first commit
This commit is contained in:
339
app/yolov5/utils/loggers/__init__.py
Normal file
339
app/yolov5/utils/loggers/__init__.py
Normal file
@ -0,0 +1,339 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
Logging utils
|
||||
"""
|
||||
|
||||
import os
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
import pkg_resources as pkg
|
||||
import torch
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from app.yolov5.utils.general import colorstr, cv2
|
||||
from app.yolov5.utils.loggers.clearml.clearml_utils import ClearmlLogger
|
||||
from app.yolov5.utils.loggers.wandb.wandb_utils import WandbLogger
|
||||
from app.yolov5.utils.plots import plot_images, plot_labels, plot_results
|
||||
from app.yolov5.utils.torch_utils import de_parallel
|
||||
|
||||
LOGGERS = ('csv', 'tb', 'wandb', 'clearml') # *.csv, TensorBoard, Weights & Biases, ClearML
|
||||
RANK = int(os.getenv('RANK', -1))
|
||||
|
||||
try:
|
||||
import wandb
|
||||
|
||||
assert hasattr(wandb, '__version__') # verify package import not local dir
|
||||
if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in {0, -1}:
|
||||
try:
|
||||
wandb_login_success = wandb.login(timeout=30)
|
||||
except wandb.errors.UsageError: # known non-TTY terminal issue
|
||||
wandb_login_success = False
|
||||
if not wandb_login_success:
|
||||
wandb = None
|
||||
except (ImportError, AssertionError):
|
||||
wandb = None
|
||||
|
||||
try:
|
||||
import clearml
|
||||
|
||||
assert hasattr(clearml, '__version__') # verify package import not local dir
|
||||
except (ImportError, AssertionError):
|
||||
clearml = None
|
||||
|
||||
|
||||
class Loggers():
|
||||
# YOLOv5 Loggers class
|
||||
def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
|
||||
self.save_dir = save_dir
|
||||
self.weights = weights
|
||||
self.opt = opt
|
||||
self.hyp = hyp
|
||||
self.plots = not opt.noplots # plot results
|
||||
self.logger = logger # for printing results to console
|
||||
self.include = include
|
||||
self.keys = [
|
||||
'train/box_loss',
|
||||
'train/obj_loss',
|
||||
'train/cls_loss', # train loss
|
||||
'metrics/precision',
|
||||
'metrics/recall',
|
||||
'metrics/mAP_0.5',
|
||||
'metrics/mAP_0.5:0.95', # metrics
|
||||
'val/box_loss',
|
||||
'val/obj_loss',
|
||||
'val/cls_loss', # val loss
|
||||
'x/lr0',
|
||||
'x/lr1',
|
||||
'x/lr2'] # params
|
||||
self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95']
|
||||
for k in LOGGERS:
|
||||
setattr(self, k, None) # init empty logger dictionary
|
||||
self.csv = True # always log to csv
|
||||
|
||||
# Messages
|
||||
if not wandb:
|
||||
prefix = colorstr('Weights & Biases: ')
|
||||
s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs in Weights & Biases"
|
||||
self.logger.info(s)
|
||||
if not clearml:
|
||||
prefix = colorstr('ClearML: ')
|
||||
s = f"{prefix}run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML"
|
||||
self.logger.info(s)
|
||||
|
||||
# TensorBoard
|
||||
s = self.save_dir
|
||||
if 'tb' in self.include and not self.opt.evolve:
|
||||
prefix = colorstr('TensorBoard: ')
|
||||
self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
|
||||
self.tb = SummaryWriter(str(s))
|
||||
|
||||
# W&B
|
||||
if wandb and 'wandb' in self.include:
|
||||
wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://')
|
||||
run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None
|
||||
self.opt.hyp = self.hyp # add hyperparameters
|
||||
self.wandb = WandbLogger(self.opt, run_id)
|
||||
# temp warn. because nested artifacts not supported after 0.12.10
|
||||
if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.11'):
|
||||
s = "YOLOv5 temporarily requires wandb version 0.12.10 or below. Some features may not work as expected."
|
||||
self.logger.warning(s)
|
||||
else:
|
||||
self.wandb = None
|
||||
|
||||
# ClearML
|
||||
if clearml and 'clearml' in self.include:
|
||||
self.clearml = ClearmlLogger(self.opt, self.hyp)
|
||||
else:
|
||||
self.clearml = None
|
||||
|
||||
@property
|
||||
def remote_dataset(self):
|
||||
# Get data_dict if custom dataset artifact link is provided
|
||||
data_dict = None
|
||||
if self.clearml:
|
||||
data_dict = self.clearml.data_dict
|
||||
if self.wandb:
|
||||
data_dict = self.wandb.data_dict
|
||||
|
||||
return data_dict
|
||||
|
||||
def on_train_start(self):
|
||||
# Callback runs on train start
|
||||
pass
|
||||
|
||||
def on_pretrain_routine_end(self, labels, names):
|
||||
# Callback runs on pre-train routine end
|
||||
if self.plots:
|
||||
plot_labels(labels, names, self.save_dir)
|
||||
paths = self.save_dir.glob('*labels*.jpg') # training labels
|
||||
if self.wandb:
|
||||
self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
|
||||
# if self.clearml:
|
||||
# pass # ClearML saves these images automatically using hooks
|
||||
|
||||
def on_train_batch_end(self, model, ni, imgs, targets, paths):
|
||||
# Callback runs on train batch end
|
||||
# ni: number integrated batches (since train start)
|
||||
if self.plots:
|
||||
if ni < 3:
|
||||
f = self.save_dir / f'train_batch{ni}.jpg' # filename
|
||||
plot_images(imgs, targets, paths, f)
|
||||
if ni == 0 and self.tb and not self.opt.sync_bn:
|
||||
log_tensorboard_graph(self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz))
|
||||
if ni == 10 and (self.wandb or self.clearml):
|
||||
files = sorted(self.save_dir.glob('train*.jpg'))
|
||||
if self.wandb:
|
||||
self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
|
||||
if self.clearml:
|
||||
self.clearml.log_debug_samples(files, title='Mosaics')
|
||||
|
||||
def on_train_epoch_end(self, epoch):
|
||||
# Callback runs on train epoch end
|
||||
if self.wandb:
|
||||
self.wandb.current_epoch = epoch + 1
|
||||
|
||||
def on_val_image_end(self, pred, predn, path, names, im):
|
||||
# Callback runs on val image end
|
||||
if self.wandb:
|
||||
self.wandb.val_one_image(pred, predn, path, names, im)
|
||||
if self.clearml:
|
||||
self.clearml.log_image_with_boxes(path, pred, names, im)
|
||||
|
||||
def on_val_end(self):
|
||||
# Callback runs on val end
|
||||
if self.wandb or self.clearml:
|
||||
files = sorted(self.save_dir.glob('val*.jpg'))
|
||||
if self.wandb:
|
||||
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
|
||||
if self.clearml:
|
||||
self.clearml.log_debug_samples(files, title='Validation')
|
||||
|
||||
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
|
||||
# Callback runs at the end of each fit (train+val) epoch
|
||||
x = dict(zip(self.keys, vals))
|
||||
if self.csv:
|
||||
file = self.save_dir / 'results.csv'
|
||||
n = len(x) + 1 # number of cols
|
||||
s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n') # add header
|
||||
with open(file, 'a') as f:
|
||||
f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
|
||||
|
||||
if self.tb:
|
||||
for k, v in x.items():
|
||||
self.tb.add_scalar(k, v, epoch)
|
||||
elif self.clearml: # log to ClearML if TensorBoard not used
|
||||
for k, v in x.items():
|
||||
title, series = k.split('/')
|
||||
self.clearml.task.get_logger().report_scalar(title, series, v, epoch)
|
||||
|
||||
if self.wandb:
|
||||
if best_fitness == fi:
|
||||
best_results = [epoch] + vals[3:7]
|
||||
for i, name in enumerate(self.best_keys):
|
||||
self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary
|
||||
self.wandb.log(x)
|
||||
self.wandb.end_epoch(best_result=best_fitness == fi)
|
||||
|
||||
if self.clearml:
|
||||
self.clearml.current_epoch_logged_images = set() # reset epoch image limit
|
||||
self.clearml.current_epoch += 1
|
||||
|
||||
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
|
||||
# Callback runs on model save event
|
||||
if (epoch + 1) % self.opt.save_period == 0 and not final_epoch and self.opt.save_period != -1:
|
||||
if self.wandb:
|
||||
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
|
||||
if self.clearml:
|
||||
self.clearml.task.update_output_model(model_path=str(last),
|
||||
model_name='Latest Model',
|
||||
auto_delete_file=False)
|
||||
|
||||
def on_train_end(self, last, best, epoch, results):
|
||||
# Callback runs on training end, i.e. saving best model
|
||||
if self.plots:
|
||||
plot_results(file=self.save_dir / 'results.csv') # save results.png
|
||||
files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
|
||||
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
|
||||
self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")
|
||||
|
||||
if self.tb and not self.clearml: # These images are already captured by ClearML by now, we don't want doubles
|
||||
for f in files:
|
||||
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
|
||||
|
||||
if self.wandb:
|
||||
self.wandb.log(dict(zip(self.keys[3:10], results)))
|
||||
self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
|
||||
# Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
|
||||
if not self.opt.evolve:
|
||||
wandb.log_artifact(str(best if best.exists() else last),
|
||||
type='model',
|
||||
name=f'run_{self.wandb.wandb_run.id}_model',
|
||||
aliases=['latest', 'best', 'stripped'])
|
||||
self.wandb.finish_run()
|
||||
|
||||
if self.clearml and not self.opt.evolve:
|
||||
self.clearml.task.update_output_model(model_path=str(best if best.exists() else last),
|
||||
name='Best Model',
|
||||
auto_delete_file=False)
|
||||
|
||||
def on_params_update(self, params: dict):
|
||||
# Update hyperparams or configs of the experiment
|
||||
if self.wandb:
|
||||
self.wandb.wandb_run.config.update(params, allow_val_change=True)
|
||||
|
||||
|
||||
class GenericLogger:
|
||||
"""
|
||||
YOLOv5 General purpose logger for non-task specific logging
|
||||
Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...)
