first commit
This commit is contained in:
65
app/yolov5/utils/__init__.py
Normal file
65
app/yolov5/utils/__init__.py
Normal file
@ -0,0 +1,65 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
utils/initialization
|
||||
"""
|
||||
|
||||
import contextlib
|
||||
import threading
|
||||
|
||||
|
||||
class TryExcept(contextlib.ContextDecorator):
|
||||
# YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
|
||||
def __init__(self, msg=''):
|
||||
self.msg = msg
|
||||
|
||||
def __enter__(self):
|
||||
pass
|
||||
|
||||
def __exit__(self, exc_type, value, traceback):
|
||||
if value:
|
||||
print(f'{self.msg}{value}')
|
||||
return True
|
||||
|
||||
|
||||
def threaded(func):
|
||||
# Multi-threads a target function and returns thread. Usage: @threaded decorator
|
||||
def wrapper(*args, **kwargs):
|
||||
thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
|
||||
thread.start()
|
||||
return thread
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def notebook_init(verbose=True):
|
||||
# Check system software and hardware
|
||||
print('Checking setup...')
|
||||
|
||||
import os
|
||||
import shutil
|
||||
|
||||
from utils.general import check_font, check_requirements, emojis, is_colab
|
||||
from utils.torch_utils import select_device # imports
|
||||
|
||||
check_requirements(('psutil', 'IPython'))
|
||||
check_font()
|
||||
|
||||
import psutil
|
||||
from IPython import display # to display images and clear console output
|
||||
|
||||
if is_colab():
|
||||
shutil.rmtree('/content/sample_data', ignore_errors=True) # remove colab /sample_data directory
|
||||
|
||||
# System info
|
||||
if verbose:
|
||||
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
||||
ram = psutil.virtual_memory().total
|
||||
total, used, free = shutil.disk_usage("/")
|
||||
display.clear_output()
|
||||
s = f'({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)'
|
||||
else:
|
||||
s = ''
|
||||
|
||||
select_device(newline=False)
|
||||
print(emojis(f'Setup complete ✅ {s}'))
|
||||
return display
|
103
app/yolov5/utils/activations.py
Normal file
103
app/yolov5/utils/activations.py
Normal file
@ -0,0 +1,103 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
Activation functions
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class SiLU(nn.Module):
|
||||
# SiLU activation https://arxiv.org/pdf/1606.08415.pdf
|
||||
@staticmethod
|
||||
def forward(x):
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
class Hardswish(nn.Module):
|
||||
# Hard-SiLU activation
|
||||
@staticmethod
|
||||
def forward(x):
|
||||
# return x * F.hardsigmoid(x) # for TorchScript and CoreML
|
||||
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX
|
||||
|
||||
|
||||
class Mish(nn.Module):
|
||||
# Mish activation https://github.com/digantamisra98/Mish
|
||||
@staticmethod
|
||||
def forward(x):
|
||||
return x * F.softplus(x).tanh()
|
||||
|
||||
|
||||
class MemoryEfficientMish(nn.Module):
|
||||
# Mish activation memory-efficient
|
||||
class F(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, x):
|
||||
ctx.save_for_backward(x)
|
||||
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
x = ctx.saved_tensors[0]
|
||||
sx = torch.sigmoid(x)
|
||||
fx = F.softplus(x).tanh()
|
||||
return grad_output * (fx + x * sx * (1 - fx * fx))
|
||||
|
||||
def forward(self, x):
|
||||
return self.F.apply(x)
|
||||
|
||||
|
||||
class FReLU(nn.Module):
|
||||
# FReLU activation https://arxiv.org/abs/2007.11824
|
||||
def __init__(self, c1, k=3): # ch_in, kernel
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
|
||||
self.bn = nn.BatchNorm2d(c1)
|
||||
|
||||
def forward(self, x):
|
||||
return torch.max(x, self.bn(self.conv(x)))
|
||||
|
||||
|
||||
class AconC(nn.Module):
|
||||
r""" ACON activation (activate or not)
|
||||
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
|
||||
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
||||
"""
|
||||
|
||||
def __init__(self, c1):
|
||||
super().__init__()
|
||||
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
||||
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
||||
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
|
||||
|
||||
def forward(self, x):
|
||||
dpx = (self.p1 - self.p2) * x
|
||||
return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
|
||||
|
||||
|
||||
class MetaAconC(nn.Module):
|
||||
r""" ACON activation (activate or not)
|
||||
MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
|
||||
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
||||
"""
|
||||
|
||||
def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r
|
||||
super().__init__()
|
||||
c2 = max(r, c1 // r)
|
||||
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
||||
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
||||
self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
|
||||
self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
|
||||
# self.bn1 = nn.BatchNorm2d(c2)
|
||||
# self.bn2 = nn.BatchNorm2d(c1)
|
||||
|
||||
def forward(self, x):
|
||||
y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
|
||||
# batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
|
||||
# beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
|
||||
beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
|
||||
dpx = (self.p1 - self.p2) * x
|
||||
return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
|
396
app/yolov5/utils/augmentations.py
Normal file
396
app/yolov5/utils/augmentations.py
Normal file
@ -0,0 +1,396 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
Image augmentation functions
|
||||
"""
|
||||
|
||||
import math
|
||||
import random
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
import torchvision.transforms.functional as TF
|
||||
|
||||
from app.yolov5.utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box
|
||||
from app.yolov5.utils.metrics import bbox_ioa
|
||||
|
||||
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean
|
||||
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation
|
||||
|
||||
|
||||
class Albumentations:
|
||||
# YOLOv5 Albumentations class (optional, only used if package is installed)
|
||||
def __init__(self):
|
||||
self.transform = None
|
||||
prefix = colorstr('albumentations: ')
|
||||
try:
|
||||
import albumentations as A
|
||||
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
||||
|
||||
T = [
|
||||
A.Blur(p=0.01),
|
||||
A.MedianBlur(p=0.01),
|
||||
A.ToGray(p=0.01),
|
||||
A.CLAHE(p=0.01),
|
||||
A.RandomBrightnessContrast(p=0.0),
|
||||
A.RandomGamma(p=0.0),
|
||||
A.ImageCompression(quality_lower=75, p=0.0)] # transforms
|
||||
self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
|
||||
|
||||
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
|
||||
except ImportError: # package not installed, skip
|
||||
pass
|
||||
except Exception as e:
|
||||
LOGGER.info(f'{prefix}{e}')
|
||||
|
||||
def __call__(self, im, labels, p=1.0):
|
||||
if self.transform and random.random() < p:
|
||||
new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
|
||||
im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
|
||||
return im, labels
|
||||
|
||||
|
||||
def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False):
|
||||
# Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = (x - mean) / std
|
||||
return TF.normalize(x, mean, std, inplace=inplace)
|
||||
|
||||
|
||||
def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD):
|
||||
# Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = x * std + mean
|
||||
for i in range(3):
|
||||
x[:, i] = x[:, i] * std[i] + mean[i]
|
||||
return x
|
||||
|
||||
|
||||
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
|
||||
# HSV color-space augmentation
|
||||
if hgain or sgain or vgain:
|
||||
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
||||
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
|
||||
dtype = im.dtype # uint8
|
||||
|
||||
x = np.arange(0, 256, dtype=r.dtype)
|
||||
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
||||
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
||||
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
||||
|
||||
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
|
||||
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
|
||||
|
||||
|
||||
def hist_equalize(im, clahe=True, bgr=False):
|
||||
# Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
|
||||
yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
|
||||
if clahe:
|
||||
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
||||
yuv[:, :, 0] = c.apply(yuv[:, :, 0])
|
||||
else:
|
||||
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
|
||||
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
|
||||
|
||||
|
||||
def replicate(im, labels):
|
||||
# Replicate labels
|
||||
h, w = im.shape[:2]
|
||||
boxes = labels[:, 1:].astype(int)
|
||||
x1, y1, x2, y2 = boxes.T
|
||||
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
|
||||
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
|
||||
x1b, y1b, x2b, y2b = boxes[i]
|
||||
bh, bw = y2b - y1b, x2b - x1b
|
||||
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
|
||||
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
|
||||
im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax]
|
||||
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
|
||||
|
||||
return im, labels
|
||||
|
||||
|
||||
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
||||
# Resize and pad image while meeting stride-multiple constraints
|
||||
shape = im.shape[:2] # current shape [height, width]
|
||||
if isinstance(new_shape, int):
|
||||
new_shape = (new_shape, new_shape)
|
||||
|
||||
# Scale ratio (new / old)
|
||||
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||||
if not scaleup: # only scale down, do not scale up (for better val mAP)
|
||||
r = min(r, 1.0)
|
||||
|
||||
# Compute padding
|
||||
ratio = r, r # width, height ratios
|
||||
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||||
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
||||
if auto: # minimum rectangle
|
||||
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
||||
elif scaleFill: # stretch
|
||||
dw, dh = 0.0, 0.0
|
||||
new_unpad = (new_shape[1], new_shape[0])
|
||||
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
||||
|
||||
dw /= 2 # divide padding into 2 sides
|
||||
dh /= 2
|
||||
|
||||
if shape[::-1] != new_unpad: # resize
|
||||
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||||
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||||
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
||||
return im, ratio, (dw, dh)
|
||||
|
||||
|
||||
def random_perspective(im,
|
||||
targets=(),
|
||||
segments=(),
|
||||
degrees=10,
|
||||
translate=.1,
|
||||
scale=.1,
|
||||
shear=10,
|
||||
perspective=0.0,
|
||||
border=(0, 0)):
|
||||
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
|
||||
# targets = [cls, xyxy]
|
||||
|
||||
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
|
||||
width = im.shape[1] + border[1] * 2
|
||||
|
||||
# Center
|
||||
C = np.eye(3)
|
||||
C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
|
||||
C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
|
||||
|
||||
# Perspective
|
||||
P = np.eye(3)
|
||||
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
||||
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
||||
|
||||
# Rotation and Scale
|
||||
R = np.eye(3)
|
||||
a = random.uniform(-degrees, degrees)
|
||||
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
||||
s = random.uniform(1 - scale, 1 + scale)
|
||||
# s = 2 ** random.uniform(-scale, scale)
|
||||
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
||||
|
||||
# Shear
|
||||
S = np.eye(3)
|
||||
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
||||
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
||||
|
||||
# Translation
|
||||
T = np.eye(3)
|
||||
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
||||
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
||||
|
||||
# Combined rotation matrix
|
||||
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
||||
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
||||
if perspective:
|
||||
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
|
||||
else: # affine
|
||||
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
||||
|
||||
# Visualize
|
||||
# import matplotlib.pyplot as plt
|
||||
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
||||
# ax[0].imshow(im[:, :, ::-1]) # base
|
||||
# ax[1].imshow(im2[:, :, ::-1]) # warped
|
||||
|
||||
# Transform label coordinates
|
||||
n = len(targets)
|
||||
if n:
|
||||
use_segments = any(x.any() for x in segments)
|
||||
new = np.zeros((n, 4))
|
||||
if use_segments: # warp segments
|
||||
segments = resample_segments(segments) # upsample
|
||||
for i, segment in enumerate(segments):
|
||||
xy = np.ones((len(segment), 3))
|
||||
xy[:, :2] = segment
|
||||
xy = xy @ M.T # transform
|
||||
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
|
||||
|
||||
# clip
|
||||
new[i] = segment2box(xy, width, height)
|
||||
|
||||
else: # warp boxes
|
||||
xy = np.ones((n * 4, 3))
|
||||
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
||||
xy = xy @ M.T # transform
|
||||
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
|
||||
|
||||
# create new boxes
|
||||
x = xy[:, [0, 2, 4, 6]]
|
||||
y = xy[:, [1, 3, 5, 7]]
|
||||
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
||||
|
||||
# clip
|
||||
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
|
||||
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
|
||||
|
||||
# filter candidates
|
||||
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
|
||||
targets = targets[i]
|
||||
targets[:, 1:5] = new[i]
|
||||
|
||||
return im, targets
|
||||
|
||||
|
||||
def copy_paste(im, labels, segments, p=0.5):
|
||||
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
|
||||
n = len(segments)
|
||||
if p and n:
|
||||
h, w, c = im.shape # height, width, channels
|
||||
im_new = np.zeros(im.shape, np.uint8)
|
||||
for j in random.sample(range(n), k=round(p * n)):
|
||||
l, s = labels[j], segments[j]
|
||||
box = w - l[3], l[2], w - l[1], l[4]
|
||||
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
||||
if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
|
||||
labels = np.concatenate((labels, [[l[0], *box]]), 0)
|
||||
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
|
||||
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
|
||||
|
||||
result = cv2.bitwise_and(src1=im, src2=im_new)
|
||||
result = cv2.flip(result, 1) # augment segments (flip left-right)
|
||||
i = result > 0 # pixels to replace
|
||||
# i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
|
||||
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
|
||||
|
||||
return im, labels, segments
|
||||
|
||||
|
||||
def cutout(im, labels, p=0.5):
|
||||
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
|
||||
if random.random() < p:
|
||||
h, w = im.shape[:2]
|
||||
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
||||
for s in scales:
|
||||
mask_h = random.randint(1, int(h * s)) # create random masks
|
||||
mask_w = random.randint(1, int(w * s))
|
||||
|
||||
# box
|
||||
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
||||
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
||||
xmax = min(w, xmin + mask_w)
|
||||
ymax = min(h, ymin + mask_h)
|
||||
|
||||
# apply random color mask
|
||||
im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
||||
|
||||
# return unobscured labels
|
||||
if len(labels) and s > 0.03:
|
||||
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
||||
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
||||
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
||||
|
||||
return labels
|
||||
|
||||
|
||||
def mixup(im, labels, im2, labels2):
|
||||
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
|
||||
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
||||
im = (im * r + im2 * (1 - r)).astype(np.uint8)
|
||||
labels = np.concatenate((labels, labels2), 0)
|
||||
return im, labels
|
||||
|
||||
|
||||
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
|
||||
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
||||
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
||||
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
||||
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
|
||||
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
|
||||
|
||||
|
||||
def classify_albumentations(augment=True,
|
||||
size=224,
|
||||
scale=(0.08, 1.0),
|
||||
hflip=0.5,
|
||||
vflip=0.0,
|
||||
jitter=0.4,
|
||||
mean=IMAGENET_MEAN,
|
||||
std=IMAGENET_STD,
|
||||
auto_aug=False):
|
||||
# YOLOv5 classification Albumentations (optional, only used if package is installed)
|
||||
prefix = colorstr('albumentations: ')
|
||||
try:
|
||||
import albumentations as A
|
||||
from albumentations.pytorch import ToTensorV2
|
||||
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
||||
if augment: # Resize and crop
|
||||
T = [A.RandomResizedCrop(height=size, width=size, scale=scale)]
|
||||
if auto_aug:
|
||||
# TODO: implement AugMix, AutoAug & RandAug in albumentation
|
||||
LOGGER.info(f'{prefix}auto augmentations are currently not supported')
|
||||
else:
|
||||
if hflip > 0:
|
||||
T += [A.HorizontalFlip(p=hflip)]
|
||||
if vflip > 0:
|
||||
T += [A.VerticalFlip(p=vflip)]
|
||||
if jitter > 0:
|
||||
color_jitter = (float(jitter),) * 3 # repeat value for brightness, contrast, satuaration, 0 hue
|
||||
T += [A.ColorJitter(*color_jitter, 0)]
|
||||
else: # Use fixed crop for eval set (reproducibility)
|
||||
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
|
||||
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor
|
||||
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
|
||||
return A.Compose(T)
|
||||
|
||||
except ImportError: # package not installed, skip
|
||||
pass
|
||||
except Exception as e:
|
||||
LOGGER.info(f'{prefix}{e}')
|
||||
|
||||
|
||||
def classify_transforms(size=224):
|
||||
# Transforms to apply if albumentations not installed
|
||||
assert isinstance(size, int), f'ERROR: classify_transforms size {size} must be integer, not (list, tuple)'
|
||||
# T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
||||
return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
||||
|
||||
|
||||
class LetterBox:
|
||||
# YOLOv5 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
|
||||
def __init__(self, size=(640, 640), auto=False, stride=32):
|
||||
super().__init__()
|
||||
self.h, self.w = (size, size) if isinstance(size, int) else size
|
||||
self.auto = auto # pass max size integer, automatically solve for short side using stride
|
||||
self.stride = stride # used with auto
|
||||
|
||||
def __call__(self, im): # im = np.array HWC
|
||||
imh, imw = im.shape[:2]
|
||||
r = min(self.h / imh, self.w / imw) # ratio of new/old
|
||||
h, w = round(imh * r), round(imw * r) # resized image
|
||||
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w
|
||||
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
|
||||
im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype)
|
||||
im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
|
||||
return im_out
|
||||
|
||||
|
||||
class CenterCrop:
|
||||
# YOLOv5 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()])
|
||||
def __init__(self, size=640):
|
||||
super().__init__()
|
||||
self.h, self.w = (size, size) if isinstance(size, int) else size
|
||||
|
||||
def __call__(self, im): # im = np.array HWC
|
||||
imh, imw = im.shape[:2]
|
||||
m = min(imh, imw) # min dimension
|
||||
top, left = (imh - m) // 2, (imw - m) // 2
|
||||
return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
|
||||
class ToTensor:
|
||||
# YOLOv5 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
|
||||
def __init__(self, half=False):
|
||||
super().__init__()
|
||||
self.half = half
|
||||
|
||||
def __call__(self, im): # im = np.array HWC in BGR order
|
||||
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous
|
||||
im = torch.from_numpy(im) # to torch
|
||||
im = im.half() if self.half else im.float() # uint8 to fp16/32
|
||||
im /= 255.0 # 0-255 to 0.0-1.0
|
||||
return im
|
169
app/yolov5/utils/autoanchor.py
Normal file
169
app/yolov5/utils/autoanchor.py
Normal file
@ -0,0 +1,169 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
AutoAnchor utils
|
||||
"""
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import yaml
|
||||
from tqdm import tqdm
|
||||
|
||||
from app.yolov5.utils import TryExcept
|
||||
from app.yolov5.utils.general import LOGGER, colorstr
|
||||
|
||||
PREFIX = colorstr('AutoAnchor: ')
|
||||
|
||||
|
||||
def check_anchor_order(m):
|
||||
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
||||
a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer
|
||||
da = a[-1] - a[0] # delta a
|
||||
ds = m.stride[-1] - m.stride[0] # delta s
|
||||
if da and (da.sign() != ds.sign()): # same order
|
||||
LOGGER.info(f'{PREFIX}Reversing anchor order')
|
||||
m.anchors[:] = m.anchors.flip(0)
|
||||
|
||||
|
||||
@TryExcept(f'{PREFIX}ERROR: ')
|
||||
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
||||
# Check anchor fit to data, recompute if necessary
|
||||
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
||||
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
|
||||
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
|
||||
|
||||
def metric(k): # compute metric
|
||||
r = wh[:, None] / k[None]
|
||||
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
|
||||
best = x.max(1)[0] # best_x
|
||||
aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold
|
||||
bpr = (best > 1 / thr).float().mean() # best possible recall
|
||||
return bpr, aat
|
||||
|
||||
stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides
|
||||
anchors = m.anchors.clone() * stride # current anchors
|
||||
bpr, aat = metric(anchors.cpu().view(-1, 2))
|
||||
s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
|
||||
if bpr > 0.98: # threshold to recompute
|
||||
LOGGER.info(f'{s}Current anchors are a good fit to dataset ✅')
|
||||
else:
|
||||
LOGGER.info(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...')
