils.general import Path, check_requirements, download, np, xyxy2xywhn
check_requirements(('pycocotools>=2.0',))
from pycocotools.coco import COCO
# Make Directories
dir = Path(yaml['path']) # dataset root dir
for p in 'images', 'labels':
(dir / p).mkdir(parents=True, exist_ok=True)
for q in 'train', 'val':
(dir / p / q).mkdir(parents=True, exist_ok=True)
# Train, Val Splits
for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
print(f"Processing {split} in {patches} patches ...")
images, labels = dir / 'images' / split, dir / 'labels' / split
# Download
url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
if split == 'train':
download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False) # annotations json
download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8)
elif split == 'val':
download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False) # annotations json
download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8)
download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8)
# Move
for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
f.rename(images / f.name) # move to /images/{split}
# Labels
coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
for cid, cat in enumerate(names):
catIds = coco.getCatIds(catNms=[cat])
imgIds = coco.getImgIds(catIds=catIds)
for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
width, height = im["width"], im["height"]
path = Path(im["file_name"]) # image filename
try:
with open(labels / path.with_suffix('.txt').name, 'a') as file:
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
for a in coco.loadAnns(annIds):
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
except Exception as e:
print(e)

View File

@ -0,0 +1,53 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
# Example usage: python train.py --data SKU-110K.yaml
# parent
# ├── yolov5
# └── datasets
# └── SKU-110K ← downloads here (13.6 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/SKU-110K # dataset root dir
train: train.txt # train images (relative to 'path') 8219 images
val: val.txt # val images (relative to 'path') 588 images
test: test.txt # test images (optional) 2936 images
# Classes
names:
0: object
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import shutil
from tqdm import tqdm
from utils.general import np, pd, Path, download, xyxy2xywh
# Download
dir = Path(yaml['path']) # dataset root dir
parent = Path(dir.parent) # download dir
urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
download(urls, dir=parent, delete=False)
# Rename directories
if dir.exists():
shutil.rmtree(dir)
(parent / 'SKU110K_fixed').rename(dir) # rename dir
(dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
# Convert labels
names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
images, unique_images = x[:, 0], np.unique(x[:, 0])
with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
f.writelines(f'./images/{s}\n' for s in unique_images)
for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
cls = 0 # single-class dataset
with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
for r in x[images == im]:
w, h = r[6], r[7] # image width, height
xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label

100
app/yolov5/data/VOC.yaml Normal file
View File

@ -0,0 +1,100 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
# Example usage: python train.py --data VOC.yaml
# parent
# ├── yolov5
# └── datasets
# └── VOC ← downloads here (2.8 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/VOC
train: # train images (relative to 'path') 16551 images
- images/train2012
- images/train2007
- images/val2012
- images/val2007
val: # val images (relative to 'path') 4952 images
- images/test2007
test: # test images (optional)
- images/test2007
# Classes
names:
0: aeroplane
1: bicycle
2: bird
3: boat
4: bottle
5: bus
6: car
7: cat
8: chair
9: cow
10: diningtable
11: dog
12: horse
13: motorbike
14: person
15: pottedplant
16: sheep
17: sofa
18: train
19: tvmonitor
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import xml.etree.ElementTree as ET
from tqdm import tqdm
from utils.general import download, Path
def convert_label(path, lb_path, year, image_id):
def convert_box(size, box):
dw, dh = 1. / size[0], 1. / size[1]
x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
return x * dw, y * dh, w * dw, h * dh
in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
out_file = open(lb_path, 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
names = list(yaml['names'].values()) # names list
for obj in root.iter('object'):
cls = obj.find('name').text
if cls in names and int(obj.find('difficult').text) != 1:
xmlbox = obj.find('bndbox')
bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
cls_id = names.index(cls) # class id
out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
# Download
dir = Path(yaml['path']) # dataset root dir
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
download(urls, dir=dir / 'images', delete=False, curl=True, threads=3)
# Convert
path = dir / 'images/VOCdevkit'
for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
imgs_path = dir / 'images' / f'{image_set}{year}'
lbs_path = dir / 'labels' / f'{image_set}{year}'
imgs_path.mkdir(exist_ok=True, parents=True)
lbs_path.mkdir(exist_ok=True, parents=True)
with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
image_ids = f.read().strip().split()
for id in tqdm(image_ids, desc=f'{image_set}{year}'):
f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
f.rename(imgs_path / f.name) # move image
convert_label(path, lb_path, year, id) # convert labels to YOLO format