|
||||
Arguments
|
||||
opt: Run arguments
|
||||
console_logger: Console logger
|
||||
include: loggers to include
|
||||
"""
|
||||
|
||||
def __init__(self, opt, console_logger, include=('tb', 'wandb')):
|
||||
# init default loggers
|
||||
self.save_dir = Path(opt.save_dir)
|
||||
self.include = include
|
||||
self.console_logger = console_logger
|
||||
self.csv = self.save_dir / 'results.csv' # CSV logger
|
||||
if 'tb' in self.include:
|
||||
prefix = colorstr('TensorBoard: ')
|
||||
self.console_logger.info(
|
||||
f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/")
|
||||
self.tb = SummaryWriter(str(self.save_dir))
|
||||
|
||||
if wandb and 'wandb' in self.include:
|
||||
self.wandb = wandb.init(project=web_project_name(str(opt.project)),
|
||||
name=None if opt.name == "exp" else opt.name,
|
||||
config=opt)
|
||||
else:
|
||||
self.wandb = None
|
||||
|
||||
def log_metrics(self, metrics, epoch):
|
||||
# Log metrics dictionary to all loggers
|
||||
if self.csv:
|
||||
keys, vals = list(metrics.keys()), list(metrics.values())
|
||||
n = len(metrics) + 1 # number of cols
|
||||
s = '' if self.csv.exists() else (('%23s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # header
|
||||
with open(self.csv, 'a') as f:
|
||||
f.write(s + ('%23.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
|
||||
|
||||
if self.tb:
|
||||
for k, v in metrics.items():
|
||||
self.tb.add_scalar(k, v, epoch)
|
||||
|
||||
if self.wandb:
|
||||
self.wandb.log(metrics, step=epoch)
|
||||
|
||||
def log_images(self, files, name='Images', epoch=0):
|
||||
# Log images to all loggers
|
||||
files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])] # to Path
|
||||
files = [f for f in files if f.exists()] # filter by exists
|
||||
|
||||
if self.tb:
|
||||
for f in files:
|
||||
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
|
||||
|
||||
if self.wandb:
|
||||
self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch)
|
||||
|
||||
def log_graph(self, model, imgsz=(640, 640)):
|
||||
# Log model graph to all loggers
|
||||
if self.tb:
|
||||
log_tensorboard_graph(self.tb, model, imgsz)
|
||||
|
||||
def log_model(self, model_path, epoch=0, metadata={}):
|
||||
# Log model to all loggers
|
||||
if self.wandb:
|
||||
art = wandb.Artifact(name=f"run_{wandb.run.id}_model", type="model", metadata=metadata)
|
||||
art.add_file(str(model_path))
|
||||
wandb.log_artifact(art)
|
||||
|
||||
def update_params(self, params):
|
||||
# Update the paramters logged
|
||||
if self.wandb:
|
||||
wandb.run.config.update(params, allow_val_change=True)
|
||||
|
||||
|
||||
def log_tensorboard_graph(tb, model, imgsz=(640, 640)):
|
||||
# Log model graph to TensorBoard
|
||||
try:
|
||||
p = next(model.parameters()) # for device, type
|
||||
imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz # expand
|
||||
im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p) # input image (WARNING: must be zeros, not empty)
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter('ignore') # suppress jit trace warning
|
||||
tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), [])
|
||||
except Exception as e:
|
||||
print(f'WARNING: TensorBoard graph visualization failure {e}')
|
||||
|
||||
|
||||
def web_project_name(project):
|
||||
# Convert local project name to web project name
|
||||
if not project.startswith('runs/train'):
|
||||
return project
|
||||
suffix = '-Classify' if project.endswith('-cls') else '-Segment' if project.endswith('-seg') else ''
|
||||
return f'YOLOv5{suffix}'
|
222
app/yolov5/utils/loggers/clearml/README.md
Normal file
222
app/yolov5/utils/loggers/clearml/README.md
Normal file
@ -0,0 +1,222 @@
|
||||
# ClearML Integration
|
||||
|
||||
<img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_dark.png#gh-light-mode-only" alt="Clear|ML"><img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_light.png#gh-dark-mode-only" alt="Clear|ML">
|
||||
|
||||
## About ClearML
|
||||
|
||||
[ClearML](https://cutt.ly/yolov5-tutorial-clearml) is an [open-source](https://github.com/allegroai/clearml) toolbox designed to save you time ⏱️.
|
||||
|
||||
🔨 Track every YOLOv5 training run in the <b>experiment manager</b>
|
||||
|
||||
🔧 Version and easily access your custom training data with the integrated ClearML <b>Data Versioning Tool</b>
|
||||
|
||||
🔦 <b>Remotely train and monitor</b> your YOLOv5 training runs using ClearML Agent
|
||||
|
||||
🔬 Get the very best mAP using ClearML <b>Hyperparameter Optimization</b>
|
||||
|
||||
🔭 Turn your newly trained <b>YOLOv5 model into an API</b> with just a few commands using ClearML Serving
|
||||
|
||||
<br />
|
||||
And so much more. It's up to you how many of these tools you want to use, you can stick to the experiment manager, or chain them all together into an impressive pipeline!
|
||||
<br />
|
||||
<br />
|
||||
|
||||

|
||||
|
||||
|
||||
<br />
|
||||
<br />
|
||||
|
||||
## 🦾 Setting Things Up
|
||||
|
||||
To keep track of your experiments and/or data, ClearML needs to communicate to a server. You have 2 options to get one:
|
||||
|
||||
Either sign up for free to the [ClearML Hosted Service](https://cutt.ly/yolov5-tutorial-clearml) or you can set up your own server, see [here](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server). Even the server is open-source, so even if you're dealing with sensitive data, you should be good to go!
|
||||
|
||||
1. Install the `clearml` python package:
|
||||
|
||||
```bash
|
||||
pip install clearml
|
||||
```
|
||||
|
||||
1. Connect the ClearML SDK to the server by [creating credentials](https://app.clear.ml/settings/workspace-configuration) (go right top to Settings -> Workspace -> Create new credentials), then execute the command below and follow the instructions:
|
||||
|
||||
```bash
|
||||
clearml-init
|
||||
```
|
||||
|
||||
That's it! You're done 😎
|
||||
|
||||
<br />
|
||||
|
||||
## 🚀 Training YOLOv5 With ClearML
|
||||
|
||||
To enable ClearML experiment tracking, simply install the ClearML pip package.
|
||||
|
||||
```bash
|
||||
pip install clearml
|
||||
```
|
||||
|
||||
This will enable integration with the YOLOv5 training script. Every training run from now on, will be captured and stored by the ClearML experiment manager. If you want to change the `project_name` or `task_name`, head over to our custom logger, where you can change it: `utils/loggers/clearml/clearml_utils.py`
|
||||
|
||||
```bash
|
||||
python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache
|
||||
```
|
||||
|
||||
This will capture:
|
||||
- Source code + uncommitted changes
|
||||
- Installed packages
|
||||
- (Hyper)parameters
|
||||
- Model files (use `--save-period n` to save a checkpoint every n epochs)
|
||||
- Console output
|
||||
- Scalars (mAP_0.5, mAP_0.5:0.95, precision, recall, losses, learning rates, ...)
|
||||
- General info such as machine details, runtime, creation date etc.
|
||||
- All produced plots such as label correlogram and confusion matrix
|
||||
- Images with bounding boxes per epoch
|
||||
- Mosaic per epoch
|
||||
- Validation images per epoch
|
||||
- ...
|
||||
|
||||
That's a lot right? 🤯
|
||||
Now, we can visualize all of this information in the ClearML UI to get an overview of our training progress. Add custom columns to the table view (such as e.g. mAP_0.5) so you can easily sort on the best performing model. Or select multiple experiments and directly compare them!
|
||||
|
||||
There even more we can do with all of this information, like hyperparameter optimization and remote execution, so keep reading if you want to see how that works!
|
||||
|
||||
<br />
|
||||
|
||||
## 🔗 Dataset Version Management
|
||||
|
||||
Versioning your data separately from your code is generally a good idea and makes it easy to aqcuire the latest version too. This repository supports supplying a dataset version ID and it will make sure to get the data if it's not there yet. Next to that, this workflow also saves the used dataset ID as part of the task parameters, so you will always know for sure which data was used in which experiment!