|
||||
na = m.anchors.numel() // 2 # number of anchors
|
||||
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
||||
new_bpr = metric(anchors)[0]
|
||||
if new_bpr > bpr: # replace anchors
|
||||
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
|
||||
m.anchors[:] = anchors.clone().view_as(m.anchors)
|
||||
check_anchor_order(m) # must be in pixel-space (not grid-space)
|
||||
m.anchors /= stride
|
||||
s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)'
|
||||
else:
|
||||
s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)'
|
||||
LOGGER.info(s)
|
||||
|
||||
|
||||
def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
||||
""" Creates kmeans-evolved anchors from training dataset
|
||||
|
||||
Arguments:
|
||||
dataset: path to data.yaml, or a loaded dataset
|
||||
n: number of anchors
|
||||
img_size: image size used for training
|
||||
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
||||
gen: generations to evolve anchors using genetic algorithm
|
||||
verbose: print all results
|
||||
|
||||
Return:
|
||||
k: kmeans evolved anchors
|
||||
|
||||
Usage:
|
||||
from utils.autoanchor import *; _ = kmean_anchors()
|
||||
"""
|
||||
from scipy.cluster.vq import kmeans
|
||||
|
||||
npr = np.random
|
||||
thr = 1 / thr
|
||||
|
||||
def metric(k, wh): # compute metrics
|
||||
r = wh[:, None] / k[None]
|
||||
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
|
||||
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
||||
return x, x.max(1)[0] # x, best_x
|
||||
|
||||
def anchor_fitness(k): # mutation fitness
|
||||
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
||||
return (best * (best > thr).float()).mean() # fitness
|
||||
|
||||
def print_results(k, verbose=True):
|
||||
k = k[np.argsort(k.prod(1))] # sort small to large
|
||||
x, best = metric(k, wh0)
|
||||
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
||||
s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
|
||||
f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
|
||||
f'past_thr={x[x > thr].mean():.3f}-mean: '
|
||||
for x in k:
|
||||
s += '%i,%i, ' % (round(x[0]), round(x[1]))
|
||||
if verbose:
|
||||
LOGGER.info(s[:-2])
|
||||
return k
|
||||
|
||||
if isinstance(dataset, str): # *.yaml file
|
||||
with open(dataset, errors='ignore') as f:
|
||||
data_dict = yaml.safe_load(f) # model dict
|
||||
from utils.dataloaders import LoadImagesAndLabels
|
||||
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
||||
|
||||
# Get label wh
|
||||
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
||||
|
||||
# Filter
|
||||
i = (wh0 < 3.0).any(1).sum()
|
||||
if i:
|
||||
LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found: {i} of {len(wh0)} labels are < 3 pixels in size')
|
||||
wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32) # filter > 2 pixels
|
||||
# wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
|
||||
|
||||
# Kmeans init
|
||||
try:
|
||||
LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
|
||||
assert n <= len(wh) # apply overdetermined constraint
|
||||
s = wh.std(0) # sigmas for whitening
|
||||
k = kmeans(wh / s, n, iter=30)[0] * s # points
|
||||
assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar
|
||||
except Exception:
|
||||
LOGGER.warning(f'{PREFIX}WARNING: switching strategies from kmeans to random init')
|
||||
k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init
|
||||
wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
|
||||
k = print_results(k, verbose=False)
|
||||
|
||||
# Plot
|
||||
# k, d = [None] * 20, [None] * 20
|
||||
# for i in tqdm(range(1, 21)):
|
||||
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
||||
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
|
||||
# ax = ax.ravel()
|
||||
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
||||
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
||||
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
||||
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
||||
# fig.savefig('wh.png', dpi=200)
|
||||
|
||||
# Evolve
|
||||
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
||||
pbar = tqdm(range(gen), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
|
||||
for _ in pbar:
|
||||
v = np.ones(sh)
|
||||
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
||||
v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
||||
kg = (k.copy() * v).clip(min=2.0)
|
||||
fg = anchor_fitness(kg)
|
||||
if fg > f:
|
||||
f, k = fg, kg.copy()
|
||||
pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
|
||||
if verbose:
|
||||
print_results(k, verbose)
|
||||
|
||||
return print_results(k).astype(np.float32)
|
69
app/yolov5/utils/autobatch.py
Normal file
69
app/yolov5/utils/autobatch.py
Normal file
@ -0,0 +1,69 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
Auto-batch utils
|
||||
"""
|
||||
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from app.yolov5.utils.general import LOGGER, colorstr
|
||||
from app.yolov5.utils.torch_utils import profile
|
||||
|
||||
|
||||
def check_train_batch_size(model, imgsz=640, amp=True):
|
||||
# Check YOLOv5 training batch size
|
||||
with torch.cuda.amp.autocast(amp):
|
||||
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
|
||||
|
||||
|
||||
def autobatch(model, imgsz=640, fraction=0.8, batch_size=16):
|
||||
# Automatically estimate best batch size to use `fraction` of available CUDA memory
|
||||
# Usage:
|
||||
# import torch
|
||||
# from utils.autobatch import autobatch
|
||||
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
|
||||
# print(autobatch(model))
|
||||
|
||||
# Check device
|
||||
prefix = colorstr('AutoBatch: ')
|
||||
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
|
||||
device = next(model.parameters()).device # get model device
|
||||
if device.type == 'cpu':
|
||||
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
|
||||
return batch_size
|
||||
|
||||
# Inspect CUDA memory
|
||||
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
||||
d = str(device).upper() # 'CUDA:0'
|
||||
properties = torch.cuda.get_device_properties(device) # device properties
|
||||
t = properties.total_memory / gb # GiB total
|
||||
r = torch.cuda.memory_reserved(device) / gb # GiB reserved
|
||||
a = torch.cuda.memory_allocated(device) / gb # GiB allocated
|
||||
f = t - (r + a) # GiB free
|
||||
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
|
||||
|
||||
# Profile batch sizes
|
||||
batch_sizes = [1, 2, 4, 8, 16]
|
||||
try:
|
||||
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
|
||||
results = profile(img, model, n=3, device=device)
|
||||
except Exception as e:
|
||||
LOGGER.warning(f'{prefix}{e}')
|
||||
|
||||
# Fit a solution
|
||||
y = [x[2] for x in results if x] # memory [2]
|
||||
p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit
|
||||
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
|
||||
if None in results: # some sizes failed
|
||||
i = results.index(None) # first fail index
|
||||
if b >= batch_sizes[i]: # y intercept above failure point
|
||||
b = batch_sizes[max(i - 1, 0)] # select prior safe point
|
||||
if b < 1 or b > 1024: # b outside of safe range
|
||||
b = batch_size
|
||||
LOGGER.warning(f'{prefix}WARNING: ⚠️ CUDA anomaly detected, recommend restart environment and retry command.')
|
||||
|
||||
fraction = np.polyval(p, b) / t # actual fraction predicted
|
||||
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅')
|
||||
return b
|
0
app/yolov5/utils/aws/__init__.py
Normal file
0
app/yolov5/utils/aws/__init__.py
Normal file
26
app/yolov5/utils/aws/mime.sh
Normal file
26
app/yolov5/utils/aws/mime.sh
Normal file
@ -0,0 +1,26 @@
|
||||
# AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
|
||||
# This script will run on every instance restart, not only on first start
|
||||
# --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
|
||||
|
||||
Content-Type: multipart/mixed; boundary="//"
|
||||
MIME-Version: 1.0
|
||||
|
||||
--//
|
||||
Content-Type: text/cloud-config; charset="us-ascii"
|
||||
MIME-Version: 1.0
|
||||
Content-Transfer-Encoding: 7bit
|
||||
Content-Disposition: attachment; filename="cloud-config.txt"
|
||||
|
||||
#cloud-config
|
||||
cloud_final_modules:
|
||||
- [scripts-user, always]
|
||||
|
||||
--//
|
||||
Content-Type: text/x-shellscript; charset="us-ascii"
|
||||
MIME-Version: 1.0
|
||||
Content-Transfer-Encoding: 7bit
|
||||
Content-Disposition: attachment; filename="userdata.txt"
|
||||
|
||||
#!/bin/bash
|
||||
# --- paste contents of userdata.sh here ---
|
||||
--//
|
40
app/yolov5/utils/aws/resume.py
Normal file
40
app/yolov5/utils/aws/resume.py
Normal file
@ -0,0 +1,40 @@
|
||||
# Resume all interrupted trainings in yolov5/ dir including DDP trainings
|
||||
# Usage: $ python utils/aws/resume.py
|
||||
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import yaml
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[2] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
|
||||
port = 0 # --master_port
|
||||
path = Path('').resolve()
|
||||
for last in path.rglob('*/**/last.pt'):
|
||||
ckpt = torch.load(last)
|
||||
if ckpt['optimizer'] is None:
|
||||
continue
|
||||
|
||||
# Load opt.yaml
|
||||
with open(last.parent.parent / 'opt.yaml', errors='ignore') as f:
|
||||
opt = yaml.safe_load(f)
|
||||
|
||||
# Get device count
|
||||
d = opt['device'].split(',') # devices
|
||||
nd = len(d) # number of devices
|
||||
ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
|
||||
|
||||
if ddp: # multi-GPU
|
||||
port += 1
|
||||
cmd = f'python -m torch.distributed.run --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
|
||||
else: # single-GPU
|
||||
cmd = f'python train.py --resume {last}'
|
||||
|
||||
cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
|
||||
print(cmd)
|
||||
os.system(cmd)
|
27
app/yolov5/utils/aws/userdata.sh
Normal file
27
app/yolov5/utils/aws/userdata.sh
Normal file
@ -0,0 +1,27 @@
|
||||
#!/bin/bash
|
||||
# AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
|
||||
# This script will run only once on first instance start (for a re-start script see mime.sh)
|
||||
# /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
|
||||
# Use >300 GB SSD
|
||||
|
||||
cd home/ubuntu
|
||||
if [ ! -d yolov5 ]; then
|
||||
echo "Running first-time script." # install dependencies, download COCO, pull Docker
|
||||
git clone https://github.com/ultralytics/yolov5 -b master && sudo chmod -R 777 yolov5
|
||||
cd yolov5
|
||||
bash data/scripts/get_coco.sh && echo "COCO done." &
|
||||
sudo docker pull ultralytics/yolov5:latest && echo "Docker done." &
|
||||
python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
|
||||
wait && echo "All tasks done." # finish background tasks
|
||||
else
|
||||
echo "Running re-start script." # resume interrupted runs
|
||||
i=0
|
||||
list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
|
||||
while IFS= read -r id; do
|
||||
((i++))
|
||||
echo "restarting container $i: $id"
|
||||
sudo docker start $id
|
||||
# sudo docker exec -it $id python train.py --resume # single-GPU
|
||||
sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
|
||||
done <<<"$list"
|
||||
fi
|
161
app/yolov5/utils/benchmarks.py
Normal file
161
app/yolov5/utils/benchmarks.py
Normal file
@ -0,0 +1,161 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
Run YOLOv5 benchmarks on all supported export formats
|
||||
|
||||
Format | `export.py --include` | Model
|
||||
--- | --- | ---
|
||||
PyTorch | - | yolov5s.pt
|
||||
TorchScript | `torchscript` | yolov5s.torchscript
|
||||
ONNX | `onnx` | yolov5s.onnx
|
||||
OpenVINO | `openvino` | yolov5s_openvino_model/
|
||||
TensorRT | `engine` | yolov5s.engine
|
||||
CoreML | `coreml` | yolov5s.mlmodel
|
||||
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
|
||||
TensorFlow GraphDef | `pb` | yolov5s.pb
|
||||
TensorFlow Lite | `tflite` | yolov5s.tflite
|
||||
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
|
||||
TensorFlow.js | `tfjs` | yolov5s_web_model/
|
||||
|
||||
Requirements:
|
||||
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
|
||||
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
|
||||
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
|
||||
|
||||
Usage:
|
||||
$ python utils/benchmarks.py --weights yolov5s.pt --img 640
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import platform
|
||||
import sys
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import pandas as pd
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[1] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
||||
|
||||
import app.yolov5.export
|
||||
import app.yolov5.val
|
||||
from app.yolov5.utils import notebook_init
|
||||
from app.yolov5.utils.general import LOGGER, check_yaml, file_size, print_args
|
||||
from app.yolov5.utils.torch_utils import select_device
|
||||
|
||||
|
||||
def run(
|
||||
weights=ROOT / 'yolov5s.pt', # weights path
|
||||
imgsz=640, # inference size (pixels)
|
||||
batch_size=1, # batch size
|
||||
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
||||
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
half=False, # use FP16 half-precision inference
|
||||
test=False, # test exports only
|
||||
pt_only=False, # test PyTorch only
|
||||
hard_fail=False, # throw error on benchmark failure
|
||||
):
|
||||
y, t = [], time.time()
|
||||
device = select_device(device)
|
||||
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
|
||||
try:
|
||||
assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
|
||||
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
|
||||
if 'cpu' in device.type:
|
||||
assert cpu, 'inference not supported on CPU'
|
||||
if 'cuda' in device.type:
|
||||
assert gpu, 'inference not supported on GPU'
|
||||
|
||||
# Export
|
||||
if f == '-':
|
||||
w = weights # PyTorch format
|
||||
else:
|
||||
w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others
|
||||
assert suffix in str(w), 'export failed'
|
||||
|
||||
# Validate
|
||||
result = val.run(data, w, batch_size, imgsz, plots=False, device=device, task='benchmark', half=half)
|
||||
metrics = result[0] # metrics (mp, mr, map50, map, *losses(box, obj, cls))
|
||||
speeds = result[2] # times (preprocess, inference, postprocess)
|
||||
y.append([name, round(file_size(w), 1), round(metrics[3], 4), round(speeds[1], 2)]) # MB, mAP, t_inference
|
||||
except Exception as e:
|
||||
if hard_fail:
|
||||
assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
|
||||
LOGGER.warning(f'WARNING: Benchmark failure for {name}: {e}')
|
||||
y.append([name, None, None, None]) # mAP, t_inference
|
||||
if pt_only and i == 0:
|
||||
break # break after PyTorch
|
||||
|
||||
# Print results
|
||||
LOGGER.info('\n')
|
||||
parse_opt()
|
||||
notebook_init() # print system info
|
||||
c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', '']
|
||||
py = pd.DataFrame(y, columns=c)
|
||||
LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
|
||||
LOGGER.info(str(py if map else py.iloc[:, :2]))
|
||||