View File

@ -0,0 +1,70 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
# Example usage: python train.py --data VisDrone.yaml
# parent
# ├── yolov5
# └── datasets
# └── VisDrone ← downloads here (2.3 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/VisDrone # dataset root dir
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
# Classes
names:
0: pedestrian
1: people
2: bicycle
3: car
4: van
5: truck
6: tricycle
7: awning-tricycle
8: bus
9: motor
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from utils.general import download, os, Path
def visdrone2yolo(dir):
from PIL import Image
from tqdm import tqdm
def convert_box(size, box):
# Convert VisDrone box to YOLO xywh box
dw = 1. / size[0]
dh = 1. / size[1]
return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
(dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
for f in pbar:
img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
lines = []
with open(f, 'r') as file: # read annotation.txt
for row in [x.split(',') for x in file.read().strip().splitlines()]:
if row[4] == '0': # VisDrone 'ignored regions' class 0
continue
cls = int(row[5]) - 1
box = convert_box(img_size, tuple(map(int, row[:4])))
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
fl.writelines(lines) # write label.txt
# Download
dir = Path(yaml['path']) # dataset root dir
urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
download(urls, dir=dir, curl=True, threads=4)
# Convert
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels

116
app/yolov5/data/coco.yaml Normal file
View File

@ -0,0 +1,116 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: python train.py --data coco.yaml
# parent
# ├── yolov5
# └── datasets
# └── coco ← downloads here (20.1 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco # dataset root dir
train: train2017.txt # train images (relative to 'path') 118287 images
val: val2017.txt # val images (relative to 'path') 5000 images
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: |
from utils.general import download, Path
# Download labels
segments = False # segment or box labels
dir = Path(yaml['path']) # dataset root dir
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
download(urls, dir=dir.parent)
# Download data
urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
download(urls, dir=dir / 'images', threads=3)

View File

@ -0,0 +1,101 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: python train.py --data coco128.yaml
# parent
# ├── yolov5
# └── datasets
# └── coco128 ← downloads here (7 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128 # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://ultralytics.com/assets/coco128.zip

View File

@ -0,0 +1,7 @@
path: null
train: E:/aicheck/data_set/11442136178662604800/trained/images/train/
val: E:/aicheck/data_set/11442136178662604800/trained/images/val/
test: null
names:
0: logo
1: 3C

View File

@ -0,0 +1,34 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Hyperparameters for Objects365 training
# python train.py --weights yolov5m.pt --data Objects365.yaml --evolve
# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
lr0: 0.00258
lrf: 0.17
momentum: 0.779
weight_decay: 0.00058
warmup_epochs: 1.33
warmup_momentum: 0.86
warmup_bias_lr: 0.0711
box: 0.0539
cls: 0.299
cls_pw: 0.825
obj: 0.632
obj_pw: 1.0
iou_t: 0.2
anchor_t: 3.44
anchors: 3.2
fl_gamma: 0.0
hsv_h: 0.0188
hsv_s: 0.704
hsv_v: 0.36
degrees: 0.0
translate: 0.0902
scale: 0.491
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
mosaic: 1.0
mixup: 0.0
copy_paste: 0.0

View File

@ -0,0 +1,40 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Hyperparameters for VOC training
# python train.py --batch 128 --weights yolov5m6.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.scratch-med.yaml --evolve
# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
# YOLOv5 Hyperparameter Evolution Results
# Best generation: 467
# Last generation: 996
# metrics/precision, metrics/recall, metrics/mAP_0.5, metrics/mAP_0.5:0.95, val/box_loss, val/obj_loss, val/cls_loss
# 0.87729, 0.85125, 0.91286, 0.72664, 0.0076739, 0.0042529, 0.0013865
lr0: 0.00334
lrf: 0.15135
momentum: 0.74832
weight_decay: 0.00025
warmup_epochs: 3.3835
warmup_momentum: 0.59462
warmup_bias_lr: 0.18657
box: 0.02
cls: 0.21638
cls_pw: 0.5
obj: 0.51728
obj_pw: 0.67198
iou_t: 0.2
anchor_t: 3.3744
fl_gamma: 0.0
hsv_h: 0.01041
hsv_s: 0.54703
hsv_v: 0.27739
degrees: 0.0
translate: 0.04591
scale: 0.75544
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
mosaic: 0.85834
mixup: 0.04266
copy_paste: 0.0
anchors: 3.412