|
||||
|
||||

|
||||
|
||||
### Prepare Your Dataset
|
||||
|
||||
The YOLOv5 repository supports a number of different datasets by using yaml files containing their information. By default datasets are downloaded to the `../datasets` folder in relation to the repository root folder. So if you downloaded the `coco128` dataset using the link in the yaml or with the scripts provided by yolov5, you get this folder structure:
|
||||
|
||||
```
|
||||
..
|
||||
|_ yolov5
|
||||
|_ datasets
|
||||
|_ coco128
|
||||
|_ images
|
||||
|_ labels
|
||||
|_ LICENSE
|
||||
|_ README.txt
|
||||
```
|
||||
But this can be any dataset you wish. Feel free to use your own, as long as you keep to this folder structure.
|
||||
|
||||
Next, ⚠️**copy the corresponding yaml file to the root of the dataset folder**⚠️. This yaml files contains the information ClearML will need to properly use the dataset. You can make this yourself too, of course, just follow the structure of the example yamls.
|
||||
|
||||
Basically we need the following keys: `path`, `train`, `test`, `val`, `nc`, `names`.
|
||||
|
||||
```
|
||||
..
|
||||
|_ yolov5
|
||||
|_ datasets
|
||||
|_ coco128
|
||||
|_ images
|
||||
|_ labels
|
||||
|_ coco128.yaml # <---- HERE!
|
||||
|_ LICENSE
|
||||
|_ README.txt
|
||||
```
|
||||
|
||||
### Upload Your Dataset
|
||||
|
||||
To get this dataset into ClearML as a versionned dataset, go to the dataset root folder and run the following command:
|
||||
```bash
|
||||
cd coco128
|
||||
clearml-data sync --project YOLOv5 --name coco128 --folder .
|
||||
```
|
||||
|
||||
The command `clearml-data sync` is actually a shorthand command. You could also run these commands one after the other:
|
||||
```bash
|
||||
# Optionally add --parent <parent_dataset_id> if you want to base
|
||||
# this version on another dataset version, so no duplicate files are uploaded!
|
||||
clearml-data create --name coco128 --project YOLOv5
|
||||
clearml-data add --files .
|
||||
clearml-data close
|
||||
```
|
||||
|
||||
### Run Training Using A ClearML Dataset
|
||||
|
||||
Now that you have a ClearML dataset, you can very simply use it to train custom YOLOv5 🚀 models!
|
||||
|
||||
```bash
|
||||
python train.py --img 640 --batch 16 --epochs 3 --data clearml://<your_dataset_id> --weights yolov5s.pt --cache
|
||||
```
|
||||
|
||||
<br />
|
||||
|
||||
## 👀 Hyperparameter Optimization
|
||||
|
||||
Now that we have our experiments and data versioned, it's time to take a look at what we can build on top!
|
||||
|
||||
Using the code information, installed packages and environment details, the experiment itself is now **completely reproducible**. In fact, ClearML allows you to clone an experiment and even change its parameters. We can then just rerun it with these new parameters automatically, this is basically what HPO does!
|
||||
|
||||
To **run hyperparameter optimization locally**, we've included a pre-made script for you. Just make sure a training task has been run at least once, so it is in the ClearML experiment manager, we will essentially clone it and change its hyperparameters.
|
||||
|
||||
You'll need to fill in the ID of this `template task` in the script found at `utils/loggers/clearml/hpo.py` and then just run it :) You can change `task.execute_locally()` to `task.execute()` to put it in a ClearML queue and have a remote agent work on it instead.
|
||||
|
||||
```bash
|
||||
# To use optuna, install it first, otherwise you can change the optimizer to just be RandomSearch
|
||||
pip install optuna
|
||||
python utils/loggers/clearml/hpo.py
|
||||
```
|
||||
|
||||

|
||||
|
||||
## 🤯 Remote Execution (advanced)
|
||||
|
||||
Running HPO locally is really handy, but what if we want to run our experiments on a remote machine instead? Maybe you have access to a very powerful GPU machine on-site or you have some budget to use cloud GPUs.
|
||||
This is where the ClearML Agent comes into play. Check out what the agent can do here:
|
||||
|
||||
- [YouTube video](https://youtu.be/MX3BrXnaULs)
|
||||
- [Documentation](https://clear.ml/docs/latest/docs/clearml_agent)
|
||||
|
||||
In short: every experiment tracked by the experiment manager contains enough information to reproduce it on a different machine (installed packages, uncommitted changes etc.). So a ClearML agent does just that: it listens to a queue for incoming tasks and when it finds one, it recreates the environment and runs it while still reporting scalars, plots etc. to the experiment manager.
|
||||
|
||||
You can turn any machine (a cloud VM, a local GPU machine, your own laptop ... ) into a ClearML agent by simply running:
|
||||
```bash
|
||||
clearml-agent daemon --queue <queues_to_listen_to> [--docker]
|
||||
```
|
||||
|
||||
### Cloning, Editing And Enqueuing
|
||||
|
||||
With our agent running, we can give it some work. Remember from the HPO section that we can clone a task and edit the hyperparameters? We can do that from the interface too!
|
||||
|
||||
🪄 Clone the experiment by right clicking it
|
||||
|
||||
🎯 Edit the hyperparameters to what you wish them to be
|
||||
|
||||
⏳ Enqueue the task to any of the queues by right clicking it
|
||||
|
||||

|
||||
|
||||
### Executing A Task Remotely
|
||||
|
||||
Now you can clone a task like we explained above, or simply mark your current script by adding `task.execute_remotely()` and on execution it will be put into a queue, for the agent to start working on!
|
||||
|
||||
To run the YOLOv5 training script remotely, all you have to do is add this line to the training.py script after the clearml logger has been instatiated:
|
||||
```python
|
||||
# ...
|
||||
# Loggers
|
||||
data_dict = None
|
||||
if RANK in {-1, 0}:
|
||||
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
|
||||
if loggers.clearml:
|
||||
loggers.clearml.task.execute_remotely(queue='my_queue') # <------ ADD THIS LINE
|
||||
# Data_dict is either None is user did not choose for ClearML dataset or is filled in by ClearML
|
||||
data_dict = loggers.clearml.data_dict
|
||||
# ...
|
||||
```
|
||||
When running the training script after this change, python will run the script up until that line, after which it will package the code and send it to the queue instead!
|
||||
|
||||
### Autoscaling workers
|
||||
|
||||
ClearML comes with autoscalers too! This tool will automatically spin up new remote machines in the cloud of your choice (AWS, GCP, Azure) and turn them into ClearML agents for you whenever there are experiments detected in the queue. Once the tasks are processed, the autoscaler will automatically shut down the remote machines and you stop paying!
|
||||
|
||||
Check out the autoscalers getting started video below.
|
||||
|
||||
[](https://youtu.be/j4XVMAaUt3E)
|
0
app/yolov5/utils/loggers/clearml/__init__.py
Normal file
0
app/yolov5/utils/loggers/clearml/__init__.py
Normal file
156
app/yolov5/utils/loggers/clearml/clearml_utils.py
Normal file
156
app/yolov5/utils/loggers/clearml/clearml_utils.py
Normal file
@ -0,0 +1,156 @@
|
||||
"""Main Logger class for ClearML experiment tracking."""
|
||||
import glob
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import yaml
|
||||
|
||||
from app.yolov5.utils.plots import Annotator, colors
|
||||
|
||||
try:
|
||||
import clearml
|
||||
from clearml import Dataset, Task
|
||||
assert hasattr(clearml, '__version__') # verify package import not local dir
|
||||
except (ImportError, AssertionError):
|
||||
clearml = None
|
||||
|
||||
|
||||
def construct_dataset(clearml_info_string):
|
||||
"""Load in a clearml dataset and fill the internal data_dict with its contents.
|
||||
"""
|
||||
dataset_id = clearml_info_string.replace('clearml://', '')
|
||||
dataset = Dataset.get(dataset_id=dataset_id)
|
||||
dataset_root_path = Path(dataset.get_local_copy())
|
||||
|
||||
# We'll search for the yaml file definition in the dataset
|
||||
yaml_filenames = list(glob.glob(str(dataset_root_path / "*.yaml")) + glob.glob(str(dataset_root_path / "*.yml")))
|
||||
if len(yaml_filenames) > 1:
|
||||
raise ValueError('More than one yaml file was found in the dataset root, cannot determine which one contains '
|
||||
'the dataset definition this way.')
|
||||
elif len(yaml_filenames) == 0:
|
||||
raise ValueError('No yaml definition found in dataset root path, check that there is a correct yaml file '
|
||||
'inside the dataset root path.')
|
||||
with open(yaml_filenames[0]) as f:
|
||||
dataset_definition = yaml.safe_load(f)
|
||||
|
||||
assert set(dataset_definition.keys()).issuperset(
|
||||
{'train', 'test', 'val', 'nc', 'names'}
|
||||
), "The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')"
|
||||
|
||||
data_dict = dict()
|
||||
data_dict['train'] = str(
|
||||
(dataset_root_path / dataset_definition['train']).resolve()) if dataset_definition['train'] else None
|
||||
data_dict['test'] = str(
|
||||
(dataset_root_path / dataset_definition['test']).resolve()) if dataset_definition['test'] else None
|
||||
data_dict['val'] = str(
|
||||
(dataset_root_path / dataset_definition['val']).resolve()) if dataset_definition['val'] else None
|
||||
data_dict['nc'] = dataset_definition['nc']
|
||||
data_dict['names'] = dataset_definition['names']
|
||||
|
||||
return data_dict
|
||||
|
||||
|
||||
class ClearmlLogger:
|
||||
"""Log training runs, datasets, models, and predictions to ClearML.