if hard_fail and isinstance(hard_fail, str):
|
||||
metrics = py['mAP50-95'].array # values to compare to floor
|
||||
floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
|
||||
assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}'
|
||||
return py
|
||||
|
||||
|
||||
def test(
|
||||
weights=ROOT / 'yolov5s.pt', # weights path
|
||||
imgsz=640, # inference size (pixels)
|
||||
batch_size=1, # batch size
|
||||
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
||||
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
half=False, # use FP16 half-precision inference
|
||||
test=False, # test exports only
|
||||
pt_only=False, # test PyTorch only
|
||||
hard_fail=False, # throw error on benchmark failure
|
||||
):
|
||||
y, t = [], time.time()
|
||||
device = select_device(device)
|
||||
for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
|
||||
try:
|
||||
w = weights if f == '-' else \
|
||||
export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights
|
||||
assert suffix in str(w), 'export failed'
|
||||
y.append([name, True])
|
||||
except Exception:
|
||||
y.append([name, False]) # mAP, t_inference
|
||||
|
||||
# Print results
|
||||
LOGGER.info('\n')
|
||||
parse_opt()
|
||||
notebook_init() # print system info
|
||||
py = pd.DataFrame(y, columns=['Format', 'Export'])
|
||||
LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
|
||||
LOGGER.info(str(py))
|
||||
return py
|
||||
|
||||
|
||||
def parse_opt():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
|
||||
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
|
||||
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
||||
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
||||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
||||
parser.add_argument('--test', action='store_true', help='test exports only')
|
||||
parser.add_argument('--pt-only', action='store_true', help='test PyTorch only')
|
||||
parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric')
|
||||
opt = parser.parse_args()
|
||||
opt.data = check_yaml(opt.data) # check YAML
|
||||
print_args(vars(opt))
|
||||
return opt
|
||||
|
||||
|
||||
def main(opt):
|
||||
test(**vars(opt)) if opt.test else run(**vars(opt))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
opt = parse_opt()
|
||||
main(opt)
|
76
app/yolov5/utils/callbacks.py
Normal file
76
app/yolov5/utils/callbacks.py
Normal file
@ -0,0 +1,76 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
Callback utils
|
||||
"""
|
||||
|
||||
import threading
|
||||
|
||||
|
||||
class Callbacks:
|
||||
""""
|
||||
Handles all registered callbacks for YOLOv5 Hooks
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
# Define the available callbacks
|
||||
self._callbacks = {
|
||||
'on_pretrain_routine_start': [],
|
||||
'on_pretrain_routine_end': [],
|
||||
'on_train_start': [],
|
||||
'on_train_epoch_start': [],
|
||||
'on_train_batch_start': [],
|
||||
'optimizer_step': [],
|
||||
'on_before_zero_grad': [],
|
||||
'on_train_batch_end': [],
|
||||
'on_train_epoch_end': [],
|
||||
'on_val_start': [],
|
||||
'on_val_batch_start': [],
|
||||
'on_val_image_end': [],
|
||||
'on_val_batch_end': [],
|
||||
'on_val_end': [],
|
||||
'on_fit_epoch_end': [], # fit = train + val
|
||||
'on_model_save': [],
|
||||
'on_train_end': [],
|
||||
'on_params_update': [],
|
||||
'teardown': [],}
|
||||
self.stop_training = False # set True to interrupt training
|
||||
|
||||
def register_action(self, hook, name='', callback=None):
|
||||
"""
|
||||
Register a new action to a callback hook
|
||||
|
||||
Args:
|
||||
hook: The callback hook name to register the action to
|
||||
name: The name of the action for later reference
|
||||
callback: The callback to fire
|
||||
"""
|
||||
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
||||
assert callable(callback), f"callback '{callback}' is not callable"
|
||||
self._callbacks[hook].append({'name': name, 'callback': callback})
|
||||
|
||||
def get_registered_actions(self, hook=None):
|
||||
""""
|
||||
Returns all the registered actions by callback hook
|
||||
|
||||
Args:
|
||||
hook: The name of the hook to check, defaults to all
|
||||
"""
|
||||
return self._callbacks[hook] if hook else self._callbacks
|
||||
|
||||
def run(self, hook, *args, thread=False, **kwargs):
|
||||
"""
|
||||
Loop through the registered actions and fire all callbacks on main thread
|
||||
|
||||
Args:
|
||||
hook: The name of the hook to check, defaults to all
|
||||
args: Arguments to receive from YOLOv5
|
||||
thread: (boolean) Run callbacks in daemon thread
|
||||
kwargs: Keyword Arguments to receive from YOLOv5
|
||||
"""
|
||||
|
||||
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
||||
for logger in self._callbacks[hook]:
|
||||
if thread:
|
||||
threading.Thread(target=logger['callback'], args=args, kwargs=kwargs, daemon=True).start()
|
||||
else:
|
||||
logger['callback'](*args, **kwargs)
|
1163
app/yolov5/utils/dataloaders.py
Normal file
1163
app/yolov5/utils/dataloaders.py
Normal file
File diff suppressed because it is too large
Load Diff
65
app/yolov5/utils/docker/Dockerfile
Normal file
65
app/yolov5/utils/docker/Dockerfile
Normal file
@ -0,0 +1,65 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
# Builds ultralytics/yolov5:latest image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
|
||||
# Image is CUDA-optimized for YOLOv5 single/multi-GPU training and inference
|
||||
|
||||
# Start FROM NVIDIA PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
|
||||
FROM nvcr.io/nvidia/pytorch:22.07-py3
|
||||
RUN rm -rf /opt/pytorch # remove 1.2GB dir
|
||||
|
||||
# Downloads to user config dir
|
||||
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
|
||||
|
||||
# Install linux packages
|
||||
RUN apt update && apt install --no-install-recommends -y zip htop screen libgl1-mesa-glx
|
||||
|
||||
# Install pip packages
|
||||
COPY requirements.txt .
|
||||
RUN python -m pip install --upgrade pip wheel
|
||||
RUN pip uninstall -y Pillow torchtext torch torchvision
|
||||
RUN pip install --no-cache -r requirements.txt albumentations wandb gsutil notebook Pillow>=9.1.0 \
|
||||
'opencv-python<4.6.0.66' \
|
||||
--extra-index-url https://download.pytorch.org/whl/cu113
|
||||
|
||||
# Create working directory
|
||||
RUN mkdir -p /usr/src/app
|
||||
WORKDIR /usr/src/app
|
||||
|
||||
# Copy contents
|
||||
# COPY . /usr/src/app (issues as not a .git directory)
|
||||
RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app
|
||||
|
||||
# Set environment variables
|
||||
ENV OMP_NUM_THREADS=8
|
||||
|
||||
|
||||
# Usage Examples -------------------------------------------------------------------------------------------------------
|
||||
|
||||
# Build and Push
|
||||
# t=ultralytics/yolov5:latest && sudo docker build -f utils/docker/Dockerfile -t $t . && sudo docker push $t
|
||||
|
||||
# Pull and Run
|
||||
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
|
||||
|
||||
# Pull and Run with local directory access
|
||||
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
|
||||
|
||||
# Kill all
|
||||
# sudo docker kill $(sudo docker ps -q)
|
||||
|
||||
# Kill all image-based
|
||||
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
|
||||
|
||||
# DockerHub tag update
|
||||
# t=ultralytics/yolov5:latest tnew=ultralytics/yolov5:v6.2 && sudo docker pull $t && sudo docker tag $t $tnew && sudo docker push $tnew
|
||||
|
||||
# Clean up
|
||||
# docker system prune -a --volumes
|
||||
|
||||
# Update Ubuntu drivers
|
||||
# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
|
||||
|
||||
# DDP test
|
||||
# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
|
||||
|
||||
# GCP VM from Image
|
||||
# docker.io/ultralytics/yolov5:latest
|
41
app/yolov5/utils/docker/Dockerfile-arm64
Normal file
41
app/yolov5/utils/docker/Dockerfile-arm64
Normal file
@ -0,0 +1,41 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
# Builds ultralytics/yolov5:latest-arm64 image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
|
||||
# Image is aarch64-compatible for Apple M1 and other ARM architectures i.e. Jetson Nano and Raspberry Pi
|
||||
|
||||
# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
|
||||
FROM arm64v8/ubuntu:20.04
|
||||
|
||||
# Downloads to user config dir
|
||||
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
|
||||
|
||||
# Install linux packages
|
||||
RUN apt update
|
||||
RUN DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt install -y tzdata
|
||||
RUN apt install --no-install-recommends -y python3-pip git zip curl htop gcc libgl1-mesa-glx libglib2.0-0 libpython3-dev
|
||||
# RUN alias python=python3
|
||||
|
||||
# Install pip packages
|
||||
COPY requirements.txt .
|
||||
RUN python3 -m pip install --upgrade pip wheel
|
||||
RUN pip install --no-cache -r requirements.txt gsutil notebook \
|
||||
tensorflow-aarch64
|
||||
# tensorflowjs \
|
||||
# onnx onnx-simplifier onnxruntime \
|
||||
# coremltools openvino-dev \
|
||||
|
||||
# Create working directory
|
||||
RUN mkdir -p /usr/src/app
|
||||
WORKDIR /usr/src/app
|
||||
|
||||
# Copy contents
|
||||
# COPY . /usr/src/app (issues as not a .git directory)
|
||||
RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app
|
||||
|
||||
|
||||
# Usage Examples -------------------------------------------------------------------------------------------------------
|
||||
|
||||
# Build and Push
|
||||
# t=ultralytics/yolov5:latest-M1 && sudo docker build --platform linux/arm64 -f utils/docker/Dockerfile-arm64 -t $t . && sudo docker push $t
|
||||
|
||||
# Pull and Run
|
||||
# t=ultralytics/yolov5:latest-M1 && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t
|
40
app/yolov5/utils/docker/Dockerfile-cpu
Normal file
40
app/yolov5/utils/docker/Dockerfile-cpu
Normal file
@ -0,0 +1,40 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
# Builds ultralytics/yolov5:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
|
||||
# Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLOv5 deployments
|
||||
|
||||
# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
|
||||
FROM ubuntu:20.04
|
||||
|
||||
# Downloads to user config dir
|
||||
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
|
||||
|
||||
# Install linux packages
|
||||
RUN apt update
|
||||
RUN DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt install -y tzdata
|
||||
RUN apt install --no-install-recommends -y python3-pip git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3-dev
|
||||
# RUN alias python=python3
|
||||
|
||||
# Install pip packages
|
||||
COPY requirements.txt .
|
||||
RUN python3 -m pip install --upgrade pip wheel
|
||||
RUN pip install --no-cache -r requirements.txt albumentations gsutil notebook \
|
||||
coremltools onnx onnx-simplifier onnxruntime tensorflow-cpu tensorflowjs \
|
||||
# openvino-dev \
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
|
||||
# Create working directory
|
||||
RUN mkdir -p /usr/src/app
|
||||
WORKDIR /usr/src/app
|
||||
|
||||
# Copy contents
|
||||
# COPY . /usr/src/app (issues as not a .git directory)
|
||||
RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app
|
||||
|
||||
|
||||
# Usage Examples -------------------------------------------------------------------------------------------------------
|
||||
|
||||
# Build and Push
|
||||
# t=ultralytics/yolov5:latest-cpu && sudo docker build -f utils/docker/Dockerfile-cpu -t $t . && sudo docker push $t
|
||||
|
||||
# Pull and Run
|
||||
# t=ultralytics/yolov5:latest-cpu && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t
|
192
app/yolov5/utils/downloads.py
Normal file
192
app/yolov5/utils/downloads.py
Normal file
@ -0,0 +1,192 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
Download utils
|
||||
"""
|
||||
|
||||
import logging
|
||||
import os
|
||||
import platform
|
||||
import subprocess
|
||||
import time
|
||||
import urllib
|
||||
from pathlib import Path
|
||||
from zipfile import ZipFile
|
||||
|
||||
import requests
|
||||
import torch
|
||||
|
||||
|
||||
def is_url(url, check_online=True):
|
||||
# Check if online file exists
|
||||
try:
|
||||
url = str(url)
|
||||
result = urllib.parse.urlparse(url)
|
||||
assert all([result.scheme, result.netloc, result.path]) # check if is url
|
||||
return (urllib.request.urlopen(url).getcode() == 200) if check_online else True # check if exists online
|
||||
except (AssertionError, urllib.request.HTTPError):
|
||||
return False
|
||||
|
||||
|
||||
def gsutil_getsize(url=''):
|
||||
# gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
|
||||
s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
|
||||
return eval(s.split(' ')[0]) if len(s) else 0 # bytes
|
||||
|
||||
|
||||
def url_getsize(url='https://ultralytics.com/images/bus.jpg'):
|
||||
# Return downloadable file size in bytes
|
||||
response = requests.head(url, allow_redirects=True)
|
||||
return int(response.headers.get('content-length', -1))
|
||||
|
||||
|
||||
def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
|
||||
# Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
|
||||
from utils.general import LOGGER
|
||||
|
||||
file = Path(file)
|
||||
assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
|
||||
try: # url1
|
||||
LOGGER.info(f'Downloading {url} to {file}...')
|
||||
torch.hub.download_url_to_file(url, str(file), progress=LOGGER.level <= logging.INFO)
|
||||
assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
|
||||
except Exception as e: # url2
|
||||
if file.exists():
|
||||
file.unlink() # remove partial downloads
|
||||
LOGGER.info(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
|
||||
os.system(f"curl -# -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail
|
||||
finally:
|
||||
if not file.exists() or file.stat().st_size < min_bytes: # check
|
||||
if file.exists():
|
||||
file.unlink() # remove partial downloads
|
||||
LOGGER.info(f"ERROR: {assert_msg}\n{error_msg}")
|
||||
LOGGER.info('')
|
||||
|
||||
|
||||
def attempt_download(file, repo='ultralytics/yolov5', release='v6.2'):
|
||||
# Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v6.2', etc.
|
||||
from utils.general import LOGGER
|
||||
|
||||
def github_assets(repository, version='latest'):
|
||||
# Return GitHub repo tag (i.e. 'v6.2') and assets (i.e. ['yolov5s.pt', 'yolov5m.pt', ...])
|
||||
if version != 'latest':
|
||||
version = f'tags/{version}' # i.e. tags/v6.2
|
||||
response = requests.get(f'https://api.github.com/repos/{repository}/releases/{version}').json() # github api
|
||||
return response['tag_name'], [x['name'] for x in response['assets']] # tag, assets
|
||||
|
||||
file = Path(str(file).strip().replace("'", ''))
|
||||
if not file.exists():
|
||||
# URL specified
|
||||
name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
|
||||
if str(file).startswith(('http:/', 'https:/')): # download
|
||||
url = str(file).replace(':/', '://') # Pathlib turns :// -> :/
|
||||
file = name.split('?')[0] # parse authentication https://url.com/file.txt?auth...