View File

@ -0,0 +1,34 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Hyperparameters for high-augmentation COCO training from scratch
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.3 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 0.7 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
# anchors: 3 # anchors per output layer (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.9 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.1 # image mixup (probability)
copy_paste: 0.1 # segment copy-paste (probability)

View File

@ -0,0 +1,34 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Hyperparameters for low-augmentation COCO training from scratch
# python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
# anchors: 3 # anchors per output layer (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.5 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.0 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)

View File

@ -0,0 +1,34 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Hyperparameters for medium-augmentation COCO training from scratch
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.3 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 0.7 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
# anchors: 3 # anchors per output layer (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.9 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.1 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)

View File

@ -0,0 +1,21 @@
#!/bin/bash
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Download latest models from https://github.com/ultralytics/yolov5/releases
# Example usage: bash data/scripts/download_weights.sh
# parent
# └── yolov5
# ├── yolov5s.pt ← downloads here
# ├── yolov5m.pt
# └── ...
python - <<EOF
from utils.downloads import attempt_download
p5 = ['n', 's', 'm', 'l', 'x'] # P5 models
p6 = [f'{x}6' for x in p5] # P6 models
cls = [f'{x}-cls' for x in p5] # classification models
for x in p5 + p6 + cls:
attempt_download(f'weights/yolov5{x}.pt')
EOF

View File

@ -0,0 +1,56 @@
#!/bin/bash
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Download COCO 2017 dataset http://cocodataset.org
# Example usage: bash data/scripts/get_coco.sh
# parent
# ├── yolov5
# └── datasets
# └── coco ← downloads here
# Arguments (optional) Usage: bash data/scripts/get_coco.sh --train --val --test --segments
if [ "$#" -gt 0 ]; then
for opt in "$@"; do
case "${opt}" in
--train) train=true ;;
--val) val=true ;;
--test) test=true ;;
--segments) segments=true ;;
esac
done
else
train=true
val=true
test=false
segments=false
fi
# Download/unzip labels
d='../datasets' # unzip directory
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
if [ "$segments" == "true" ]; then
f='coco2017labels-segments.zip' # 168 MB
else
f='coco2017labels.zip' # 168 MB
fi
echo 'Downloading' $url$f ' ...'
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
# Download/unzip images
d='../datasets/coco/images' # unzip directory
url=http://images.cocodataset.org/zips/
if [ "$train" == "true" ]; then
f='train2017.zip' # 19G, 118k images
echo 'Downloading' $url$f '...'
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
fi
if [ "$val" == "true" ]; then
f='val2017.zip' # 1G, 5k images
echo 'Downloading' $url$f '...'
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
fi
if [ "$test" == "true" ]; then
f='test2017.zip' # 7G, 41k images (optional)
echo 'Downloading' $url$f '...'
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
fi
wait # finish background tasks

View File

@ -0,0 +1,17 @@
#!/bin/bash
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
# Example usage: bash data/scripts/get_coco128.sh
# parent
# ├── yolov5
# └── datasets
# └── coco128 ← downloads here
# Download/unzip images and labels
d='../datasets' # unzip directory
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
f='coco128.zip' # or 'coco128-segments.zip', 68 MB
echo 'Downloading' $url$f ' ...'
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
wait # finish background tasks