|
||||
|
||||
This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default,
|
||||
this information includes hyperparameters, system configuration and metrics, model metrics, code information and
|
||||
basic data metrics and analyses.
|
||||
|
||||
By providing additional command line arguments to train.py, datasets,
|
||||
models and predictions can also be logged.
|
||||
"""
|
||||
|
||||
def __init__(self, opt, hyp):
|
||||
"""
|
||||
- Initialize ClearML Task, this object will capture the experiment
|
||||
- Upload dataset version to ClearML Data if opt.upload_dataset is True
|
||||
|
||||
arguments:
|
||||
opt (namespace) -- Commandline arguments for this run
|
||||
hyp (dict) -- Hyperparameters for this run
|
||||
|
||||
"""
|
||||
self.current_epoch = 0
|
||||
# Keep tracked of amount of logged images to enforce a limit
|
||||
self.current_epoch_logged_images = set()
|
||||
# Maximum number of images to log to clearML per epoch
|
||||
self.max_imgs_to_log_per_epoch = 16
|
||||
# Get the interval of epochs when bounding box images should be logged
|
||||
self.bbox_interval = opt.bbox_interval
|
||||
self.clearml = clearml
|
||||
self.task = None
|
||||
self.data_dict = None
|
||||
if self.clearml:
|
||||
self.task = Task.init(
|
||||
project_name='YOLOv5',
|
||||
task_name='training',
|
||||
tags=['YOLOv5'],
|
||||
output_uri=True,
|
||||
auto_connect_frameworks={'pytorch': False}
|
||||
# We disconnect pytorch auto-detection, because we added manual model save points in the code
|
||||
)
|
||||
# ClearML's hooks will already grab all general parameters
|
||||
# Only the hyperparameters coming from the yaml config file
|
||||
# will have to be added manually!
|
||||
self.task.connect(hyp, name='Hyperparameters')
|
||||
|
||||
# Get ClearML Dataset Version if requested
|
||||
if opt.data.startswith('clearml://'):
|
||||
# data_dict should have the following keys:
|
||||
# names, nc (number of classes), test, train, val (all three relative paths to ../datasets)
|
||||
self.data_dict = construct_dataset(opt.data)
|
||||
# Set data to data_dict because wandb will crash without this information and opt is the best way
|
||||
# to give it to them
|
||||
opt.data = self.data_dict
|
||||
|
||||
def log_debug_samples(self, files, title='Debug Samples'):
|
||||
"""
|
||||
Log files (images) as debug samples in the ClearML task.
|
||||
|
||||
arguments:
|
||||
files (List(PosixPath)) a list of file paths in PosixPath format
|
||||
title (str) A title that groups together images with the same values
|
||||
"""
|
||||
for f in files:
|
||||
if f.exists():
|
||||
it = re.search(r'_batch(\d+)', f.name)
|
||||
iteration = int(it.groups()[0]) if it else 0
|
||||
self.task.get_logger().report_image(title=title,
|
||||
series=f.name.replace(it.group(), ''),
|
||||
local_path=str(f),
|
||||
iteration=iteration)
|
||||
|
||||
def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_threshold=0.25):
|
||||
"""
|
||||
Draw the bounding boxes on a single image and report the result as a ClearML debug sample.
|
||||
|
||||
arguments:
|
||||
image_path (PosixPath) the path the original image file
|
||||
boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
||||
class_names (dict): dict containing mapping of class int to class name
|
||||
image (Tensor): A torch tensor containing the actual image data
|
||||
"""
|
||||
if len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch and self.current_epoch >= 0:
|
||||
# Log every bbox_interval times and deduplicate for any intermittend extra eval runs
|
||||
if self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images:
|
||||
im = np.ascontiguousarray(np.moveaxis(image.mul(255).clamp(0, 255).byte().cpu().numpy(), 0, 2))
|
||||
annotator = Annotator(im=im, pil=True)
|
||||
for i, (conf, class_nr, box) in enumerate(zip(boxes[:, 4], boxes[:, 5], boxes[:, :4])):
|
||||
color = colors(i)
|
||||
|
||||
class_name = class_names[int(class_nr)]
|
||||
confidence_percentage = round(float(conf) * 100, 2)
|
||||
label = f"{class_name}: {confidence_percentage}%"
|
||||
|
||||
if conf > conf_threshold:
|
||||
annotator.rectangle(box.cpu().numpy(), outline=color)
|
||||
annotator.box_label(box.cpu().numpy(), label=label, color=color)
|
||||
|
||||
annotated_image = annotator.result()
|
||||
self.task.get_logger().report_image(title='Bounding Boxes',
|
||||
series=image_path.name,
|
||||
iteration=self.current_epoch,
|
||||
image=annotated_image)
|
||||
self.current_epoch_logged_images.add(image_path)
|
84
app/yolov5/utils/loggers/clearml/hpo.py
Normal file
84
app/yolov5/utils/loggers/clearml/hpo.py
Normal file
@ -0,0 +1,84 @@
|
||||
from clearml import Task
|
||||
# Connecting ClearML with the current process,
|
||||
# from here on everything is logged automatically
|
||||
from clearml.automation import HyperParameterOptimizer, UniformParameterRange
|
||||
from clearml.automation.optuna import OptimizerOptuna
|
||||
|
||||
task = Task.init(project_name='Hyper-Parameter Optimization',
|
||||
task_name='YOLOv5',
|
||||
task_type=Task.TaskTypes.optimizer,
|
||||
reuse_last_task_id=False)
|
||||
|
||||
# Example use case:
|
||||
optimizer = HyperParameterOptimizer(
|
||||
# This is the experiment we want to optimize
|
||||
base_task_id='<your_template_task_id>',
|
||||
# here we define the hyper-parameters to optimize
|
||||
# Notice: The parameter name should exactly match what you see in the UI: <section_name>/<parameter>
|
||||
# For Example, here we see in the base experiment a section Named: "General"
|
||||
# under it a parameter named "batch_size", this becomes "General/batch_size"
|
||||
# If you have `argparse` for example, then arguments will appear under the "Args" section,
|
||||
# and you should instead pass "Args/batch_size"
|
||||
hyper_parameters=[
|
||||
UniformParameterRange('Hyperparameters/lr0', min_value=1e-5, max_value=1e-1),
|
||||
UniformParameterRange('Hyperparameters/lrf', min_value=0.01, max_value=1.0),
|
||||
UniformParameterRange('Hyperparameters/momentum', min_value=0.6, max_value=0.98),
|
||||
UniformParameterRange('Hyperparameters/weight_decay', min_value=0.0, max_value=0.001),
|
||||
UniformParameterRange('Hyperparameters/warmup_epochs', min_value=0.0, max_value=5.0),
|
||||
UniformParameterRange('Hyperparameters/warmup_momentum', min_value=0.0, max_value=0.95),
|
||||
UniformParameterRange('Hyperparameters/warmup_bias_lr', min_value=0.0, max_value=0.2),
|
||||
UniformParameterRange('Hyperparameters/box', min_value=0.02, max_value=0.2),
|
||||
UniformParameterRange('Hyperparameters/cls', min_value=0.2, max_value=4.0),
|
||||
UniformParameterRange('Hyperparameters/cls_pw', min_value=0.5, max_value=2.0),
|
||||
UniformParameterRange('Hyperparameters/obj', min_value=0.2, max_value=4.0),
|
||||
UniformParameterRange('Hyperparameters/obj_pw', min_value=0.5, max_value=2.0),
|
||||
UniformParameterRange('Hyperparameters/iou_t', min_value=0.1, max_value=0.7),
|
||||
UniformParameterRange('Hyperparameters/anchor_t', min_value=2.0, max_value=8.0),
|
||||
UniformParameterRange('Hyperparameters/fl_gamma', min_value=0.0, max_value=4.0),
|
||||
UniformParameterRange('Hyperparameters/hsv_h', min_value=0.0, max_value=0.1),
|
||||
UniformParameterRange('Hyperparameters/hsv_s', min_value=0.0, max_value=0.9),
|
||||
UniformParameterRange('Hyperparameters/hsv_v', min_value=0.0, max_value=0.9),
|
||||
UniformParameterRange('Hyperparameters/degrees', min_value=0.0, max_value=45.0),
|
||||
UniformParameterRange('Hyperparameters/translate', min_value=0.0, max_value=0.9),
|
||||
UniformParameterRange('Hyperparameters/scale', min_value=0.0, max_value=0.9),
|
||||
UniformParameterRange('Hyperparameters/shear', min_value=0.0, max_value=10.0),
|
||||
UniformParameterRange('Hyperparameters/perspective', min_value=0.0, max_value=0.001),
|
||||
UniformParameterRange('Hyperparameters/flipud', min_value=0.0, max_value=1.0),
|
||||
UniformParameterRange('Hyperparameters/fliplr', min_value=0.0, max_value=1.0),
|
||||
UniformParameterRange('Hyperparameters/mosaic', min_value=0.0, max_value=1.0),
|
||||
UniformParameterRange('Hyperparameters/mixup', min_value=0.0, max_value=1.0),
|
||||
UniformParameterRange('Hyperparameters/copy_paste', min_value=0.0, max_value=1.0)],