|
||||
if Path(file).is_file():
|
||||
LOGGER.info(f'Found {url} locally at {file}') # file already exists
|
||||
else:
|
||||
safe_download(file=file, url=url, min_bytes=1E5)
|
||||
return file
|
||||
|
||||
# GitHub assets
|
||||
assets = [
|
||||
'yolov5n.pt', 'yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov5n6.pt', 'yolov5s6.pt',
|
||||
'yolov5m6.pt', 'yolov5l6.pt', 'yolov5x6.pt']
|
||||
try:
|
||||
tag, assets = github_assets(repo, release)
|
||||
except Exception:
|
||||
try:
|
||||
tag, assets = github_assets(repo) # latest release
|
||||
except Exception:
|
||||
try:
|
||||
tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
|
||||
except Exception:
|
||||
tag = release
|
||||
|
||||
file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
|
||||
if name in assets:
|
||||
url3 = 'https://drive.google.com/drive/folders/1EFQTEUeXWSFww0luse2jB9M1QNZQGwNl' # backup gdrive mirror
|
||||
safe_download(
|
||||
file,
|
||||
url=f'https://github.com/{repo}/releases/download/{tag}/{name}',
|
||||
url2=f'https://storage.googleapis.com/{repo}/{tag}/{name}', # backup url (optional)
|
||||
min_bytes=1E5,
|
||||
error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/{tag} or {url3}')
|
||||
|
||||
return str(file)
|
||||
|
||||
|
||||
def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
|
||||
# Downloads a file from Google Drive. from yolov5.utils.downloads import *; gdrive_download()
|
||||
t = time.time()
|
||||
file = Path(file)
|
||||
cookie = Path('cookie') # gdrive cookie
|
||||
print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
|
||||
if file.exists():
|
||||
file.unlink() # remove existing file
|
||||
if cookie.exists():
|
||||
cookie.unlink() # remove existing cookie
|
||||
|
||||
# Attempt file download
|
||||
out = "NUL" if platform.system() == "Windows" else "/dev/null"
|
||||
os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
|
||||
if os.path.exists('cookie'): # large file
|
||||
s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
|
||||
else: # small file
|
||||
s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
|
||||
r = os.system(s) # execute, capture return
|
||||
if cookie.exists():
|
||||
cookie.unlink() # remove existing cookie
|
||||
|
||||
# Error check
|
||||
if r != 0:
|
||||
if file.exists():
|
||||
file.unlink() # remove partial
|
||||
print('Download error ') # raise Exception('Download error')
|
||||
return r
|
||||
|
||||
# Unzip if archive
|
||||
if file.suffix == '.zip':
|
||||
print('unzipping... ', end='')
|
||||
ZipFile(file).extractall(path=file.parent) # unzip
|
||||
file.unlink() # remove zip
|
||||
|
||||
print(f'Done ({time.time() - t:.1f}s)')
|
||||
return r
|
||||
|
||||
|
||||
def get_token(cookie="./cookie"):
|
||||
with open(cookie) as f:
|
||||
for line in f:
|
||||
if "download" in line:
|
||||
return line.split()[-1]
|
||||
return ""
|
||||
|
||||
|
||||
# Google utils: https://cloud.google.com/storage/docs/reference/libraries ----------------------------------------------
|
||||
#
|
||||
#
|
||||
# def upload_blob(bucket_name, source_file_name, destination_blob_name):
|
||||
# # Uploads a file to a bucket
|
||||
# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
|
||||
#
|
||||
# storage_client = storage.Client()
|
||||
# bucket = storage_client.get_bucket(bucket_name)
|
||||
# blob = bucket.blob(destination_blob_name)
|
||||
#
|
||||
# blob.upload_from_filename(source_file_name)
|
||||
#
|
||||
# print('File {} uploaded to {}.'.format(
|
||||
# source_file_name,
|
||||
# destination_blob_name))
|
||||
#
|
||||
#
|
||||
# def download_blob(bucket_name, source_blob_name, destination_file_name):
|
||||
# # Uploads a blob from a bucket
|
||||
# storage_client = storage.Client()
|
||||
# bucket = storage_client.get_bucket(bucket_name)
|
||||
# blob = bucket.blob(source_blob_name)
|
||||
#
|
||||
# blob.download_to_filename(destination_file_name)
|
||||
#
|
||||
# print('Blob {} downloaded to {}.'.format(
|
||||
# source_blob_name,
|
||||
# destination_file_name))
|
73
app/yolov5/utils/flask_rest_api/README.md
Normal file
73
app/yolov5/utils/flask_rest_api/README.md
Normal file
@ -0,0 +1,73 @@
|
||||
# Flask REST API
|
||||
|
||||
[REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are
|
||||
commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API
|
||||
created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/).
|
||||
|
||||
## Requirements
|
||||
|
||||
[Flask](https://palletsprojects.com/p/flask/) is required. Install with:
|
||||
|
||||
```shell
|
||||
$ pip install Flask
|
||||
```
|
||||
|
||||
## Run
|
||||
|
||||
After Flask installation run:
|
||||
|
||||
```shell
|
||||
$ python3 restapi.py --port 5000
|
||||
```
|
||||
|
||||
Then use [curl](https://curl.se/) to perform a request:
|
||||
|
||||
```shell
|
||||
$ curl -X POST -F image=@zidane.jpg 'http://localhost:5000/v1/object-detection/yolov5s'
|
||||
```
|
||||
|
||||
The model inference results are returned as a JSON response:
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"class": 0,
|
||||
"confidence": 0.8900438547,
|
||||
"height": 0.9318675399,
|
||||
"name": "person",
|
||||
"width": 0.3264600933,
|
||||
"xcenter": 0.7438579798,
|
||||
"ycenter": 0.5207948685
|
||||
},
|
||||
{
|
||||
"class": 0,
|
||||
"confidence": 0.8440024257,
|
||||
"height": 0.7155083418,
|
||||
"name": "person",
|
||||
"width": 0.6546785235,
|
||||
"xcenter": 0.427829951,
|
||||
"ycenter": 0.6334488392
|
||||
},
|
||||
{
|
||||
"class": 27,
|
||||
"confidence": 0.3771208823,
|
||||
"height": 0.3902671337,
|
||||
"name": "tie",
|
||||
"width": 0.0696444362,
|
||||
"xcenter": 0.3675483763,
|
||||
"ycenter": 0.7991207838
|
||||
},
|
||||
{
|
||||
"class": 27,
|
||||
"confidence": 0.3527112305,
|
||||
"height": 0.1540903747,
|
||||
"name": "tie",
|
||||
"width": 0.0336618312,
|
||||
"xcenter": 0.7814827561,
|
||||
"ycenter": 0.5065554976
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given
|
||||
in `example_request.py`
|
19
app/yolov5/utils/flask_rest_api/example_request.py
Normal file
19
app/yolov5/utils/flask_rest_api/example_request.py
Normal file
@ -0,0 +1,19 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
Perform test request
|
||||
"""
|
||||
|
||||
import pprint
|
||||
|
||||
import requests
|
||||
|
||||
DETECTION_URL = "http://localhost:5000/v1/object-detection/yolov5s"
|
||||
IMAGE = "zidane.jpg"
|
||||
|
||||
# Read image
|
||||
with open(IMAGE, "rb") as f:
|
||||
image_data = f.read()
|
||||
|
||||
response = requests.post(DETECTION_URL, files={"image": image_data}).json()
|
||||
|
||||
pprint.pprint(response)
|
48
app/yolov5/utils/flask_rest_api/restapi.py
Normal file
48
app/yolov5/utils/flask_rest_api/restapi.py
Normal file
@ -0,0 +1,48 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
Run a Flask REST API exposing one or more YOLOv5s models
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import io
|
||||
|
||||
import torch
|
||||
from flask import Flask, request
|
||||
from PIL import Image
|
||||
|
||||
app = Flask(__name__)
|
||||
models = {}
|
||||
|
||||
DETECTION_URL = "/v1/object-detection/<model>"
|
||||
|
||||
|
||||
@app.route(DETECTION_URL, methods=["POST"])
|
||||
def predict(model):
|
||||
if request.method != "POST":
|
||||
return
|
||||
|
||||
if request.files.get("image"):
|
||||
# Method 1
|
||||
# with request.files["image"] as f:
|
||||
# im = Image.open(io.BytesIO(f.read()))
|
||||
|
||||
# Method 2
|
||||
im_file = request.files["image"]
|
||||
im_bytes = im_file.read()
|
||||
im = Image.open(io.BytesIO(im_bytes))
|
||||
|
||||
if model in models:
|
||||
results = models[model](im, size=640) # reduce size=320 for faster inference
|
||||
return results.pandas().xyxy[0].to_json(orient="records")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model")
|
||||
parser.add_argument("--port", default=5000, type=int, help="port number")
|
||||
parser.add_argument('--model', nargs='+', default=['yolov5s'], help='model(s) to run, i.e. --model yolov5n yolov5s')
|
||||
opt = parser.parse_args()
|
||||
|
||||
for m in opt.model:
|
||||
models[m] = torch.hub.load("ultralytics/yolov5", m, force_reload=True, skip_validation=True)
|
||||
|
||||
app.run(host="0.0.0.0", port=opt.port) # debug=True causes Restarting with stat
|
1046
app/yolov5/utils/general.py
Normal file
1046
app/yolov5/utils/general.py
Normal file
File diff suppressed because it is too large
Load Diff
25
app/yolov5/utils/google_app_engine/Dockerfile
Normal file
25
app/yolov5/utils/google_app_engine/Dockerfile
Normal file
@ -0,0 +1,25 @@
|
||||
FROM gcr.io/google-appengine/python
|
||||
|
||||
# Create a virtualenv for dependencies. This isolates these packages from
|
||||
# system-level packages.
|
||||
# Use -p python3 or -p python3.7 to select python version. Default is version 2.
|
||||
RUN virtualenv /env -p python3
|
||||
|
||||
# Setting these environment variables are the same as running
|
||||
# source /env/bin/activate.
|
||||
ENV VIRTUAL_ENV /env
|
||||
ENV PATH /env/bin:$PATH
|
||||
|
||||
RUN apt-get update && apt-get install -y python-opencv
|
||||
|
||||
# Copy the application's requirements.txt and run pip to install all
|
||||
# dependencies into the virtualenv.
|
||||
ADD requirements.txt /app/requirements.txt
|
||||
RUN pip install -r /app/requirements.txt
|
||||
|
||||
# Add the application source code.
|
||||
ADD . /app
|
||||
|
||||
# Run a WSGI server to serve the application. gunicorn must be declared as
|
||||
# a dependency in requirements.txt.
|
||||
CMD gunicorn -b :$PORT main:app
|
@ -0,0 +1,4 @@
|
||||
# add these requirements in your app on top of the existing ones
|
||||
pip==21.1
|
||||
Flask==1.0.2
|
||||
gunicorn==19.9.0
|
14
app/yolov5/utils/google_app_engine/app.yaml
Normal file
14
app/yolov5/utils/google_app_engine/app.yaml
Normal file
@ -0,0 +1,14 @@
|
||||
runtime: custom
|
||||
env: flex
|
||||
|
||||
service: yolov5app
|
||||
|
||||
liveness_check:
|
||||
initial_delay_sec: 600
|
||||
|
||||
manual_scaling:
|
||||
instances: 1
|
||||
resources:
|
||||
cpu: 1
|
||||
memory_gb: 4
|
||||
disk_size_gb: 20
|
339
app/yolov5/utils/loggers/__init__.py
Normal file
339
app/yolov5/utils/loggers/__init__.py
Normal file
@ -0,0 +1,339 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
Logging utils
|
||||
"""
|
||||
|
||||
import os
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
import pkg_resources as pkg
|
||||
import torch
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from app.yolov5.utils.general import colorstr, cv2
|
||||
from app.yolov5.utils.loggers.clearml.clearml_utils import ClearmlLogger
|
||||
from app.yolov5.utils.loggers.wandb.wandb_utils import WandbLogger
|
||||
from app.yolov5.utils.plots import plot_images, plot_labels, plot_results
|
||||
from app.yolov5.utils.torch_utils import de_parallel
|
||||
|
||||
LOGGERS = ('csv', 'tb', 'wandb', 'clearml') # *.csv, TensorBoard, Weights & Biases, ClearML
|
||||
RANK = int(os.getenv('RANK', -1))
|
||||
|
||||
try:
|
||||
import wandb
|
||||
|
||||
assert hasattr(wandb, '__version__') # verify package import not local dir
|
||||
if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in {0, -1}:
|
||||
try:
|
||||
wandb_login_success = wandb.login(timeout=30)
|
||||
except wandb.errors.UsageError: # known non-TTY terminal issue
|
||||
wandb_login_success = False
|
||||
if not wandb_login_success:
|
||||
wandb = None
|
||||
except (ImportError, AssertionError):
|
||||
wandb = None
|
||||
|
||||
try:
|
||||
import clearml
|
||||
|
||||
assert hasattr(clearml, '__version__') # verify package import not local dir
|
||||
except (ImportError, AssertionError):
|
||||
clearml = None
|
||||
|
||||
|
||||
class Loggers():
|
||||
# YOLOv5 Loggers class
|
||||
def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
|
||||
self.save_dir = save_dir
|
||||
self.weights = weights
|
||||
self.opt = opt
|
||||
self.hyp = hyp
|
||||
self.plots = not opt.noplots # plot results
|
||||
self.logger = logger # for printing results to console
|
||||
self.include = include
|
||||
self.keys = [
|
||||
'train/box_loss',
|
||||
'train/obj_loss',
|
||||
'train/cls_loss', # train loss
|
||||
'metrics/precision',
|
||||
'metrics/recall',
|
||||
'metrics/mAP_0.5',
|
||||
'metrics/mAP_0.5:0.95', # metrics
|
||||
'val/box_loss',
|
||||
'val/obj_loss',
|
||||
'val/cls_loss', # val loss
|
||||
'x/lr0',
|
||||
'x/lr1',
|
||||
'x/lr2'] # params
|
||||
self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95']
|
||||
for k in LOGGERS:
|
||||
setattr(self, k, None) # init empty logger dictionary
|
||||
self.csv = True # always log to csv
|
||||
|
||||
# Messages
|
||||
if not wandb:
|
||||
prefix = colorstr('Weights & Biases: ')
|
||||
s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs in Weights & Biases"
|
||||
self.logger.info(s)
|
||||
if not clearml:
|
||||
prefix = colorstr('ClearML: ')
|
||||
s = f"{prefix}run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML"
|
||||
self.logger.info(s)
|
||||
|
||||
# TensorBoard
|
||||
s = self.save_dir
|
||||
if 'tb' in self.include and not self.opt.evolve:
|
||||
prefix = colorstr('TensorBoard: ')
|
||||
self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
|
||||
self.tb = SummaryWriter(str(s))
|
||||
|
||||
# W&B
|
||||
if wandb and 'wandb' in self.include:
|
||||
wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://')
|
||||
run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None
|
||||
self.opt.hyp = self.hyp # add hyperparameters
|
||||
self.wandb = WandbLogger(self.opt, run_id)
|
||||
# temp warn. because nested artifacts not supported after 0.12.10
|
||||
if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.11'):
|
||||
s = "YOLOv5 temporarily requires wandb version 0.12.10 or below. Some features may not work as expected."
|
||||
self.logger.warning(s)
|
||||
else:
|
||||
self.wandb = None
|
||||
|
||||
# ClearML
|
||||
if clearml and 'clearml' in self.include:
|
||||
self.clearml = ClearmlLogger(self.opt, self.hyp)
|
||||
else:
|
||||
self.clearml = None
|
||||
|
||||
@property
|
||||
def remote_dataset(self):
|
||||
# Get data_dict if custom dataset artifact link is provided
|
||||
data_dict = None
|
||||
if self.clearml:
|
||||
data_dict = self.clearml.data_dict
|
||||
if self.wandb:
|
||||
data_dict = self.wandb.data_dict
|
||||
|
||||
return data_dict
|
||||
|
||||
def on_train_start(self):
|
||||
# Callback runs on train start
|
||||
pass
|
||||
|
||||
def on_pretrain_routine_end(self, labels, names):
|
||||
# Callback runs on pre-train routine end
|
||||
if self.plots:
|
||||
plot_labels(labels, names, self.save_dir)
|
||||
paths = self.save_dir.glob('*labels*.jpg') # training labels
|
||||
if self.wandb:
|
||||
self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
|
||||
# if self.clearml:
|
||||
# pass # ClearML saves these images automatically using hooks
|
||||
|
||||
def on_train_batch_end(self, model, ni, imgs, targets, paths):
|
||||
# Callback runs on train batch end
|
||||
# ni: number integrated batches (since train start)
|
||||
if self.plots:
|
||||
if ni < 3:
|
||||
f = self.save_dir / f'train_batch{ni}.jpg' # filename
|
||||
plot_images(imgs, targets, paths, f)
|
||||
if ni == 0 and self.tb and not self.opt.sync_bn:
|
||||
log_tensorboard_graph(self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz))
|
||||
if ni == 10 and (self.wandb or self.clearml):
|
||||
files = sorted(self.save_dir.glob('train*.jpg'))
|
||||
if self.wandb:
|
||||
self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
|
||||
if self.clearml:
|
||||
self.clearml.log_debug_samples(files, title='Mosaics')
|
||||
|
||||
def on_train_epoch_end(self, epoch):
|
||||
# Callback runs on train epoch end
|
||||
if self.wandb:
|
||||
self.wandb.current_epoch = epoch + 1
|
||||
|
||||
def on_val_image_end(self, pred, predn, path, names, im):
|
||||
# Callback runs on val image end
|
||||
if self.wandb:
|
||||
self.wandb.val_one_image(pred, predn, path, names, im)
|
||||
if self.clearml:
|
||||
self.clearml.log_image_with_boxes(path, pred, names, im)
|
||||
|
||||
def on_val_end(self):
|
||||
# Callback runs on val end
|
||||
if self.wandb or self.clearml:
|
||||
files = sorted(self.save_dir.glob('val*.jpg'))
|
||||
if self.wandb:
|
||||
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
|
||||
if self.clearml:
|
||||
self.clearml.log_debug_samples(files, title='Validation')
|
||||
|
||||
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
|
||||
# Callback runs at the end of each fit (train+val) epoch
|
||||
x = dict(zip(self.keys, vals))
|
||||
if self.csv:
|
||||
file = self.save_dir / 'results.csv'
|
||||
n = len(x) + 1 # number of cols
|
||||
s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n') # add header
|
||||
with open(file, 'a') as f:
|
||||
f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
|
||||
|
||||
if self.tb:
|
||||
for k, v in x.items():
|
||||
self.tb.add_scalar(k, v, epoch)
|
||||
elif self.clearml: # log to ClearML if TensorBoard not used
|
||||
for k, v in x.items():
|
||||
title, series = k.split('/')
|
||||
self.clearml.task.get_logger().report_scalar(title, series, v, epoch)
|
||||
|
||||
if self.wandb:
|
||||
if best_fitness == fi:
|
||||
best_results = [epoch] + vals[3:7]
|
||||
for i, name in enumerate(self.best_keys):
|
||||
self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary
|
||||
self.wandb.log(x)
|
||||
self.wandb.end_epoch(best_result=best_fitness == fi)
|
||||
|
||||
if self.clearml:
|
||||
self.clearml.current_epoch_logged_images = set() # reset epoch image limit
|
||||
self.clearml.current_epoch += 1
|
||||
|
||||
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
|
||||
# Callback runs on model save event
|
||||
if (epoch + 1) % self.opt.save_period == 0 and not final_epoch and self.opt.save_period != -1:
|
||||
if self.wandb:
|
||||
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
|
||||
if self.clearml:
|
||||
self.clearml.task.update_output_model(model_path=str(last),
|
||||
model_name='Latest Model',
|
||||
auto_delete_file=False)
|
||||
|
||||
def on_train_end(self, last, best, epoch, results):
|
||||
# Callback runs on training end, i.e. saving best model
|
||||
if self.plots:
|
||||
plot_results(file=self.save_dir / 'results.csv') # save results.png
|
||||
files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
|
||||
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
|
||||
self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")
|
||||
|
||||
if self.tb and not self.clearml: # These images are already captured by ClearML by now, we don't want doubles
|
||||
for f in files:
|
||||
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
|
||||
|
||||
if self.wandb:
|
||||
self.wandb.log(dict(zip(self.keys[3:10], results)))
|
||||
self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
|
||||
# Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
|
||||
if not self.opt.evolve:
|
||||
wandb.log_artifact(str(best if best.exists() else last),
|
||||
type='model',
|
||||
name=f'run_{self.wandb.wandb_run.id}_model',
|
||||
aliases=['latest', 'best', 'stripped'])
|
||||
self.wandb.finish_run()
|
||||
|
||||
if self.clearml and not self.opt.evolve:
|
||||
self.clearml.task.update_output_model(model_path=str(best if best.exists() else last),
|
||||
name='Best Model',
|
||||
auto_delete_file=False)
|
||||
|
||||
def on_params_update(self, params: dict):
|
||||
# Update hyperparams or configs of the experiment
|
||||
if self.wandb:
|
||||
self.wandb.wandb_run.config.update(params, allow_val_change=True)
|
||||
|
||||
|
||||
class GenericLogger:
|
||||
"""
|
||||
YOLOv5 General purpose logger for non-task specific logging
|
||||
Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...)