View File

@ -0,0 +1,51 @@
#!/bin/bash
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Download ILSVRC2012 ImageNet dataset https://image-net.org
# Example usage: bash data/scripts/get_imagenet.sh
# parent
# ├── yolov5
# └── datasets
# └── imagenet ← downloads here
# Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
if [ "$#" -gt 0 ]; then
for opt in "$@"; do
case "${opt}" in
--train) train=true ;;
--val) val=true ;;
esac
done
else
train=true
val=true
fi
# Make dir
d='../datasets/imagenet' # unzip directory
mkdir -p $d && cd $d
# Download/unzip train
if [ "$train" == "true" ]; then
wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar # download 138G, 1281167 images
mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
tar -xf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
find . -name "*.tar" | while read NAME; do
mkdir -p "${NAME%.tar}"
tar -xf "${NAME}" -C "${NAME%.tar}"
rm -f "${NAME}"
done
cd ..
fi
# Download/unzip val
if [ "$val" == "true" ]; then
wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar # download 6.3G, 50000 images
mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xf ILSVRC2012_img_val.tar
wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash # move into subdirs
fi
# Delete corrupted image (optional: PNG under JPEG name that may cause dataloaders to fail)
# rm train/n04266014/n04266014_10835.JPEG
# TFRecords (optional)
# wget https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_lsvrc_2015_synsets.txt

153
app/yolov5/data/xView.yaml Normal file
View File

@ -0,0 +1,153 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
# Example usage: python train.py --data xView.yaml
# parent
# ├── yolov5
# └── datasets
# └── xView ← downloads here (20.7 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/xView # dataset root dir
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
# Classes
names:
0: Fixed-wing Aircraft
1: Small Aircraft
2: Cargo Plane
3: Helicopter
4: Passenger Vehicle
5: Small Car
6: Bus
7: Pickup Truck
8: Utility Truck
9: Truck
10: Cargo Truck
11: Truck w/Box
12: Truck Tractor
13: Trailer
14: Truck w/Flatbed
15: Truck w/Liquid
16: Crane Truck
17: Railway Vehicle
18: Passenger Car
19: Cargo Car
20: Flat Car
21: Tank car
22: Locomotive
23: Maritime Vessel
24: Motorboat
25: Sailboat
26: Tugboat
27: Barge
28: Fishing Vessel
29: Ferry
30: Yacht
31: Container Ship
32: Oil Tanker
33: Engineering Vehicle
34: Tower crane
35: Container Crane
36: Reach Stacker
37: Straddle Carrier
38: Mobile Crane
39: Dump Truck
40: Haul Truck
41: Scraper/Tractor
42: Front loader/Bulldozer
43: Excavator
44: Cement Mixer
45: Ground Grader
46: Hut/Tent
47: Shed
48: Building
49: Aircraft Hangar
50: Damaged Building
51: Facility
52: Construction Site
53: Vehicle Lot
54: Helipad
55: Storage Tank
56: Shipping container lot
57: Shipping Container
58: Pylon
59: Tower
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import json
import os
from pathlib import Path
import numpy as np
from PIL import Image
from tqdm import tqdm
from utils.datasets import autosplit
from utils.general import download, xyxy2xywhn
def convert_labels(fname=Path('xView/xView_train.geojson')):
# Convert xView geoJSON labels to YOLO format
path = fname.parent
with open(fname) as f:
print(f'Loading {fname}...')
data = json.load(f)
# Make dirs
labels = Path(path / 'labels' / 'train')
os.system(f'rm -rf {labels}')
labels.mkdir(parents=True, exist_ok=True)
# xView classes 11-94 to 0-59
xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
shapes = {}
for feature in tqdm(data['features'], desc=f'Converting {fname}'):
p = feature['properties']
if p['bounds_imcoords']:
id = p['image_id']
file = path / 'train_images' / id
if file.exists(): # 1395.tif missing
try:
box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
cls = p['type_id']
cls = xview_class2index[int(cls)] # xView class to 0-60
assert 59 >= cls >= 0, f'incorrect class index {cls}'
# Write YOLO label
if id not in shapes:
shapes[id] = Image.open(file).size
box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
with open((labels / id).with_suffix('.txt'), 'a') as f:
f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
except Exception as e:
print(f'WARNING: skipping one label for {file}: {e}')
# Download manually from https://challenge.xviewdataset.org
dir = Path(yaml['path']) # dataset root dir
# urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels
# 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images
# 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels)
# download(urls, dir=dir, delete=False)
# Convert labels
convert_labels(dir / 'xView_train.geojson')
# Move images
images = Path(dir / 'images')
images.mkdir(parents=True, exist_ok=True)
Path(dir / 'train_images').rename(dir / 'images' / 'train')
Path(dir / 'val_images').rename(dir / 'images' / 'val')
# Split
autosplit(dir / 'images' / 'train')

Some files were not shown because too many files have changed in this diff Show More