|
||||
# this is the objective metric we want to maximize/minimize
|
||||
objective_metric_title='metrics',
|
||||
objective_metric_series='mAP_0.5',
|
||||
# now we decide if we want to maximize it or minimize it (accuracy we maximize)
|
||||
objective_metric_sign='max',
|
||||
# let us limit the number of concurrent experiments,
|
||||
# this in turn will make sure we do dont bombard the scheduler with experiments.
|
||||
# if we have an auto-scaler connected, this, by proxy, will limit the number of machine
|
||||
max_number_of_concurrent_tasks=1,
|
||||
# this is the optimizer class (actually doing the optimization)
|
||||
# Currently, we can choose from GridSearch, RandomSearch or OptimizerBOHB (Bayesian optimization Hyper-Band)
|
||||
optimizer_class=OptimizerOptuna,
|
||||
# If specified only the top K performing Tasks will be kept, the others will be automatically archived
|
||||
save_top_k_tasks_only=5, # 5,
|
||||
compute_time_limit=None,
|
||||
total_max_jobs=20,
|
||||
min_iteration_per_job=None,
|
||||
max_iteration_per_job=None,
|
||||
)
|
||||
|
||||
# report every 10 seconds, this is way too often, but we are testing here
|
||||
optimizer.set_report_period(10 / 60)
|
||||
# You can also use the line below instead to run all the optimizer tasks locally, without using queues or agent
|
||||
# an_optimizer.start_locally(job_complete_callback=job_complete_callback)
|
||||
# set the time limit for the optimization process (2 hours)
|
||||
optimizer.set_time_limit(in_minutes=120.0)
|
||||
# Start the optimization process in the local environment
|
||||
optimizer.start_locally()
|
||||
# wait until process is done (notice we are controlling the optimization process in the background)
|
||||
optimizer.wait()
|
||||
# make sure background optimization stopped
|
||||
optimizer.stop()
|
||||
|
||||
print('We are done, good bye')
|
162
app/yolov5/utils/loggers/wandb/README.md
Normal file
162
app/yolov5/utils/loggers/wandb/README.md
Normal file
@ -0,0 +1,162 @@
|
||||
📚 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 🚀. UPDATED 29 September 2021.
|
||||
|
||||
- [About Weights & Biases](#about-weights-&-biases)
|
||||
- [First-Time Setup](#first-time-setup)
|
||||
- [Viewing runs](#viewing-runs)
|
||||
- [Disabling wandb](#disabling-wandb)
|
||||
- [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
|
||||
- [Reports: Share your work with the world!](#reports)
|
||||
|
||||
## About Weights & Biases
|
||||
|
||||
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models — architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
|
||||
|
||||
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
|
||||
|
||||
- [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
|
||||
- [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
|
||||
- [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
|
||||
- [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
|
||||
- [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
|
||||
- [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
|
||||
|
||||
## First-Time Setup
|
||||
|
||||
<details open>
|
||||
<summary> Toggle Details </summary>
|
||||
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
|
||||
|
||||
W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
|
||||
|
||||
```shell
|
||||
$ python train.py --project ... --name ...
|
||||
```
|
||||
|
||||
YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
||||
<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
|
||||
|
||||
</details>
|
||||
|
||||
## Viewing Runs
|
||||
|
||||
<details open>
|
||||
<summary> Toggle Details </summary>
|
||||
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
|
||||
|
||||
- Training & Validation losses
|
||||
- Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
|
||||
- Learning Rate over time
|
||||
- A bounding box debugging panel, showing the training progress over time
|
||||
- GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
|
||||
- System: Disk I/0, CPU utilization, RAM memory usage
|
||||
- Your trained model as W&B Artifact
|
||||
- Environment: OS and Python types, Git repository and state, **training command**
|
||||
|
||||
<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
|
||||
</details>
|
||||
|
||||
## Disabling wandb
|
||||
|
||||
- training after running `wandb disabled` inside that directory creates no wandb run
|
||||

|
||||
|
||||
- To enable wandb again, run `wandb online`
|
||||

|
||||
|
||||
## Advanced Usage
|
||||
|
||||
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
|
||||
|
||||
<details open>
|
||||
<h3> 1: Train and Log Evaluation simultaneousy </h3>
|
||||
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
|
||||
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
|
||||
so no images will be uploaded from your system more than once.
|
||||
<details open>
|
||||
<summary> <b>Usage</b> </summary>
|
||||
<b>Code</b> <code> $ python train.py --upload_data val</code>
|
||||
|
||||

|
||||
|
||||
</details>
|
||||
|
||||
<h3>2. Visualize and Version Datasets</h3>
|
||||
Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
|
||||
<details>
|
||||
<summary> <b>Usage</b> </summary>
|
||||
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
|
||||
|
||||

|
||||
|
||||
</details>
|
||||
|
||||
<h3> 3: Train using dataset artifact </h3>
|
||||
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
|
||||
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
|
||||
<details>
|
||||
<summary> <b>Usage</b> </summary>
|
||||
<b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code>
|
||||
|
||||

|
||||
|
||||
</details>
|
||||
|
||||
<h3> 4: Save model checkpoints as artifacts </h3>
|
||||
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
|
||||
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
|
||||
|
||||
<details>
|
||||
<summary> <b>Usage</b> </summary>
|
||||
<b>Code</b> <code> $ python train.py --save_period 1 </code>
|
||||
|
||||

|
||||
|
||||
</details>
|
||||
|
||||
</details>
|
||||
|
||||
<h3> 5: Resume runs from checkpoint artifacts. </h3>
|
||||
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with <code>wandb-artifact://</code> prefix followed by the run path, i.e, <code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
|
||||
|
||||
<details>
|
||||
<summary> <b>Usage</b> </summary>
|
||||
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
|
||||
|
||||

|
||||
|
||||
</details>
|
||||
|
||||
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
|
||||
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
|
||||
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset</code> or
|
||||
train from <code>_wandb.yaml</code> file and set <code>--save_period</code>
|
||||
|
||||
<details>
|
||||
<summary> <b>Usage</b> </summary>
|
||||
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
|
||||
|
||||

|
||||
|
||||
</details>
|
||||
|
||||
</details>
|
||||
|
||||
<h3> Reports </h3>
|
||||
W&B Reports can be created from your saved runs for sharing online. Once a report is created you will receive a link you can use to publically share your results. Here is an example report created from the COCO128 tutorial trainings of all four YOLOv5 models ([link](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY)).
|
||||
|
||||
<img width="900" alt="Weights & Biases Reports" src="https://user-images.githubusercontent.com/26833433/135394029-a17eaf86-c6c1-4b1d-bb80-b90e83aaffa7.png">
|
||||
|
||||
## Environments
|
||||
|
||||
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
|
||||
|
||||
- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
||||
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
|
||||
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
|
||||
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
||||
|
||||
## Status
|
||||
|
||||

|
||||
|
||||
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), validation ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.
|
0
app/yolov5/utils/loggers/wandb/__init__.py
Normal file
0
app/yolov5/utils/loggers/wandb/__init__.py
Normal file
27
app/yolov5/utils/loggers/wandb/log_dataset.py
Normal file
27
app/yolov5/utils/loggers/wandb/log_dataset.py
Normal file
@ -0,0 +1,27 @@
|
||||
import argparse
|
||||
|
||||
from wandb_utils import WandbLogger
|
||||
|
||||
from utils.general import LOGGER
|
||||
|
||||
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
|
||||
|
||||
|
||||
def create_dataset_artifact(opt):
|
||||
logger = WandbLogger(opt, None, job_type='Dataset Creation') # TODO: return value unused
|
||||
if not logger.wandb:
|
||||
LOGGER.info("install wandb using `pip install wandb` to log the dataset")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
|
||||
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
|
||||
parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
|
||||
parser.add_argument('--entity', default=None, help='W&B entity')
|
||||
parser.add_argument('--name', type=str, default='log dataset', help='name of W&B run')
|
||||
|
||||
opt = parser.parse_args()
|
||||
opt.resume = False # Explicitly disallow resume check for dataset upload job
|
||||
|
||||
create_dataset_artifact(opt)
|
41
app/yolov5/utils/loggers/wandb/sweep.py
Normal file
41
app/yolov5/utils/loggers/wandb/sweep.py
Normal file
@ -0,0 +1,41 @@
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import wandb
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[3] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
|
||||
from train import parse_opt, train
|
||||
from utils.callbacks import Callbacks
|
||||
from utils.general import increment_path
|
||||
from utils.torch_utils import select_device
|
||||
|
||||
|
||||
def sweep():
|
||||
wandb.init()