|
||||
Arguments
|
||||
opt: Run arguments
|
||||
console_logger: Console logger
|
||||
include: loggers to include
|
||||
"""
|
||||
|
||||
def __init__(self, opt, console_logger, include=('tb', 'wandb')):
|
||||
# init default loggers
|
||||
self.save_dir = Path(opt.save_dir)
|
||||
self.include = include
|
||||
self.console_logger = console_logger
|
||||
self.csv = self.save_dir / 'results.csv' # CSV logger
|
||||
if 'tb' in self.include:
|
||||
prefix = colorstr('TensorBoard: ')
|
||||
self.console_logger.info(
|
||||
f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/")
|
||||
self.tb = SummaryWriter(str(self.save_dir))
|
||||
|
||||
if wandb and 'wandb' in self.include:
|
||||
self.wandb = wandb.init(project=web_project_name(str(opt.project)),
|
||||
name=None if opt.name == "exp" else opt.name,
|
||||
config=opt)
|
||||
else:
|
||||
self.wandb = None
|
||||
|
||||
def log_metrics(self, metrics, epoch):
|
||||
# Log metrics dictionary to all loggers
|
||||
if self.csv:
|
||||
keys, vals = list(metrics.keys()), list(metrics.values())
|
||||
n = len(metrics) + 1 # number of cols
|
||||
s = '' if self.csv.exists() else (('%23s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # header
|
||||
with open(self.csv, 'a') as f:
|
||||
f.write(s + ('%23.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
|
||||
|
||||
if self.tb:
|
||||
for k, v in metrics.items():
|
||||
self.tb.add_scalar(k, v, epoch)
|
||||
|
||||
if self.wandb:
|
||||
self.wandb.log(metrics, step=epoch)
|
||||
|
||||
def log_images(self, files, name='Images', epoch=0):
|
||||
# Log images to all loggers
|
||||
files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])] # to Path
|
||||
files = [f for f in files if f.exists()] # filter by exists
|
||||
|
||||
if self.tb:
|
||||
for f in files:
|
||||
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
|
||||
|
||||
if self.wandb:
|
||||
self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch)
|
||||
|
||||
def log_graph(self, model, imgsz=(640, 640)):
|
||||
# Log model graph to all loggers
|
||||
if self.tb:
|
||||
log_tensorboard_graph(self.tb, model, imgsz)
|
||||
|
||||
def log_model(self, model_path, epoch=0, metadata={}):
|
||||
# Log model to all loggers
|
||||
if self.wandb:
|
||||
art = wandb.Artifact(name=f"run_{wandb.run.id}_model", type="model", metadata=metadata)
|
||||
art.add_file(str(model_path))
|
||||
wandb.log_artifact(art)
|
||||
|
||||
def update_params(self, params):
|
||||
# Update the paramters logged
|
||||
if self.wandb:
|
||||
wandb.run.config.update(params, allow_val_change=True)
|
||||
|
||||
|
||||
def log_tensorboard_graph(tb, model, imgsz=(640, 640)):
|
||||
# Log model graph to TensorBoard
|
||||
try:
|
||||
p = next(model.parameters()) # for device, type
|
||||
imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz # expand
|
||||
im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p) # input image (WARNING: must be zeros, not empty)
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter('ignore') # suppress jit trace warning
|
||||
tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), [])
|
||||
except Exception as e:
|
||||
print(f'WARNING: TensorBoard graph visualization failure {e}')
|
||||
|
||||
|
||||
def web_project_name(project):
|
||||
# Convert local project name to web project name
|
||||
if not project.startswith('runs/train'):
|
||||
return project
|
||||
suffix = '-Classify' if project.endswith('-cls') else '-Segment' if project.endswith('-seg') else ''
|
||||
return f'YOLOv5{suffix}'
|
222
app/yolov5/utils/loggers/clearml/README.md
Normal file
222
app/yolov5/utils/loggers/clearml/README.md
Normal file
@ -0,0 +1,222 @@
|
||||
# ClearML Integration
|
||||
|
||||
<img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_dark.png#gh-light-mode-only" alt="Clear|ML"><img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_light.png#gh-dark-mode-only" alt="Clear|ML">
|
||||
|
||||
## About ClearML
|
||||
|
||||
[ClearML](https://cutt.ly/yolov5-tutorial-clearml) is an [open-source](https://github.com/allegroai/clearml) toolbox designed to save you time ⏱️.
|
||||
|
||||
🔨 Track every YOLOv5 training run in the <b>experiment manager</b>
|
||||
|
||||
🔧 Version and easily access your custom training data with the integrated ClearML <b>Data Versioning Tool</b>
|
||||
|
||||
🔦 <b>Remotely train and monitor</b> your YOLOv5 training runs using ClearML Agent
|
||||
|
||||
🔬 Get the very best mAP using ClearML <b>Hyperparameter Optimization</b>
|
||||
|
||||
🔭 Turn your newly trained <b>YOLOv5 model into an API</b> with just a few commands using ClearML Serving
|
||||
|
||||
<br />
|
||||
And so much more. It's up to you how many of these tools you want to use, you can stick to the experiment manager, or chain them all together into an impressive pipeline!
|
||||
<br />
|
||||
<br />
|
||||
|
||||

|
||||
|
||||
|
||||
<br />
|
||||
<br />
|
||||
|
||||
## 🦾 Setting Things Up
|
||||
|
||||
To keep track of your experiments and/or data, ClearML needs to communicate to a server. You have 2 options to get one:
|
||||
|
||||
Either sign up for free to the [ClearML Hosted Service](https://cutt.ly/yolov5-tutorial-clearml) or you can set up your own server, see [here](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server). Even the server is open-source, so even if you're dealing with sensitive data, you should be good to go!
|
||||
|
||||
1. Install the `clearml` python package:
|
||||
|
||||
```bash
|
||||
pip install clearml
|
||||
```
|
||||
|
||||
1. Connect the ClearML SDK to the server by [creating credentials](https://app.clear.ml/settings/workspace-configuration) (go right top to Settings -> Workspace -> Create new credentials), then execute the command below and follow the instructions:
|
||||
|
||||
```bash
|
||||
clearml-init
|
||||
```
|
||||
|
||||
That's it! You're done 😎
|
||||
|
||||
<br />
|
||||
|
||||
## 🚀 Training YOLOv5 With ClearML
|
||||
|
||||
To enable ClearML experiment tracking, simply install the ClearML pip package.
|
||||
|
||||
```bash
|
||||
pip install clearml
|
||||
```
|
||||
|
||||
This will enable integration with the YOLOv5 training script. Every training run from now on, will be captured and stored by the ClearML experiment manager. If you want to change the `project_name` or `task_name`, head over to our custom logger, where you can change it: `utils/loggers/clearml/clearml_utils.py`
|
||||
|
||||
```bash
|
||||
python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache
|
||||
```
|
||||
|
||||
This will capture:
|
||||
- Source code + uncommitted changes
|
||||
- Installed packages
|
||||
- (Hyper)parameters
|
||||
- Model files (use `--save-period n` to save a checkpoint every n epochs)
|
||||
- Console output
|
||||
- Scalars (mAP_0.5, mAP_0.5:0.95, precision, recall, losses, learning rates, ...)
|
||||
- General info such as machine details, runtime, creation date etc.
|
||||
- All produced plots such as label correlogram and confusion matrix
|
||||
- Images with bounding boxes per epoch
|
||||
- Mosaic per epoch
|
||||
- Validation images per epoch
|
||||
- ...
|
||||
|
||||
That's a lot right? 🤯
|
||||
Now, we can visualize all of this information in the ClearML UI to get an overview of our training progress. Add custom columns to the table view (such as e.g. mAP_0.5) so you can easily sort on the best performing model. Or select multiple experiments and directly compare them!
|
||||
|
||||
There even more we can do with all of this information, like hyperparameter optimization and remote execution, so keep reading if you want to see how that works!
|
||||
|
||||
<br />
|
||||
|
||||
## 🔗 Dataset Version Management
|
||||
|
||||
Versioning your data separately from your code is generally a good idea and makes it easy to aqcuire the latest version too. This repository supports supplying a dataset version ID and it will make sure to get the data if it's not there yet. Next to that, this workflow also saves the used dataset ID as part of the task parameters, so you will always know for sure which data was used in which experiment!
|
||||
|
||||

|
||||
|
||||
### Prepare Your Dataset
|
||||
|
||||
The YOLOv5 repository supports a number of different datasets by using yaml files containing their information. By default datasets are downloaded to the `../datasets` folder in relation to the repository root folder. So if you downloaded the `coco128` dataset using the link in the yaml or with the scripts provided by yolov5, you get this folder structure:
|
||||
|
||||
```
|
||||
..
|
||||
|_ yolov5
|
||||
|_ datasets
|
||||
|_ coco128
|
||||
|_ images
|
||||
|_ labels
|
||||
|_ LICENSE
|
||||
|_ README.txt
|
||||
```
|
||||
But this can be any dataset you wish. Feel free to use your own, as long as you keep to this folder structure.
|
||||
|
||||
Next, ⚠️**copy the corresponding yaml file to the root of the dataset folder**⚠️. This yaml files contains the information ClearML will need to properly use the dataset. You can make this yourself too, of course, just follow the structure of the example yamls.
|
||||
|
||||
Basically we need the following keys: `path`, `train`, `test`, `val`, `nc`, `names`.
|
||||
|
||||
```
|
||||
..
|
||||
|_ yolov5
|
||||
|_ datasets
|
||||
|_ coco128
|
||||
|_ images
|
||||
|_ labels
|
||||
|_ coco128.yaml # <---- HERE!
|
||||
|_ LICENSE
|
||||
|_ README.txt
|
||||
```
|
||||
|
||||
### Upload Your Dataset
|
||||
|
||||
To get this dataset into ClearML as a versionned dataset, go to the dataset root folder and run the following command:
|
||||
```bash
|
||||
cd coco128
|
||||
clearml-data sync --project YOLOv5 --name coco128 --folder .
|
||||
```
|
||||
|
||||
The command `clearml-data sync` is actually a shorthand command. You could also run these commands one after the other:
|
||||
```bash
|
||||
# Optionally add --parent <parent_dataset_id> if you want to base
|
||||
# this version on another dataset version, so no duplicate files are uploaded!
|
||||
clearml-data create --name coco128 --project YOLOv5
|
||||
clearml-data add --files .
|
||||
clearml-data close
|
||||
```
|
||||
|
||||
### Run Training Using A ClearML Dataset
|
||||
|
||||
Now that you have a ClearML dataset, you can very simply use it to train custom YOLOv5 🚀 models!
|
||||
|
||||
```bash
|
||||
python train.py --img 640 --batch 16 --epochs 3 --data clearml://<your_dataset_id> --weights yolov5s.pt --cache
|
||||
```
|
||||
|
||||
<br />
|
||||
|
||||
## 👀 Hyperparameter Optimization
|
||||
|
||||
Now that we have our experiments and data versioned, it's time to take a look at what we can build on top!
|
||||
|
||||
Using the code information, installed packages and environment details, the experiment itself is now **completely reproducible**. In fact, ClearML allows you to clone an experiment and even change its parameters. We can then just rerun it with these new parameters automatically, this is basically what HPO does!
|
||||
|
||||
To **run hyperparameter optimization locally**, we've included a pre-made script for you. Just make sure a training task has been run at least once, so it is in the ClearML experiment manager, we will essentially clone it and change its hyperparameters.
|
||||
|
||||
You'll need to fill in the ID of this `template task` in the script found at `utils/loggers/clearml/hpo.py` and then just run it :) You can change `task.execute_locally()` to `task.execute()` to put it in a ClearML queue and have a remote agent work on it instead.
|
||||
|
||||
```bash
|
||||
# To use optuna, install it first, otherwise you can change the optimizer to just be RandomSearch
|
||||
pip install optuna
|
||||
python utils/loggers/clearml/hpo.py
|
||||
```
|
||||
|
||||

|
||||
|
||||
## 🤯 Remote Execution (advanced)
|
||||
|
||||
Running HPO locally is really handy, but what if we want to run our experiments on a remote machine instead? Maybe you have access to a very powerful GPU machine on-site or you have some budget to use cloud GPUs.
|
||||
This is where the ClearML Agent comes into play. Check out what the agent can do here:
|
||||
|
||||
- [YouTube video](https://youtu.be/MX3BrXnaULs)
|
||||
- [Documentation](https://clear.ml/docs/latest/docs/clearml_agent)
|
||||
|
||||
In short: every experiment tracked by the experiment manager contains enough information to reproduce it on a different machine (installed packages, uncommitted changes etc.). So a ClearML agent does just that: it listens to a queue for incoming tasks and when it finds one, it recreates the environment and runs it while still reporting scalars, plots etc. to the experiment manager.
|
||||
|
||||
You can turn any machine (a cloud VM, a local GPU machine, your own laptop ... ) into a ClearML agent by simply running:
|
||||
```bash
|
||||
clearml-agent daemon --queue <queues_to_listen_to> [--docker]
|
||||
```
|
||||
|
||||
### Cloning, Editing And Enqueuing
|
||||
|
||||
With our agent running, we can give it some work. Remember from the HPO section that we can clone a task and edit the hyperparameters? We can do that from the interface too!
|
||||
|
||||
🪄 Clone the experiment by right clicking it
|
||||
|
||||
🎯 Edit the hyperparameters to what you wish them to be
|
||||
|
||||
⏳ Enqueue the task to any of the queues by right clicking it
|
||||
|
||||

|
||||
|
||||
### Executing A Task Remotely
|
||||
|
||||
Now you can clone a task like we explained above, or simply mark your current script by adding `task.execute_remotely()` and on execution it will be put into a queue, for the agent to start working on!
|
||||
|
||||
To run the YOLOv5 training script remotely, all you have to do is add this line to the training.py script after the clearml logger has been instatiated:
|
||||
```python
|
||||
# ...
|
||||
# Loggers
|
||||
data_dict = None
|
||||
if RANK in {-1, 0}:
|
||||
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
|
||||
if loggers.clearml:
|
||||
loggers.clearml.task.execute_remotely(queue='my_queue') # <------ ADD THIS LINE
|
||||
# Data_dict is either None is user did not choose for ClearML dataset or is filled in by ClearML
|
||||
data_dict = loggers.clearml.data_dict
|
||||
# ...
|
||||
```
|
||||
When running the training script after this change, python will run the script up until that line, after which it will package the code and send it to the queue instead!
|
||||
|
||||
### Autoscaling workers
|
||||
|
||||
ClearML comes with autoscalers too! This tool will automatically spin up new remote machines in the cloud of your choice (AWS, GCP, Azure) and turn them into ClearML agents for you whenever there are experiments detected in the queue. Once the tasks are processed, the autoscaler will automatically shut down the remote machines and you stop paying!
|
||||
|
||||
Check out the autoscalers getting started video below.
|
||||
|
||||
[](https://youtu.be/j4XVMAaUt3E)
|
0
app/yolov5/utils/loggers/clearml/__init__.py
Normal file
0
app/yolov5/utils/loggers/clearml/__init__.py
Normal file
156
app/yolov5/utils/loggers/clearml/clearml_utils.py
Normal file
156
app/yolov5/utils/loggers/clearml/clearml_utils.py
Normal file
@ -0,0 +1,156 @@
|
||||
"""Main Logger class for ClearML experiment tracking."""
|
||||
import glob
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import yaml
|
||||
|
||||
from app.yolov5.utils.plots import Annotator, colors
|
||||
|
||||
try:
|
||||
import clearml
|
||||
from clearml import Dataset, Task
|
||||
assert hasattr(clearml, '__version__') # verify package import not local dir
|
||||
except (ImportError, AssertionError):
|
||||
clearml = None
|
||||
|
||||
|
||||
def construct_dataset(clearml_info_string):
|
||||
"""Load in a clearml dataset and fill the internal data_dict with its contents.
|
||||
"""
|
||||
dataset_id = clearml_info_string.replace('clearml://', '')
|
||||
dataset = Dataset.get(dataset_id=dataset_id)
|
||||
dataset_root_path = Path(dataset.get_local_copy())
|
||||
|
||||
# We'll search for the yaml file definition in the dataset
|
||||
yaml_filenames = list(glob.glob(str(dataset_root_path / "*.yaml")) + glob.glob(str(dataset_root_path / "*.yml")))
|
||||
if len(yaml_filenames) > 1:
|
||||
raise ValueError('More than one yaml file was found in the dataset root, cannot determine which one contains '
|
||||
'the dataset definition this way.')
|
||||
elif len(yaml_filenames) == 0:
|
||||
raise ValueError('No yaml definition found in dataset root path, check that there is a correct yaml file '
|
||||
'inside the dataset root path.')
|
||||
with open(yaml_filenames[0]) as f:
|
||||
dataset_definition = yaml.safe_load(f)
|
||||
|
||||
assert set(dataset_definition.keys()).issuperset(
|
||||
{'train', 'test', 'val', 'nc', 'names'}
|
||||
), "The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')"
|
||||
|
||||
data_dict = dict()
|
||||
data_dict['train'] = str(
|
||||
(dataset_root_path / dataset_definition['train']).resolve()) if dataset_definition['train'] else None
|
||||
data_dict['test'] = str(
|
||||
(dataset_root_path / dataset_definition['test']).resolve()) if dataset_definition['test'] else None
|
||||
data_dict['val'] = str(
|
||||
(dataset_root_path / dataset_definition['val']).resolve()) if dataset_definition['val'] else None
|
||||
data_dict['nc'] = dataset_definition['nc']
|
||||
data_dict['names'] = dataset_definition['names']
|
||||
|
||||
return data_dict
|
||||
|
||||
|
||||
class ClearmlLogger:
|
||||
"""Log training runs, datasets, models, and predictions to ClearML.
|
||||
|
||||
This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default,
|
||||
this information includes hyperparameters, system configuration and metrics, model metrics, code information and
|
||||
basic data metrics and analyses.
|
||||
|
||||
By providing additional command line arguments to train.py, datasets,
|
||||
models and predictions can also be logged.
|
||||
"""
|
||||
|
||||
def __init__(self, opt, hyp):
|
||||
"""
|
||||
- Initialize ClearML Task, this object will capture the experiment
|
||||
- Upload dataset version to ClearML Data if opt.upload_dataset is True
|
||||
|
||||
arguments:
|
||||
opt (namespace) -- Commandline arguments for this run
|
||||
hyp (dict) -- Hyperparameters for this run
|
||||
|
||||
"""
|
||||
self.current_epoch = 0
|
||||
# Keep tracked of amount of logged images to enforce a limit
|
||||
self.current_epoch_logged_images = set()
|
||||
# Maximum number of images to log to clearML per epoch
|
||||
self.max_imgs_to_log_per_epoch = 16
|
||||
# Get the interval of epochs when bounding box images should be logged
|
||||
self.bbox_interval = opt.bbox_interval
|
||||
self.clearml = clearml
|
||||
self.task = None
|
||||
self.data_dict = None
|
||||
if self.clearml:
|
||||
self.task = Task.init(
|
||||
project_name='YOLOv5',
|
||||
task_name='training',
|
||||
tags=['YOLOv5'],
|
||||
output_uri=True,
|
||||
auto_connect_frameworks={'pytorch': False}
|
||||
# We disconnect pytorch auto-detection, because we added manual model save points in the code
|
||||
)
|
||||
# ClearML's hooks will already grab all general parameters
|
||||
# Only the hyperparameters coming from the yaml config file
|
||||
# will have to be added manually!
|
||||
self.task.connect(hyp, name='Hyperparameters')
|
||||
|
||||
# Get ClearML Dataset Version if requested
|
||||
if opt.data.startswith('clearml://'):
|
||||
# data_dict should have the following keys:
|
||||
# names, nc (number of classes), test, train, val (all three relative paths to ../datasets)
|
||||
self.data_dict = construct_dataset(opt.data)
|
||||
# Set data to data_dict because wandb will crash without this information and opt is the best way
|
||||
# to give it to them
|
||||
opt.data = self.data_dict
|
||||
|
||||
def log_debug_samples(self, files, title='Debug Samples'):
|
||||
"""
|
||||
Log files (images) as debug samples in the ClearML task.
|
||||
|
||||
arguments:
|
||||
files (List(PosixPath)) a list of file paths in PosixPath format
|
||||
title (str) A title that groups together images with the same values
|
||||
"""
|
||||
for f in files:
|
||||
if f.exists():
|
||||
it = re.search(r'_batch(\d+)', f.name)
|
||||
iteration = int(it.groups()[0]) if it else 0
|
||||
self.task.get_logger().report_image(title=title,
|
||||
series=f.name.replace(it.group(), ''),
|
||||
local_path=str(f),
|
||||
iteration=iteration)
|
||||
|
||||
def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_threshold=0.25):
|
||||
"""
|
||||
Draw the bounding boxes on a single image and report the result as a ClearML debug sample.
|
||||
|
||||
arguments:
|
||||
image_path (PosixPath) the path the original image file
|
||||
boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
||||
class_names (dict): dict containing mapping of class int to class name
|
||||
image (Tensor): A torch tensor containing the actual image data
|
||||
"""
|
||||
if len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch and self.current_epoch >= 0:
|
||||
# Log every bbox_interval times and deduplicate for any intermittend extra eval runs
|
||||
if self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images:
|
||||
im = np.ascontiguousarray(np.moveaxis(image.mul(255).clamp(0, 255).byte().cpu().numpy(), 0, 2))
|
||||
annotator = Annotator(im=im, pil=True)
|
||||
for i, (conf, class_nr, box) in enumerate(zip(boxes[:, 4], boxes[:, 5], boxes[:, :4])):
|
||||
color = colors(i)
|
||||
|
||||
class_name = class_names[int(class_nr)]
|
||||
confidence_percentage = round(float(conf) * 100, 2)
|
||||
label = f"{class_name}: {confidence_percentage}%"
|
||||
|
||||
if conf > conf_threshold:
|
||||
annotator.rectangle(box.cpu().numpy(), outline=color)
|
||||
annotator.box_label(box.cpu().numpy(), label=label, color=color)
|
||||
|
||||
annotated_image = annotator.result()
|
||||
self.task.get_logger().report_image(title='Bounding Boxes',
|
||||
series=image_path.name,
|
||||
iteration=self.current_epoch,
|
||||
image=annotated_image)
|
||||
self.current_epoch_logged_images.add(image_path)
|
84
app/yolov5/utils/loggers/clearml/hpo.py
Normal file
84
app/yolov5/utils/loggers/clearml/hpo.py
Normal file
@ -0,0 +1,84 @@
|
||||
from clearml import Task
|
||||
# Connecting ClearML with the current process,
|
||||
# from here on everything is logged automatically
|
||||
from clearml.automation import HyperParameterOptimizer, UniformParameterRange
|
||||
from clearml.automation.optuna import OptimizerOptuna
|
||||
|
||||
task = Task.init(project_name='Hyper-Parameter Optimization',
|
||||
task_name='YOLOv5',
|
||||
task_type=Task.TaskTypes.optimizer,
|
||||
reuse_last_task_id=False)
|
||||
|
||||
# Example use case:
|
||||
optimizer = HyperParameterOptimizer(
|
||||
# This is the experiment we want to optimize
|
||||
base_task_id='<your_template_task_id>',
|
||||
# here we define the hyper-parameters to optimize
|
||||
# Notice: The parameter name should exactly match what you see in the UI: <section_name>/<parameter>
|
||||
# For Example, here we see in the base experiment a section Named: "General"
|
||||
# under it a parameter named "batch_size", this becomes "General/batch_size"
|
||||
# If you have `argparse` for example, then arguments will appear under the "Args" section,
|
||||
# and you should instead pass "Args/batch_size"
|
||||
hyper_parameters=[
|
||||
UniformParameterRange('Hyperparameters/lr0', min_value=1e-5, max_value=1e-1),
|
||||
UniformParameterRange('Hyperparameters/lrf', min_value=0.01, max_value=1.0),
|
||||
UniformParameterRange('Hyperparameters/momentum', min_value=0.6, max_value=0.98),
|
||||
UniformParameterRange('Hyperparameters/weight_decay', min_value=0.0, max_value=0.001),
|
||||
UniformParameterRange('Hyperparameters/warmup_epochs', min_value=0.0, max_value=5.0),
|
||||
UniformParameterRange('Hyperparameters/warmup_momentum', min_value=0.0, max_value=0.95),
|
||||
UniformParameterRange('Hyperparameters/warmup_bias_lr', min_value=0.0, max_value=0.2),
|
||||
UniformParameterRange('Hyperparameters/box', min_value=0.02, max_value=0.2),
|
||||
UniformParameterRange('Hyperparameters/cls', min_value=0.2, max_value=4.0),
|
||||
UniformParameterRange('Hyperparameters/cls_pw', min_value=0.5, max_value=2.0),
|
||||
UniformParameterRange('Hyperparameters/obj', min_value=0.2, max_value=4.0),
|
||||
UniformParameterRange('Hyperparameters/obj_pw', min_value=0.5, max_value=2.0),
|
||||
UniformParameterRange('Hyperparameters/iou_t', min_value=0.1, max_value=0.7),
|
||||
UniformParameterRange('Hyperparameters/anchor_t', min_value=2.0, max_value=8.0),
|
||||
UniformParameterRange('Hyperparameters/fl_gamma', min_value=0.0, max_value=4.0),
|
||||
UniformParameterRange('Hyperparameters/hsv_h', min_value=0.0, max_value=0.1),
|
||||
UniformParameterRange('Hyperparameters/hsv_s', min_value=0.0, max_value=0.9),
|
||||
UniformParameterRange('Hyperparameters/hsv_v', min_value=0.0, max_value=0.9),
|
||||
UniformParameterRange('Hyperparameters/degrees', min_value=0.0, max_value=45.0),
|
||||
UniformParameterRange('Hyperparameters/translate', min_value=0.0, max_value=0.9),
|
||||
UniformParameterRange('Hyperparameters/scale', min_value=0.0, max_value=0.9),
|
||||
UniformParameterRange('Hyperparameters/shear', min_value=0.0, max_value=10.0),
|
||||
UniformParameterRange('Hyperparameters/perspective', min_value=0.0, max_value=0.001),
|
||||
UniformParameterRange('Hyperparameters/flipud', min_value=0.0, max_value=1.0),
|
||||
UniformParameterRange('Hyperparameters/fliplr', min_value=0.0, max_value=1.0),
|
||||
UniformParameterRange('Hyperparameters/mosaic', min_value=0.0, max_value=1.0),
|
||||
UniformParameterRange('Hyperparameters/mixup', min_value=0.0, max_value=1.0),
|
||||
UniformParameterRange('Hyperparameters/copy_paste', min_value=0.0, max_value=1.0)],
|
||||
# this is the objective metric we want to maximize/minimize
|
||||
objective_metric_title='metrics',
|
||||
objective_metric_series='mAP_0.5',
|
||||
# now we decide if we want to maximize it or minimize it (accuracy we maximize)
|
||||
objective_metric_sign='max',
|
||||
# let us limit the number of concurrent experiments,
|
||||
# this in turn will make sure we do dont bombard the scheduler with experiments.
|
||||
# if we have an auto-scaler connected, this, by proxy, will limit the number of machine
|
||||
max_number_of_concurrent_tasks=1,
|
||||
# this is the optimizer class (actually doing the optimization)
|
||||
# Currently, we can choose from GridSearch, RandomSearch or OptimizerBOHB (Bayesian optimization Hyper-Band)
|
||||
optimizer_class=OptimizerOptuna,
|
||||
# If specified only the top K performing Tasks will be kept, the others will be automatically archived
|
||||
save_top_k_tasks_only=5, # 5,
|
||||
compute_time_limit=None,
|
||||
total_max_jobs=20,
|
||||
min_iteration_per_job=None,
|
||||
max_iteration_per_job=None,
|
||||
)
|
||||
|
||||
# report every 10 seconds, this is way too often, but we are testing here
|
||||
optimizer.set_report_period(10 / 60)
|
||||
# You can also use the line below instead to run all the optimizer tasks locally, without using queues or agent
|
||||
# an_optimizer.start_locally(job_complete_callback=job_complete_callback)
|
||||
# set the time limit for the optimization process (2 hours)
|
||||
optimizer.set_time_limit(in_minutes=120.0)
|
||||
# Start the optimization process in the local environment
|
||||
optimizer.start_locally()
|
||||
# wait until process is done (notice we are controlling the optimization process in the background)
|
||||
optimizer.wait()
|
||||
# make sure background optimization stopped
|
||||
optimizer.stop()
|
||||
|
||||
print('We are done, good bye')
|
162
app/yolov5/utils/loggers/wandb/README.md
Normal file
162
app/yolov5/utils/loggers/wandb/README.md
Normal file
@ -0,0 +1,162 @@
|
||||
📚 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 🚀. UPDATED 29 September 2021.
|
||||
|
||||
- [About Weights & Biases](#about-weights-&-biases)
|
||||
- [First-Time Setup](#first-time-setup)
|
||||
- [Viewing runs](#viewing-runs)
|
||||
- [Disabling wandb](#disabling-wandb)
|
||||
- [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
|
||||
- [Reports: Share your work with the world!](#reports)
|
||||
|
||||
## About Weights & Biases
|
||||
|
||||
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models — architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
|
||||
|
||||
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
|
||||
|
||||
- [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
|
||||
- [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
|
||||
- [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
|
||||
- [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
|
||||
- [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
|
||||
- [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
|
||||
|
||||
## First-Time Setup
|
||||
|
||||
<details open>
|
||||
<summary> Toggle Details </summary>
|
||||
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
|
||||
|
||||
W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
|
||||
|
||||
```shell
|
||||
$ python train.py --project ... --name ...
|
||||
```
|
||||
|
||||
YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
||||
<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
|
||||
|
||||
</details>
|
||||
|
||||
## Viewing Runs
|
||||
|
||||
<details open>
|
||||
<summary> Toggle Details </summary>
|
||||
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
|
||||
|
||||
- Training & Validation losses
|
||||
- Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
|
||||
- Learning Rate over time
|
||||
- A bounding box debugging panel, showing the training progress over time
|
||||
- GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
|
||||
- System: Disk I/0, CPU utilization, RAM memory usage
|
||||
- Your trained model as W&B Artifact
|
||||
- Environment: OS and Python types, Git repository and state, **training command**
|
||||
|
||||
<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
|
||||
</details>
|
||||
|
||||
## Disabling wandb
|
||||
|
||||
- training after running `wandb disabled` inside that directory creates no wandb run
|
||||

|
||||
|
||||
- To enable wandb again, run `wandb online`
|
||||

|
||||
|
||||
## Advanced Usage
|
||||
|
||||
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
|
||||
|
||||
<details open>
|
||||
<h3> 1: Train and Log Evaluation simultaneousy </h3>
|
||||
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
|
||||
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
|
||||
so no images will be uploaded from your system more than once.