|
||||
# Get hyp dict from sweep agent. Copy because train() modifies parameters which confused wandb.
|
||||
hyp_dict = vars(wandb.config).get("_items").copy()
|
||||
|
||||
# Workaround: get necessary opt args
|
||||
opt = parse_opt(known=True)
|
||||
opt.batch_size = hyp_dict.get("batch_size")
|
||||
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
|
||||
opt.epochs = hyp_dict.get("epochs")
|
||||
opt.nosave = True
|
||||
opt.data = hyp_dict.get("data")
|
||||
opt.weights = str(opt.weights)
|
||||
opt.cfg = str(opt.cfg)
|
||||
opt.data = str(opt.data)
|
||||
opt.hyp = str(opt.hyp)
|
||||
opt.project = str(opt.project)
|
||||
device = select_device(opt.device, batch_size=opt.batch_size)
|
||||
|
||||
# train
|
||||
train(hyp_dict, opt, device, callbacks=Callbacks())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
sweep()
|
143
app/yolov5/utils/loggers/wandb/sweep.yaml
Normal file
143
app/yolov5/utils/loggers/wandb/sweep.yaml
Normal file
@ -0,0 +1,143 @@
|
||||
# Hyperparameters for training
|
||||
# To set range-
|
||||
# Provide min and max values as:
|
||||
# parameter:
|
||||
#
|
||||
# min: scalar
|
||||
# max: scalar
|
||||
# OR
|
||||
#
|
||||
# Set a specific list of search space-
|
||||
# parameter:
|
||||
# values: [scalar1, scalar2, scalar3...]
|
||||
#
|
||||
# You can use grid, bayesian and hyperopt search strategy
|
||||
# For more info on configuring sweeps visit - https://docs.wandb.ai/guides/sweeps/configuration
|
||||
|
||||
program: utils/loggers/wandb/sweep.py
|
||||
method: random
|
||||
metric:
|
||||
name: metrics/mAP_0.5
|
||||
goal: maximize
|
||||
|
||||
parameters:
|
||||
# hyperparameters: set either min, max range or values list
|
||||
data:
|
||||
value: "data/coco128.yaml"
|
||||
batch_size:
|
||||
values: [64]
|
||||
epochs:
|
||||
values: [10]
|
||||
|
||||
lr0:
|
||||
distribution: uniform
|
||||
min: 1e-5
|
||||
max: 1e-1
|
||||
lrf:
|
||||
distribution: uniform
|
||||
min: 0.01
|
||||
max: 1.0
|
||||
momentum:
|
||||
distribution: uniform
|
||||
min: 0.6
|
||||
max: 0.98
|
||||
weight_decay:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 0.001
|
||||
warmup_epochs:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 5.0
|
||||
warmup_momentum:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 0.95
|
||||
warmup_bias_lr:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 0.2
|
||||
box:
|
||||
distribution: uniform
|
||||
min: 0.02
|
||||
max: 0.2
|
||||
cls:
|
||||
distribution: uniform
|
||||
min: 0.2
|
||||
max: 4.0
|
||||
cls_pw:
|
||||
distribution: uniform
|
||||
min: 0.5
|
||||
max: 2.0
|
||||
obj:
|
||||
distribution: uniform
|
||||
min: 0.2
|
||||
max: 4.0
|
||||
obj_pw:
|
||||
distribution: uniform
|
||||
min: 0.5
|
||||
max: 2.0
|
||||
iou_t:
|
||||
distribution: uniform
|
||||
min: 0.1
|
||||
max: 0.7
|
||||
anchor_t:
|
||||
distribution: uniform
|
||||
min: 2.0
|
||||
max: 8.0
|
||||
fl_gamma:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 4.0
|
||||
hsv_h:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 0.1
|
||||
hsv_s:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 0.9
|
||||
hsv_v:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 0.9
|
||||
degrees:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 45.0
|
||||
translate:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 0.9
|
||||
scale:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 0.9
|
||||
shear:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 10.0
|
||||
perspective:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 0.001
|
||||
flipud:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
fliplr:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
mosaic:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
mixup:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
copy_paste:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 1.0
|
584
app/yolov5/utils/loggers/wandb/wandb_utils.py
Normal file
584
app/yolov5/utils/loggers/wandb/wandb_utils.py
Normal file
@ -0,0 +1,584 @@
|
||||
"""Utilities and tools for tracking runs with Weights & Biases."""
|
||||
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
import yaml
|
||||
from tqdm import tqdm
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[3] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
|
||||
from app.yolov5.utils.dataloaders import LoadImagesAndLabels, img2label_paths
|
||||
from app.yolov5.utils.general import LOGGER, check_dataset, check_file
|
||||
|
||||
try:
|
||||
import wandb
|
||||
|
||||
assert hasattr(wandb, '__version__') # verify package import not local dir
|
||||
except (ImportError, AssertionError):
|
||||
wandb = None
|
||||
|
||||
RANK = int(os.getenv('RANK', -1))
|
||||
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
|
||||
|
||||
|
||||
def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
|
||||
return from_string[len(prefix):]
|
||||
|
||||
|
||||
def check_wandb_config_file(data_config_file):
|
||||
wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path
|
||||
if Path(wandb_config).is_file():
|
||||
return wandb_config
|
||||
return data_config_file
|
||||
|
||||
|
||||
def check_wandb_dataset(data_file):
|
||||
is_trainset_wandb_artifact = False
|
||||
is_valset_wandb_artifact = False
|
||||
if isinstance(data_file, dict):
|
||||
# In that case another dataset manager has already processed it and we don't have to
|
||||
return data_file
|
||||
if check_file(data_file) and data_file.endswith('.yaml'):
|
||||
with open(data_file, errors='ignore') as f:
|
||||
data_dict = yaml.safe_load(f)
|
||||
is_trainset_wandb_artifact = isinstance(data_dict['train'],
|
||||
str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX)
|
||||
is_valset_wandb_artifact = isinstance(data_dict['val'],
|
||||
str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX)
|
||||
if is_trainset_wandb_artifact or is_valset_wandb_artifact:
|
||||
return data_dict
|
||||
else:
|
||||
return check_dataset(data_file)
|
||||
|
||||
|
||||
def get_run_info(run_path):
|
||||
run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
|
||||
run_id = run_path.stem
|
||||
project = run_path.parent.stem
|
||||
entity = run_path.parent.parent.stem
|
||||
model_artifact_name = 'run_' + run_id + '_model'
|
||||
return entity, project, run_id, model_artifact_name
|
||||
|
||||
|
||||
def check_wandb_resume(opt):
|
||||
process_wandb_config_ddp_mode(opt) if RANK not in [-1, 0] else None
|
||||
if isinstance(opt.resume, str):
|
||||
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
||||
if RANK not in [-1, 0]: # For resuming DDP runs
|
||||
entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
|
||||
api = wandb.Api()
|
||||
artifact = api.artifact(entity + '/' + project + '/' + model_artifact_name + ':latest')
|
||||
modeldir = artifact.download()
|
||||
opt.weights = str(Path(modeldir) / "last.pt")
|
||||
return True
|
||||
return None
|
||||
|
||||
|
||||
def process_wandb_config_ddp_mode(opt):
|
||||
with open(check_file(opt.data), errors='ignore') as f:
|
||||
data_dict = yaml.safe_load(f) # data dict
|
||||
train_dir, val_dir = None, None
|
||||
if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
|
||||
api = wandb.Api()
|
||||
train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
|
||||
train_dir = train_artifact.download()
|
||||
train_path = Path(train_dir) / 'data/images/'
|
||||
data_dict['train'] = str(train_path)
|
||||
|
||||
if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
|
||||
api = wandb.Api()
|
||||
val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
|
||||
val_dir = val_artifact.download()
|
||||
val_path = Path(val_dir) / 'data/images/'
|
||||
data_dict['val'] = str(val_path)
|
||||
if train_dir or val_dir:
|
||||
ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
|
||||
with open(ddp_data_path, 'w') as f:
|
||||
yaml.safe_dump(data_dict, f)
|
||||
opt.data = ddp_data_path
|
||||
|
||||
|
||||
class WandbLogger():
|
||||
"""Log training runs, datasets, models, and predictions to Weights & Biases.
|
||||
|
||||
This logger sends information to W&B at wandb.ai. By default, this information
|
||||
includes hyperparameters, system configuration and metrics, model metrics,
|
||||
and basic data metrics and analyses.
|
||||
|
||||
By providing additional command line arguments to train.py, datasets,
|
||||
models and predictions can also be logged.
|
||||
|
||||
For more on how this logger is used, see the Weights & Biases documentation:
|
||||
https://docs.wandb.com/guides/integrations/yolov5
|
||||
"""
|
||||
|
||||
def __init__(self, opt, run_id=None, job_type='Training'):
|
||||
"""
|
||||
- Initialize WandbLogger instance
|
||||
- Upload dataset if opt.upload_dataset is True
|
||||
- Setup training processes if job_type is 'Training'
|
||||
|
||||
arguments:
|
||||
opt (namespace) -- Commandline arguments for this run
|
||||
run_id (str) -- Run ID of W&B run to be resumed
|
||||
job_type (str) -- To set the job_type for this run
|
||||
|
||||
"""
|
||||
# Pre-training routine --
|
||||
self.job_type = job_type
|
||||
self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run
|
||||
self.val_artifact, self.train_artifact = None, None
|
||||
self.train_artifact_path, self.val_artifact_path = None, None
|
||||
self.result_artifact = None
|
||||
self.val_table, self.result_table = None, None
|
||||
self.bbox_media_panel_images = []
|
||||
self.val_table_path_map = None
|
||||
self.max_imgs_to_log = 16
|
||||
self.wandb_artifact_data_dict = None
|
||||
self.data_dict = None
|
||||
# It's more elegant to stick to 1 wandb.init call,
|
||||
# but useful config data is overwritten in the WandbLogger's wandb.init call
|
||||
if isinstance(opt.resume, str): # checks resume from artifact
|
||||
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
||||
entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
|
||||
model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
|
||||
assert wandb, 'install wandb to resume wandb runs'
|
||||
# Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
|
||||
self.wandb_run = wandb.init(id=run_id,
|
||||
project=project,
|
||||
entity=entity,
|
||||
resume='allow',
|
||||
allow_val_change=True)
|
||||
opt.resume = model_artifact_name
|
||||
elif self.wandb:
|
||||
self.wandb_run = wandb.init(config=opt,
|
||||
resume="allow",
|
||||
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
|
||||
entity=opt.entity,
|
||||
name=opt.name if opt.name != 'exp' else None,
|
||||
job_type=job_type,
|
||||
id=run_id,
|
||||
allow_val_change=True) if not wandb.run else wandb.run
|
||||
if self.wandb_run:
|
||||
if self.job_type == 'Training':
|
||||
if opt.upload_dataset:
|
||||
if not opt.resume:
|
||||
self.wandb_artifact_data_dict = self.check_and_upload_dataset(opt)
|
||||
|
||||
if isinstance(opt.data, dict):
|
||||
# This means another dataset manager has already processed the dataset info (e.g. ClearML)
|
||||
# and they will have stored the already processed dict in opt.data
|
||||
self.data_dict = opt.data
|
||||
elif opt.resume:
|
||||
# resume from artifact
|
||||
if isinstance(opt.resume, str) and opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
||||
self.data_dict = dict(self.wandb_run.config.data_dict)
|
||||
else: # local resume
|
||||
self.data_dict = check_wandb_dataset(opt.data)
|
||||
else:
|
||||
self.data_dict = check_wandb_dataset(opt.data)
|
||||
self.wandb_artifact_data_dict = self.wandb_artifact_data_dict or self.data_dict
|
||||
|
||||
# write data_dict to config. useful for resuming from artifacts. Do this only when not resuming.
|
||||
self.wandb_run.config.update({'data_dict': self.wandb_artifact_data_dict}, allow_val_change=True)
|
||||
self.setup_training(opt)
|
||||
|
||||
if self.job_type == 'Dataset Creation':
|
||||
self.wandb_run.config.update({"upload_dataset": True})
|
||||
self.data_dict = self.check_and_upload_dataset(opt)
|
||||
|
||||
def check_and_upload_dataset(self, opt):
|
||||
"""
|
||||
Check if the dataset format is compatible and upload it as W&B artifact
|
||||
|
||||
arguments:
|
||||
opt (namespace)-- Commandline arguments for current run
|
||||
|
||||
returns:
|
||||
Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
|
||||
"""
|
||||
assert wandb, 'Install wandb to upload dataset'
|
||||
config_path = self.log_dataset_artifact(opt.data, opt.single_cls,
|
||||
'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem)
|
||||
with open(config_path, errors='ignore') as f:
|
||||
wandb_data_dict = yaml.safe_load(f)
|
||||
return wandb_data_dict
|
||||
|
||||
def setup_training(self, opt):
|
||||
"""
|
||||
Setup the necessary processes for training YOLO models:
|
||||
- Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
|
||||
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
|
||||
- Setup log_dict, initialize bbox_interval
|
||||
|
||||
arguments:
|
||||
opt (namespace) -- commandline arguments for this run
|
||||
|
||||
"""
|
||||
self.log_dict, self.current_epoch = {}, 0
|
||||
self.bbox_interval = opt.bbox_interval
|
||||
if isinstance(opt.resume, str):
|
||||
modeldir, _ = self.download_model_artifact(opt)
|
||||
if modeldir:
|
||||
self.weights = Path(modeldir) / "last.pt"
|
||||
config = self.wandb_run.config
|
||||
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = str(
|
||||
self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs,\
|
||||
config.hyp, config.imgsz
|
||||
data_dict = self.data_dict
|
||||
if self.val_artifact is None: # If --upload_dataset is set, use the existing artifact, don't download
|
||||
self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(
|
||||
data_dict.get('train'), opt.artifact_alias)
|
||||
self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(
|
||||
data_dict.get('val'), opt.artifact_alias)
|
||||
|
||||
if self.train_artifact_path is not None:
|
||||
train_path = Path(self.train_artifact_path) / 'data/images/'
|
||||
data_dict['train'] = str(train_path)
|
||||
if self.val_artifact_path is not None:
|
||||
val_path = Path(self.val_artifact_path) / 'data/images/'
|
||||
data_dict['val'] = str(val_path)
|
||||
|
||||
if self.val_artifact is not None:
|
||||
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
|
||||
columns = ["epoch", "id", "ground truth", "prediction"]
|
||||
columns.extend(self.data_dict['names'])
|
||||
self.result_table = wandb.Table(columns)
|
||||
self.val_table = self.val_artifact.get("val")
|
||||
if self.val_table_path_map is None:
|
||||
self.map_val_table_path()
|
||||
if opt.bbox_interval == -1:
|
||||
self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
|
||||
if opt.evolve or opt.noplots:
|
||||
self.bbox_interval = opt.bbox_interval = opt.epochs + 1 # disable bbox_interval
|
||||
train_from_artifact = self.train_artifact_path is not None and self.val_artifact_path is not None
|
||||
# Update the the data_dict to point to local artifacts dir
|
||||
if train_from_artifact:
|
||||
self.data_dict = data_dict
|
||||
|
||||
def download_dataset_artifact(self, path, alias):
|
||||
"""
|
||||
download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX
|
||||
|
||||
arguments:
|
||||
path -- path of the dataset to be used for training
|
||||
alias (str)-- alias of the artifact to be download/used for training
|
||||
|
||||
returns:
|
||||
(str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset
|
||||
is found otherwise returns (None, None)
|
||||
"""
|
||||
if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
|
||||
artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
|
||||
dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/"))
|
||||
assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
|
||||
datadir = dataset_artifact.download()
|
||||
return datadir, dataset_artifact
|
||||
return None, None
|
||||
|
||||
def download_model_artifact(self, opt):
|
||||
"""
|
||||
download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX
|
||||
|
||||
arguments:
|
||||
opt (namespace) -- Commandline arguments for this run
|
||||
"""
|
||||
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
||||
model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
|
||||
assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
|
||||
modeldir = model_artifact.download()
|
||||
# epochs_trained = model_artifact.metadata.get('epochs_trained')
|
||||
total_epochs = model_artifact.metadata.get('total_epochs')
|
||||
is_finished = total_epochs is None
|
||||
assert not is_finished, 'training is finished, can only resume incomplete runs.'
|
||||
return modeldir, model_artifact
|
||||
return None, None
|
||||
|
||||
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
|
||||
"""
|
||||
Log the model checkpoint as W&B artifact
|
||||
|
||||
arguments:
|
||||
path (Path) -- Path of directory containing the checkpoints
|
||||
opt (namespace) -- Command line arguments for this run
|
||||
epoch (int) -- Current epoch number
|
||||
fitness_score (float) -- fitness score for current epoch
|
||||
best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
|
||||
"""
|
||||
model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model',
|
||||
type='model',
|
||||
metadata={
|
||||
'original_url': str(path),
|
||||
'epochs_trained': epoch + 1,
|
||||
'save period': opt.save_period,
|
||||
'project': opt.project,
|
||||
'total_epochs': opt.epochs,
|
||||
'fitness_score': fitness_score})
|
||||
model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
|
||||
wandb.log_artifact(model_artifact,
|
||||
aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
|
||||
LOGGER.info(f"Saving model artifact on epoch {epoch + 1}")
|
||||
|
||||
def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
|
||||
"""
|
||||
Log the dataset as W&B artifact and return the new data file with W&B links
|
||||
|
||||
arguments:
|
||||
data_file (str) -- the .yaml file with information about the dataset like - path, classes etc.
|
||||
single_class (boolean) -- train multi-class data as single-class
|
||||
project (str) -- project name. Used to construct the artifact path
|
||||
overwrite_config (boolean) -- overwrites the data.yaml file if set to true otherwise creates a new
|
||||
file with _wandb postfix. Eg -> data_wandb.yaml
|
||||
|
||||
returns:
|
||||
the new .yaml file with artifact links. it can be used to start training directly from artifacts
|
||||
"""
|
||||
upload_dataset = self.wandb_run.config.upload_dataset
|
||||
log_val_only = isinstance(upload_dataset, str) and upload_dataset == 'val'
|
||||
self.data_dict = check_dataset(data_file) # parse and check
|
||||
data = dict(self.data_dict)
|
||||
nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
|
||||
names = {k: v for k, v in enumerate(names)} # to index dictionary
|
||||
|
||||
# log train set
|
||||
if not log_val_only:
|
||||
self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(data['train'], rect=True, batch_size=1),
|
||||
names,
|
||||
name='train') if data.get('train') else None
|
||||
if data.get('train'):
|
||||
data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
|
||||
|
||||
self.val_artifact = self.create_dataset_table(
|
||||
LoadImagesAndLabels(data['val'], rect=True, batch_size=1), names, name='val') if data.get('val') else None
|
||||
if data.get('val'):
|
||||
data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
|
||||
|
||||
path = Path(data_file)
|
||||
# create a _wandb.yaml file with artifacts links if both train and test set are logged
|
||||
if not log_val_only:
|
||||
path = (path.stem if overwrite_config else path.stem + '_wandb') + '.yaml' # updated data.yaml path
|
||||
path = ROOT / 'data' / path
|
||||
data.pop('download', None)
|
||||
data.pop('path', None)
|
||||
with open(path, 'w') as f:
|
||||
yaml.safe_dump(data, f)
|
||||
LOGGER.info(f"Created dataset config file {path}")
|
||||
|
||||
if self.job_type == 'Training': # builds correct artifact pipeline graph
|
||||
if not log_val_only:
|
||||
self.wandb_run.log_artifact(
|
||||
self.train_artifact) # calling use_artifact downloads the dataset. NOT NEEDED!