|
||||
<details open>
|
||||
<summary> <b>Usage</b> </summary>
|
||||
<b>Code</b> <code> $ python train.py --upload_data val</code>
|
||||
|
||||

|
||||
|
||||
</details>
|
||||
|
||||
<h3>2. Visualize and Version Datasets</h3>
|
||||
Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
|
||||
<details>
|
||||
<summary> <b>Usage</b> </summary>
|
||||
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
|
||||
|
||||

|
||||
|
||||
</details>
|
||||
|
||||
<h3> 3: Train using dataset artifact </h3>
|
||||
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
|
||||
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
|
||||
<details>
|
||||
<summary> <b>Usage</b> </summary>
|
||||
<b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code>
|
||||
|
||||

|
||||
|
||||
</details>
|
||||
|
||||
<h3> 4: Save model checkpoints as artifacts </h3>
|
||||
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
|
||||
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
|
||||
|
||||
<details>
|
||||
<summary> <b>Usage</b> </summary>
|
||||
<b>Code</b> <code> $ python train.py --save_period 1 </code>
|
||||
|
||||

|
||||
|
||||
</details>
|
||||
|
||||
</details>
|
||||
|
||||
<h3> 5: Resume runs from checkpoint artifacts. </h3>
|
||||
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with <code>wandb-artifact://</code> prefix followed by the run path, i.e, <code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
|
||||
|
||||
<details>
|
||||
<summary> <b>Usage</b> </summary>
|
||||
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
|
||||
|
||||

|
||||
|
||||
</details>
|
||||
|
||||
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
|
||||
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
|
||||
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset</code> or
|
||||
train from <code>_wandb.yaml</code> file and set <code>--save_period</code>
|
||||
|
||||
<details>
|
||||
<summary> <b>Usage</b> </summary>
|
||||
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
|
||||
|
||||

|
||||
|
||||
</details>
|
||||
|
||||
</details>
|
||||
|
||||
<h3> Reports </h3>
|
||||
W&B Reports can be created from your saved runs for sharing online. Once a report is created you will receive a link you can use to publically share your results. Here is an example report created from the COCO128 tutorial trainings of all four YOLOv5 models ([link](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY)).
|
||||
|
||||
<img width="900" alt="Weights & Biases Reports" src="https://user-images.githubusercontent.com/26833433/135394029-a17eaf86-c6c1-4b1d-bb80-b90e83aaffa7.png">
|
||||
|
||||
## Environments
|
||||
|
||||
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
|
||||
|
||||
- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
||||
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
|
||||
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
|
||||
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
||||
|
||||
## Status
|
||||
|
||||

|
||||
|
||||
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), validation ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.
|
0
app/yolov5/utils/loggers/wandb/__init__.py
Normal file
0
app/yolov5/utils/loggers/wandb/__init__.py
Normal file
27
app/yolov5/utils/loggers/wandb/log_dataset.py
Normal file
27
app/yolov5/utils/loggers/wandb/log_dataset.py
Normal file
@ -0,0 +1,27 @@
|
||||
import argparse
|
||||
|
||||
from wandb_utils import WandbLogger
|
||||
|
||||
from utils.general import LOGGER
|
||||
|
||||
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
|
||||
|
||||
|
||||
def create_dataset_artifact(opt):
|
||||
logger = WandbLogger(opt, None, job_type='Dataset Creation') # TODO: return value unused
|
||||
if not logger.wandb:
|
||||
LOGGER.info("install wandb using `pip install wandb` to log the dataset")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
|
||||
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
|
||||
parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
|
||||
parser.add_argument('--entity', default=None, help='W&B entity')
|
||||
parser.add_argument('--name', type=str, default='log dataset', help='name of W&B run')
|
||||
|
||||
opt = parser.parse_args()
|
||||
opt.resume = False # Explicitly disallow resume check for dataset upload job
|
||||
|
||||
create_dataset_artifact(opt)
|
41
app/yolov5/utils/loggers/wandb/sweep.py
Normal file
41
app/yolov5/utils/loggers/wandb/sweep.py
Normal file
@ -0,0 +1,41 @@
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import wandb
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[3] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
|
||||
from train import parse_opt, train
|
||||
from utils.callbacks import Callbacks
|
||||
from utils.general import increment_path
|
||||
from utils.torch_utils import select_device
|
||||
|
||||
|
||||
def sweep():
|
||||
wandb.init()
|
||||
# Get hyp dict from sweep agent. Copy because train() modifies parameters which confused wandb.
|
||||
hyp_dict = vars(wandb.config).get("_items").copy()
|
||||
|
||||
# Workaround: get necessary opt args
|
||||
opt = parse_opt(known=True)
|
||||
opt.batch_size = hyp_dict.get("batch_size")
|
||||
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
|
||||
opt.epochs = hyp_dict.get("epochs")
|
||||
opt.nosave = True
|
||||
opt.data = hyp_dict.get("data")
|
||||
opt.weights = str(opt.weights)
|
||||
opt.cfg = str(opt.cfg)
|
||||
opt.data = str(opt.data)
|
||||
opt.hyp = str(opt.hyp)
|
||||
opt.project = str(opt.project)
|
||||
device = select_device(opt.device, batch_size=opt.batch_size)
|
||||
|
||||
# train
|
||||
train(hyp_dict, opt, device, callbacks=Callbacks())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
sweep()
|
143
app/yolov5/utils/loggers/wandb/sweep.yaml
Normal file
143
app/yolov5/utils/loggers/wandb/sweep.yaml
Normal file
@ -0,0 +1,143 @@
|
||||
# Hyperparameters for training
|
||||
# To set range-
|
||||
# Provide min and max values as:
|
||||
# parameter:
|
||||
#
|
||||
# min: scalar
|
||||
# max: scalar
|
||||
# OR
|
||||
#
|
||||
# Set a specific list of search space-
|
||||
# parameter:
|
||||
# values: [scalar1, scalar2, scalar3...]
|
||||
#
|
||||
# You can use grid, bayesian and hyperopt search strategy
|
||||
# For more info on configuring sweeps visit - https://docs.wandb.ai/guides/sweeps/configuration
|
||||
|
||||
program: utils/loggers/wandb/sweep.py
|
||||
method: random
|
||||
metric:
|
||||
name: metrics/mAP_0.5
|
||||
goal: maximize
|
||||
|
||||
parameters:
|
||||
# hyperparameters: set either min, max range or values list
|
||||
data:
|
||||
value: "data/coco128.yaml"
|
||||
batch_size:
|
||||
values: [64]
|
||||
epochs:
|
||||
values: [10]
|
||||
|
||||
lr0:
|
||||
distribution: uniform
|
||||
min: 1e-5
|
||||
max: 1e-1
|
||||
lrf:
|
||||
distribution: uniform
|
||||
min: 0.01
|
||||
max: 1.0
|
||||
momentum:
|
||||
distribution: uniform
|
||||
min: 0.6
|
||||
max: 0.98
|
||||
weight_decay:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 0.001
|
||||
warmup_epochs:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 5.0
|
||||
warmup_momentum:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 0.95
|
||||
warmup_bias_lr:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 0.2
|
||||
box:
|
||||
distribution: uniform
|
||||
min: 0.02
|
||||
max: 0.2
|
||||
cls:
|
||||
distribution: uniform
|
||||
min: 0.2
|
||||
max: 4.0
|
||||
cls_pw:
|
||||
distribution: uniform
|
||||
min: 0.5
|
||||
max: 2.0
|
||||
obj:
|
||||
distribution: uniform
|
||||
min: 0.2
|
||||
max: 4.0
|
||||
obj_pw:
|
||||
distribution: uniform
|
||||
min: 0.5
|
||||
max: 2.0
|
||||
iou_t:
|
||||
distribution: uniform
|
||||
min: 0.1
|
||||
max: 0.7
|
||||
anchor_t:
|
||||
distribution: uniform
|
||||
min: 2.0
|
||||
max: 8.0
|
||||
fl_gamma:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 4.0
|
||||
hsv_h:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 0.1
|
||||
hsv_s:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 0.9
|
||||
hsv_v:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 0.9
|
||||
degrees:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 45.0
|
||||
translate:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 0.9
|
||||
scale:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 0.9
|
||||
shear:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 10.0
|
||||
perspective:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 0.001
|
||||
flipud:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
fliplr:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
mosaic:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
mixup:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
copy_paste:
|
||||
distribution: uniform
|
||||
min: 0.0
|
||||
max: 1.0
|
584
app/yolov5/utils/loggers/wandb/wandb_utils.py
Normal file
584
app/yolov5/utils/loggers/wandb/wandb_utils.py
Normal file
@ -0,0 +1,584 @@
|
||||
"""Utilities and tools for tracking runs with Weights & Biases."""
|
||||
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
import yaml
|
||||
from tqdm import tqdm
|
||||
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[3] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||||
|
||||
from app.yolov5.utils.dataloaders import LoadImagesAndLabels, img2label_paths
|
||||
from app.yolov5.utils.general import LOGGER, check_dataset, check_file
|
||||
|
||||
try:
|
||||
import wandb
|
||||
|
||||
assert hasattr(wandb, '__version__') # verify package import not local dir
|
||||
except (ImportError, AssertionError):
|
||||
wandb = None
|
||||
|
||||
RANK = int(os.getenv('RANK', -1))
|
||||
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
|
||||
|
||||
|
||||
def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
|
||||
return from_string[len(prefix):]
|
||||
|
||||
|
||||
def check_wandb_config_file(data_config_file):
|
||||
wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path
|
||||
if Path(wandb_config).is_file():
|
||||
return wandb_config
|
||||
return data_config_file
|
||||
|
||||
|
||||
def check_wandb_dataset(data_file):
|
||||
is_trainset_wandb_artifact = False
|
||||
is_valset_wandb_artifact = False
|
||||
if isinstance(data_file, dict):
|
||||
# In that case another dataset manager has already processed it and we don't have to
|
||||
return data_file
|
||||
if check_file(data_file) and data_file.endswith('.yaml'):
|
||||
with open(data_file, errors='ignore') as f:
|
||||
data_dict = yaml.safe_load(f)
|
||||
is_trainset_wandb_artifact = isinstance(data_dict['train'],
|
||||
str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX)
|
||||
is_valset_wandb_artifact = isinstance(data_dict['val'],
|
||||
str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX)
|
||||
if is_trainset_wandb_artifact or is_valset_wandb_artifact:
|
||||
return data_dict
|
||||
else:
|
||||
return check_dataset(data_file)
|
||||
|
||||
|
||||
def get_run_info(run_path):
|
||||
run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
|
||||
run_id = run_path.stem
|
||||
project = run_path.parent.stem
|
||||
entity = run_path.parent.parent.stem
|
||||
model_artifact_name = 'run_' + run_id + '_model'
|
||||
return entity, project, run_id, model_artifact_name
|
||||
|
||||
|
||||
def check_wandb_resume(opt):
|
||||
process_wandb_config_ddp_mode(opt) if RANK not in [-1, 0] else None
|
||||
if isinstance(opt.resume, str):
|
||||
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
||||
if RANK not in [-1, 0]: # For resuming DDP runs
|
||||
entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
|
||||
api = wandb.Api()
|
||||
artifact = api.artifact(entity + '/' + project + '/' + model_artifact_name + ':latest')
|
||||
modeldir = artifact.download()
|
||||
opt.weights = str(Path(modeldir) / "last.pt")
|
||||
return True
|
||||
return None
|
||||
|
||||
|
||||
def process_wandb_config_ddp_mode(opt):
|
||||
with open(check_file(opt.data), errors='ignore') as f:
|
||||
data_dict = yaml.safe_load(f) # data dict
|
||||
train_dir, val_dir = None, None
|
||||
if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
|
||||
api = wandb.Api()
|
||||
train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
|
||||
train_dir = train_artifact.download()
|
||||
train_path = Path(train_dir) / 'data/images/'
|
||||
data_dict['train'] = str(train_path)
|
||||
|
||||
if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
|
||||
api = wandb.Api()
|
||||
val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
|
||||
val_dir = val_artifact.download()
|
||||
val_path = Path(val_dir) / 'data/images/'
|
||||
data_dict['val'] = str(val_path)
|
||||
if train_dir or val_dir:
|
||||
ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
|
||||
with open(ddp_data_path, 'w') as f:
|
||||
yaml.safe_dump(data_dict, f)
|
||||
opt.data = ddp_data_path
|
||||
|
||||
|
||||
class WandbLogger():
|
||||
"""Log training runs, datasets, models, and predictions to Weights & Biases.
|
||||
|
||||
This logger sends information to W&B at wandb.ai. By default, this information
|
||||
includes hyperparameters, system configuration and metrics, model metrics,
|
||||
and basic data metrics and analyses.
|
||||
|
||||
By providing additional command line arguments to train.py, datasets,
|
||||
models and predictions can also be logged.
|
||||
|
||||
For more on how this logger is used, see the Weights & Biases documentation:
|
||||
https://docs.wandb.com/guides/integrations/yolov5
|
||||
"""
|
||||
|
||||
def __init__(self, opt, run_id=None, job_type='Training'):
|
||||
"""
|
||||
- Initialize WandbLogger instance
|
||||
- Upload dataset if opt.upload_dataset is True
|
||||
- Setup training processes if job_type is 'Training'
|
||||
|
||||
arguments:
|
||||
opt (namespace) -- Commandline arguments for this run
|
||||
run_id (str) -- Run ID of W&B run to be resumed
|
||||
job_type (str) -- To set the job_type for this run
|
||||
|
||||
"""
|
||||
# Pre-training routine --
|
||||
self.job_type = job_type
|
||||
self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run
|
||||
self.val_artifact, self.train_artifact = None, None
|
||||
self.train_artifact_path, self.val_artifact_path = None, None
|
||||
self.result_artifact = None
|
||||
self.val_table, self.result_table = None, None
|
||||
self.bbox_media_panel_images = []
|
||||
self.val_table_path_map = None
|
||||
self.max_imgs_to_log = 16
|
||||
self.wandb_artifact_data_dict = None
|
||||
self.data_dict = None
|
||||
# It's more elegant to stick to 1 wandb.init call,
|
||||
# but useful config data is overwritten in the WandbLogger's wandb.init call
|
||||
if isinstance(opt.resume, str): # checks resume from artifact
|
||||
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
||||
entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
|
||||
model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
|
||||
assert wandb, 'install wandb to resume wandb runs'
|
||||
# Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
|
||||
self.wandb_run = wandb.init(id=run_id,
|
||||
project=project,
|
||||
entity=entity,
|
||||
resume='allow',
|
||||
allow_val_change=True)
|
||||
opt.resume = model_artifact_name
|
||||
elif self.wandb:
|
||||
self.wandb_run = wandb.init(config=opt,
|
||||
resume="allow",
|
||||
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
|
||||
entity=opt.entity,
|
||||
name=opt.name if opt.name != 'exp' else None,
|
||||
job_type=job_type,
|
||||
id=run_id,
|
||||
allow_val_change=True) if not wandb.run else wandb.run
|
||||
if self.wandb_run:
|
||||
if self.job_type == 'Training':
|
||||
if opt.upload_dataset:
|
||||
if not opt.resume:
|
||||
self.wandb_artifact_data_dict = self.check_and_upload_dataset(opt)
|
||||
|
||||
if isinstance(opt.data, dict):
|
||||
# This means another dataset manager has already processed the dataset info (e.g. ClearML)
|
||||
# and they will have stored the already processed dict in opt.data
|
||||
self.data_dict = opt.data
|
||||
elif opt.resume:
|
||||
# resume from artifact
|
||||
if isinstance(opt.resume, str) and opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
||||
self.data_dict = dict(self.wandb_run.config.data_dict)
|
||||
else: # local resume
|
||||
self.data_dict = check_wandb_dataset(opt.data)
|
||||
else:
|
||||
self.data_dict = check_wandb_dataset(opt.data)