|
||||
self.wandb_run.use_artifact(self.val_artifact)
|
||||
self.val_artifact.wait()
|
||||
self.val_table = self.val_artifact.get('val')
|
||||
self.map_val_table_path()
|
||||
else:
|
||||
self.wandb_run.log_artifact(self.train_artifact)
|
||||
self.wandb_run.log_artifact(self.val_artifact)
|
||||
return path
|
||||
|
||||
def map_val_table_path(self):
|
||||
"""
|
||||
Map the validation dataset Table like name of file -> it's id in the W&B Table.
|
||||
Useful for - referencing artifacts for evaluation.
|
||||
"""
|
||||
self.val_table_path_map = {}
|
||||
LOGGER.info("Mapping dataset")
|
||||
for i, data in enumerate(tqdm(self.val_table.data)):
|
||||
self.val_table_path_map[data[3]] = data[0]
|
||||
|
||||
def create_dataset_table(self, dataset: LoadImagesAndLabels, class_to_id: Dict[int, str], name: str = 'dataset'):
|
||||
"""
|
||||
Create and return W&B artifact containing W&B Table of the dataset.
|
||||
|
||||
arguments:
|
||||
dataset -- instance of LoadImagesAndLabels class used to iterate over the data to build Table
|
||||
class_to_id -- hash map that maps class ids to labels
|
||||
name -- name of the artifact
|
||||
|
||||
returns:
|
||||
dataset artifact to be logged or used
|
||||
"""
|
||||
# TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
|
||||
artifact = wandb.Artifact(name=name, type="dataset")
|
||||
img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
|
||||
img_files = tqdm(dataset.im_files) if not img_files else img_files
|
||||
for img_file in img_files:
|
||||
if Path(img_file).is_dir():
|
||||
artifact.add_dir(img_file, name='data/images')
|
||||
labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
|
||||
artifact.add_dir(labels_path, name='data/labels')
|
||||
else:
|
||||
artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
|
||||
label_file = Path(img2label_paths([img_file])[0])
|
||||
artifact.add_file(str(label_file), name='data/labels/' +
|
||||
label_file.name) if label_file.exists() else None
|
||||
table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
|
||||
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
|
||||
for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
|
||||
box_data, img_classes = [], {}
|
||||
for cls, *xywh in labels[:, 1:].tolist():
|
||||
cls = int(cls)
|
||||
box_data.append({
|
||||
"position": {
|
||||
"middle": [xywh[0], xywh[1]],
|
||||
"width": xywh[2],
|
||||
"height": xywh[3]},
|
||||
"class_id": cls,
|
||||
"box_caption": "%s" % (class_to_id[cls])})
|
||||
img_classes[cls] = class_to_id[cls]
|
||||
boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
|
||||
table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), list(img_classes.values()),
|
||||
Path(paths).name)
|
||||
artifact.add(table, name)
|
||||
return artifact
|
||||
|
||||
def log_training_progress(self, predn, path, names):
|
||||
"""
|
||||
Build evaluation Table. Uses reference from validation dataset table.
|
||||
|
||||
arguments:
|
||||
predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
||||
path (str): local path of the current evaluation image
|
||||
names (dict(int, str)): hash map that maps class ids to labels
|
||||
"""
|
||||
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
|
||||
box_data = []
|
||||
avg_conf_per_class = [0] * len(self.data_dict['names'])
|
||||
pred_class_count = {}
|
||||
for *xyxy, conf, cls in predn.tolist():
|
||||
if conf >= 0.25:
|
||||
cls = int(cls)
|
||||
box_data.append({
|
||||
"position": {
|
||||
"minX": xyxy[0],
|
||||
"minY": xyxy[1],
|
||||
"maxX": xyxy[2],
|
||||
"maxY": xyxy[3]},
|
||||
"class_id": cls,
|
||||
"box_caption": f"{names[cls]} {conf:.3f}",
|
||||
"scores": {
|
||||
"class_score": conf},
|
||||
"domain": "pixel"})
|
||||
avg_conf_per_class[cls] += conf
|
||||
|
||||
if cls in pred_class_count:
|
||||
pred_class_count[cls] += 1
|
||||
else:
|
||||
pred_class_count[cls] = 1
|
||||
|
||||
for pred_class in pred_class_count.keys():
|
||||
avg_conf_per_class[pred_class] = avg_conf_per_class[pred_class] / pred_class_count[pred_class]
|
||||
|
||||
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
|
||||
id = self.val_table_path_map[Path(path).name]
|
||||
self.result_table.add_data(self.current_epoch, id, self.val_table.data[id][1],
|
||||
wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
|
||||
*avg_conf_per_class)
|
||||
|
||||
def val_one_image(self, pred, predn, path, names, im):
|
||||
"""
|
||||
Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel
|
||||
|
||||
arguments:
|
||||
pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
||||
predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class]
|
||||
path (str): local path of the current evaluation image
|
||||
"""
|
||||
if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact
|
||||
self.log_training_progress(predn, path, names)
|
||||
|
||||
if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0:
|
||||
if self.current_epoch % self.bbox_interval == 0:
|
||||
box_data = [{
|
||||
"position": {
|
||||
"minX": xyxy[0],
|
||||
"minY": xyxy[1],
|
||||
"maxX": xyxy[2],
|
||||
"maxY": xyxy[3]},
|
||||
"class_id": int(cls),
|
||||
"box_caption": f"{names[int(cls)]} {conf:.3f}",
|
||||
"scores": {
|
||||
"class_score": conf},
|
||||
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
|
||||
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
|
||||
self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name))
|
||||
|
||||
def log(self, log_dict):
|
||||
"""
|
||||
save the metrics to the logging dictionary
|
||||
|
||||
arguments:
|
||||
log_dict (Dict) -- metrics/media to be logged in current step
|
||||
"""
|
||||
if self.wandb_run:
|
||||
for key, value in log_dict.items():
|
||||
self.log_dict[key] = value
|
||||
|
||||
def end_epoch(self, best_result=False):
|
||||
"""
|
||||
commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
|
||||
|
||||
arguments:
|
||||
best_result (boolean): Boolean representing if the result of this evaluation is best or not
|
||||
"""
|
||||
if self.wandb_run:
|
||||
with all_logging_disabled():
|
||||
if self.bbox_media_panel_images:
|
||||
self.log_dict["BoundingBoxDebugger"] = self.bbox_media_panel_images
|
||||
try:
|
||||
wandb.log(self.log_dict)
|
||||
except BaseException as e:
|
||||
LOGGER.info(
|
||||
f"An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}"
|
||||
)
|
||||
self.wandb_run.finish()
|
||||
self.wandb_run = None
|
||||
|
||||
self.log_dict = {}
|
||||
self.bbox_media_panel_images = []
|
||||
if self.result_artifact:
|
||||
self.result_artifact.add(self.result_table, 'result')
|
||||
wandb.log_artifact(self.result_artifact,
|
||||
aliases=[
|
||||
'latest', 'last', 'epoch ' + str(self.current_epoch),
|
||||
('best' if best_result else '')])
|
||||
|
||||
wandb.log({"evaluation": self.result_table})
|
||||
columns = ["epoch", "id", "ground truth", "prediction"]
|
||||
columns.extend(self.data_dict['names'])
|
||||
self.result_table = wandb.Table(columns)
|
||||
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
|
||||
|
||||
def finish_run(self):
|
||||
"""
|
||||
Log metrics if any and finish the current W&B run
|
||||
"""
|
||||
if self.wandb_run:
|
||||
if self.log_dict:
|
||||
with all_logging_disabled():
|
||||
wandb.log(self.log_dict)
|
||||
wandb.run.finish()
|
||||
|
||||
|
||||
@contextmanager
|
||||
def all_logging_disabled(highest_level=logging.CRITICAL):
|
||||
""" source - https://gist.github.com/simon-weber/7853144
|
||||
A context manager that will prevent any logging messages triggered during the body from being processed.
|
||||
:param highest_level: the maximum logging level in use.
|
||||
This would only need to be changed if a custom level greater than CRITICAL is defined.
|
||||
"""
|
||||
previous_level = logging.root.manager.disable
|
||||
logging.disable(highest_level)
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
logging.disable(previous_level)
|
Reference in New Issue
Block a user