|
||||
self.wandb_artifact_data_dict = self.wandb_artifact_data_dict or self.data_dict
|
||||
|
||||
# write data_dict to config. useful for resuming from artifacts. Do this only when not resuming.
|
||||
self.wandb_run.config.update({'data_dict': self.wandb_artifact_data_dict}, allow_val_change=True)
|
||||
self.setup_training(opt)
|
||||
|
||||
if self.job_type == 'Dataset Creation':
|
||||
self.wandb_run.config.update({"upload_dataset": True})
|
||||
self.data_dict = self.check_and_upload_dataset(opt)
|
||||
|
||||
def check_and_upload_dataset(self, opt):
|
||||
"""
|
||||
Check if the dataset format is compatible and upload it as W&B artifact
|
||||
|
||||
arguments:
|
||||
opt (namespace)-- Commandline arguments for current run
|
||||
|
||||
returns:
|
||||
Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
|
||||
"""
|
||||
assert wandb, 'Install wandb to upload dataset'
|
||||
config_path = self.log_dataset_artifact(opt.data, opt.single_cls,
|
||||
'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem)
|
||||
with open(config_path, errors='ignore') as f:
|
||||
wandb_data_dict = yaml.safe_load(f)
|
||||
return wandb_data_dict
|
||||
|
||||
def setup_training(self, opt):
|
||||
"""
|
||||
Setup the necessary processes for training YOLO models:
|
||||
- Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
|
||||
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
|
||||
- Setup log_dict, initialize bbox_interval
|
||||
|
||||
arguments:
|
||||
opt (namespace) -- commandline arguments for this run
|
||||
|
||||
"""
|
||||
self.log_dict, self.current_epoch = {}, 0
|
||||
self.bbox_interval = opt.bbox_interval
|
||||
if isinstance(opt.resume, str):
|
||||
modeldir, _ = self.download_model_artifact(opt)
|
||||
if modeldir:
|
||||
self.weights = Path(modeldir) / "last.pt"
|
||||
config = self.wandb_run.config
|
||||
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = str(
|
||||
self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs,\
|
||||
config.hyp, config.imgsz
|
||||
data_dict = self.data_dict
|
||||
if self.val_artifact is None: # If --upload_dataset is set, use the existing artifact, don't download
|
||||
self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(
|
||||
data_dict.get('train'), opt.artifact_alias)
|
||||
self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(
|
||||
data_dict.get('val'), opt.artifact_alias)
|
||||
|
||||
if self.train_artifact_path is not None:
|
||||
train_path = Path(self.train_artifact_path) / 'data/images/'
|
||||
data_dict['train'] = str(train_path)
|
||||
if self.val_artifact_path is not None:
|
||||
val_path = Path(self.val_artifact_path) / 'data/images/'
|
||||
data_dict['val'] = str(val_path)
|
||||
|
||||
if self.val_artifact is not None:
|
||||
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
|
||||
columns = ["epoch", "id", "ground truth", "prediction"]
|
||||
columns.extend(self.data_dict['names'])
|
||||
self.result_table = wandb.Table(columns)
|
||||
self.val_table = self.val_artifact.get("val")
|
||||
if self.val_table_path_map is None:
|
||||
self.map_val_table_path()
|
||||
if opt.bbox_interval == -1:
|
||||
self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
|
||||
if opt.evolve or opt.noplots:
|
||||
self.bbox_interval = opt.bbox_interval = opt.epochs + 1 # disable bbox_interval
|
||||
train_from_artifact = self.train_artifact_path is not None and self.val_artifact_path is not None
|
||||
# Update the the data_dict to point to local artifacts dir
|
||||
if train_from_artifact:
|
||||
self.data_dict = data_dict
|
||||
|
||||
def download_dataset_artifact(self, path, alias):
|
||||
"""
|
||||
download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX
|
||||
|
||||
arguments:
|
||||
path -- path of the dataset to be used for training
|
||||
alias (str)-- alias of the artifact to be download/used for training
|
||||
|
||||
returns:
|
||||
(str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset
|
||||
is found otherwise returns (None, None)
|
||||
"""
|
||||
if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
|
||||
artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
|
||||
dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/"))
|
||||
assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
|
||||
datadir = dataset_artifact.download()
|
||||
return datadir, dataset_artifact
|
||||
return None, None
|
||||
|
||||
def download_model_artifact(self, opt):
|
||||
"""
|
||||
download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX
|
||||
|
||||
arguments:
|
||||
opt (namespace) -- Commandline arguments for this run
|
||||
"""
|
||||
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
||||
model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
|
||||
assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
|
||||
modeldir = model_artifact.download()
|
||||
# epochs_trained = model_artifact.metadata.get('epochs_trained')
|
||||
total_epochs = model_artifact.metadata.get('total_epochs')
|
||||
is_finished = total_epochs is None
|
||||
assert not is_finished, 'training is finished, can only resume incomplete runs.'
|
||||
return modeldir, model_artifact
|
||||
return None, None
|
||||
|
||||
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
|
||||
"""
|
||||
Log the model checkpoint as W&B artifact
|
||||
|
||||
arguments:
|
||||
path (Path) -- Path of directory containing the checkpoints
|
||||
opt (namespace) -- Command line arguments for this run
|
||||
epoch (int) -- Current epoch number
|
||||
fitness_score (float) -- fitness score for current epoch
|
||||
best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
|
||||
"""
|
||||
model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model',
|
||||
type='model',
|
||||
metadata={
|
||||
'original_url': str(path),
|
||||
'epochs_trained': epoch + 1,
|
||||
'save period': opt.save_period,
|
||||
'project': opt.project,
|
||||
'total_epochs': opt.epochs,
|
||||
'fitness_score': fitness_score})
|
||||
model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
|
||||
wandb.log_artifact(model_artifact,
|
||||
aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
|
||||
LOGGER.info(f"Saving model artifact on epoch {epoch + 1}")
|
||||
|
||||
def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
|
||||
"""
|
||||
Log the dataset as W&B artifact and return the new data file with W&B links
|
||||
|
||||
arguments:
|
||||
data_file (str) -- the .yaml file with information about the dataset like - path, classes etc.
|
||||
single_class (boolean) -- train multi-class data as single-class
|
||||
project (str) -- project name. Used to construct the artifact path
|
||||
overwrite_config (boolean) -- overwrites the data.yaml file if set to true otherwise creates a new
|
||||
file with _wandb postfix. Eg -> data_wandb.yaml
|
||||
|
||||
returns:
|
||||
the new .yaml file with artifact links. it can be used to start training directly from artifacts
|
||||
"""
|
||||
upload_dataset = self.wandb_run.config.upload_dataset
|
||||
log_val_only = isinstance(upload_dataset, str) and upload_dataset == 'val'
|
||||
self.data_dict = check_dataset(data_file) # parse and check
|
||||
data = dict(self.data_dict)
|
||||
nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
|
||||
names = {k: v for k, v in enumerate(names)} # to index dictionary
|
||||
|
||||
# log train set
|
||||
if not log_val_only:
|
||||
self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(data['train'], rect=True, batch_size=1),
|
||||
names,
|
||||
name='train') if data.get('train') else None
|
||||
if data.get('train'):
|
||||
data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
|
||||
|
||||
self.val_artifact = self.create_dataset_table(
|
||||
LoadImagesAndLabels(data['val'], rect=True, batch_size=1), names, name='val') if data.get('val') else None
|
||||
if data.get('val'):
|
||||
data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
|
||||
|
||||
path = Path(data_file)
|
||||
# create a _wandb.yaml file with artifacts links if both train and test set are logged
|
||||
if not log_val_only:
|
||||
path = (path.stem if overwrite_config else path.stem + '_wandb') + '.yaml' # updated data.yaml path
|
||||
path = ROOT / 'data' / path
|
||||
data.pop('download', None)
|
||||
data.pop('path', None)
|
||||
with open(path, 'w') as f:
|
||||
yaml.safe_dump(data, f)
|
||||
LOGGER.info(f"Created dataset config file {path}")
|
||||
|
||||
if self.job_type == 'Training': # builds correct artifact pipeline graph
|
||||
if not log_val_only:
|
||||
self.wandb_run.log_artifact(
|
||||
self.train_artifact) # calling use_artifact downloads the dataset. NOT NEEDED!
|
||||
self.wandb_run.use_artifact(self.val_artifact)
|
||||
self.val_artifact.wait()
|
||||
self.val_table = self.val_artifact.get('val')
|
||||
self.map_val_table_path()
|
||||
else:
|
||||
self.wandb_run.log_artifact(self.train_artifact)
|
||||
self.wandb_run.log_artifact(self.val_artifact)
|
||||
return path
|
||||
|
||||
def map_val_table_path(self):
|
||||
"""
|
||||
Map the validation dataset Table like name of file -> it's id in the W&B Table.
|
||||
Useful for - referencing artifacts for evaluation.
|
||||
"""
|
||||
self.val_table_path_map = {}
|
||||
LOGGER.info("Mapping dataset")
|
||||
for i, data in enumerate(tqdm(self.val_table.data)):
|
||||
self.val_table_path_map[data[3]] = data[0]
|
||||
|
||||
def create_dataset_table(self, dataset: LoadImagesAndLabels, class_to_id: Dict[int, str], name: str = 'dataset'):
|
||||
"""
|
||||
Create and return W&B artifact containing W&B Table of the dataset.
|
||||
|
||||
arguments:
|
||||
dataset -- instance of LoadImagesAndLabels class used to iterate over the data to build Table
|
||||
class_to_id -- hash map that maps class ids to labels
|
||||
name -- name of the artifact
|
||||
|
||||
returns:
|
||||
dataset artifact to be logged or used
|
||||
"""
|
||||
# TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
|
||||
artifact = wandb.Artifact(name=name, type="dataset")
|
||||
img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
|
||||
img_files = tqdm(dataset.im_files) if not img_files else img_files
|
||||
for img_file in img_files:
|
||||
if Path(img_file).is_dir():
|
||||
artifact.add_dir(img_file, name='data/images')
|
||||
labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
|
||||
artifact.add_dir(labels_path, name='data/labels')
|
||||
else:
|
||||
artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
|
||||
label_file = Path(img2label_paths([img_file])[0])
|
||||
artifact.add_file(str(label_file), name='data/labels/' +
|
||||
label_file.name) if label_file.exists() else None
|
||||
table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
|
||||
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
|
||||
for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
|
||||
box_data, img_classes = [], {}
|
||||
for cls, *xywh in labels[:, 1:].tolist():
|
||||
cls = int(cls)
|
||||
box_data.append({
|
||||
"position": {
|
||||
"middle": [xywh[0], xywh[1]],
|
||||
"width": xywh[2],
|
||||
"height": xywh[3]},
|
||||
"class_id": cls,
|
||||
"box_caption": "%s" % (class_to_id[cls])})
|
||||
img_classes[cls] = class_to_id[cls]
|
||||
boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
|
||||
table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), list(img_classes.values()),
|
||||
Path(paths).name)
|
||||
artifact.add(table, name)
|
||||
return artifact
|
||||
|
||||
def log_training_progress(self, predn, path, names):
|
||||
"""
|
||||
Build evaluation Table. Uses reference from validation dataset table.
|
||||
|
||||
arguments:
|
||||
predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
||||
path (str): local path of the current evaluation image
|
||||
names (dict(int, str)): hash map that maps class ids to labels
|
||||
"""
|
||||
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
|
||||
box_data = []
|
||||
avg_conf_per_class = [0] * len(self.data_dict['names'])
|
||||
pred_class_count = {}
|
||||
for *xyxy, conf, cls in predn.tolist():
|
||||
if conf >= 0.25:
|
||||
cls = int(cls)
|
||||
box_data.append({
|
||||
"position": {
|
||||
"minX": xyxy[0],
|
||||
"minY": xyxy[1],
|
||||
"maxX": xyxy[2],
|
||||
"maxY": xyxy[3]},
|
||||
"class_id": cls,
|
||||
"box_caption": f"{names[cls]} {conf:.3f}",
|
||||
"scores": {
|
||||
"class_score": conf},
|
||||
"domain": "pixel"})
|
||||
avg_conf_per_class[cls] += conf
|
||||
|
||||
if cls in pred_class_count:
|
||||
pred_class_count[cls] += 1
|
||||
else:
|
||||
pred_class_count[cls] = 1
|
||||
|
||||
for pred_class in pred_class_count.keys():
|
||||
avg_conf_per_class[pred_class] = avg_conf_per_class[pred_class] / pred_class_count[pred_class]
|
||||
|
||||
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
|
||||
id = self.val_table_path_map[Path(path).name]
|
||||
self.result_table.add_data(self.current_epoch, id, self.val_table.data[id][1],
|
||||
wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
|
||||
*avg_conf_per_class)
|
||||
|
||||
def val_one_image(self, pred, predn, path, names, im):
|
||||
"""
|
||||
Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel
|
||||
|
||||
arguments:
|
||||
pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
||||
predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class]
|
||||
path (str): local path of the current evaluation image
|
||||
"""
|
||||
if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact
|
||||
self.log_training_progress(predn, path, names)
|
||||
|
||||
if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0:
|
||||
if self.current_epoch % self.bbox_interval == 0:
|
||||
box_data = [{
|
||||
"position": {
|
||||
"minX": xyxy[0],
|
||||
"minY": xyxy[1],
|
||||
"maxX": xyxy[2],
|
||||
"maxY": xyxy[3]},
|
||||
"class_id": int(cls),
|
||||
"box_caption": f"{names[int(cls)]} {conf:.3f}",
|
||||
"scores": {
|
||||
"class_score": conf},
|
||||
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
|
||||
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
|
||||
self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name))
|
||||
|
||||
def log(self, log_dict):
|
||||
"""
|
||||
save the metrics to the logging dictionary
|
||||
|
||||
arguments:
|
||||
log_dict (Dict) -- metrics/media to be logged in current step
|
||||
"""
|
||||
if self.wandb_run:
|
||||
for key, value in log_dict.items():
|
||||
self.log_dict[key] = value
|
||||
|
||||
def end_epoch(self, best_result=False):
|
||||
"""
|
||||
commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
|
||||
|
||||
arguments:
|
||||
best_result (boolean): Boolean representing if the result of this evaluation is best or not
|
||||
"""
|
||||
if self.wandb_run:
|
||||
with all_logging_disabled():
|
||||
if self.bbox_media_panel_images:
|
||||
self.log_dict["BoundingBoxDebugger"] = self.bbox_media_panel_images
|
||||
try:
|
||||
wandb.log(self.log_dict)
|
||||
except BaseException as e:
|
||||
LOGGER.info(
|
||||
f"An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}"
|
||||
)
|
||||
self.wandb_run.finish()
|
||||
self.wandb_run = None
|
||||
|
||||
self.log_dict = {}
|
||||
self.bbox_media_panel_images = []
|
||||
if self.result_artifact:
|
||||
self.result_artifact.add(self.result_table, 'result')
|
||||
wandb.log_artifact(self.result_artifact,
|
||||
aliases=[
|
||||
'latest', 'last', 'epoch ' + str(self.current_epoch),
|
||||
('best' if best_result else '')])
|
||||
|
||||
wandb.log({"evaluation": self.result_table})
|
||||
columns = ["epoch", "id", "ground truth", "prediction"]
|
||||
columns.extend(self.data_dict['names'])
|
||||
self.result_table = wandb.Table(columns)
|
||||
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
|
||||
|
||||
def finish_run(self):
|
||||
"""
|
||||
Log metrics if any and finish the current W&B run
|
||||
"""
|
||||
if self.wandb_run:
|
||||
if self.log_dict:
|
||||
with all_logging_disabled():
|
||||
wandb.log(self.log_dict)
|
||||
wandb.run.finish()
|
||||
|
||||
|
||||
@contextmanager
|
||||
def all_logging_disabled(highest_level=logging.CRITICAL):
|
||||
""" source - https://gist.github.com/simon-weber/7853144
|
||||
A context manager that will prevent any logging messages triggered during the body from being processed.
|
||||
:param highest_level: the maximum logging level in use.
|
||||
This would only need to be changed if a custom level greater than CRITICAL is defined.
|
||||
"""
|
||||
previous_level = logging.root.manager.disable
|
||||
logging.disable(highest_level)
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
logging.disable(previous_level)
|
238
app/yolov5/utils/loss.py
Normal file
238
app/yolov5/utils/loss.py
Normal file
@ -0,0 +1,238 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
Loss functions
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from app.yolov5.utils.metrics import bbox_iou
|
||||
from app.yolov5.utils.torch_utils import de_parallel
|
||||
|
||||
|
||||
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
||||
# return positive, negative label smoothing BCE targets
|
||||
return 1.0 - 0.5 * eps, 0.5 * eps
|
||||
|
||||
|
||||
class BCEBlurWithLogitsLoss(nn.Module):
|
||||
# BCEwithLogitLoss() with reduced missing label effects.
|
||||
def __init__(self, alpha=0.05):
|
||||
super().__init__()
|
||||
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
|
||||
self.alpha = alpha
|
||||
|
||||
def forward(self, pred, true):
|
||||
loss = self.loss_fcn(pred, true)
|
||||
pred = torch.sigmoid(pred) # prob from logits
|
||||
dx = pred - true # reduce only missing label effects
|
||||
# dx = (pred - true).abs() # reduce missing label and false label effects
|
||||
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
|
||||
loss *= alpha_factor
|
||||
return loss.mean()
|
||||
|
||||
|
||||
class FocalLoss(nn.Module):
|
||||
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
||||
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||||
super().__init__()
|
||||
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
||||
self.gamma = gamma
|
||||
self.alpha = alpha
|
||||
self.reduction = loss_fcn.reduction
|
||||
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||||
|
||||
def forward(self, pred, true):
|
||||
loss = self.loss_fcn(pred, true)
|
||||
# p_t = torch.exp(-loss)
|
||||
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
||||
|
||||
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
||||
pred_prob = torch.sigmoid(pred) # prob from logits
|
||||
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
||||
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
||||
modulating_factor = (1.0 - p_t) ** self.gamma
|
||||
loss *= alpha_factor * modulating_factor
|
||||
|
||||
if self.reduction == 'mean':
|
||||
return loss.mean()
|
||||
elif self.reduction == 'sum':
|
||||
return loss.sum()
|
||||
else: # 'none'
|
||||
return loss
|
||||
|
||||
|
||||
class QFocalLoss(nn.Module):
|
||||
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
||||
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||||
super().__init__()
|
||||
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
||||
self.gamma = gamma
|
||||
self.alpha = alpha
|
||||
self.reduction = loss_fcn.reduction
|
||||
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||||
|
||||
def forward(self, pred, true):
|
||||
loss = self.loss_fcn(pred, true)
|
||||
|
||||
pred_prob = torch.sigmoid(pred) # prob from logits
|
||||
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
||||
modulating_factor = torch.abs(true - pred_prob) ** self.gamma
|
||||
loss *= alpha_factor * modulating_factor
|
||||
|
||||
if self.reduction == 'mean':
|
||||
return loss.mean()
|
||||
elif self.reduction == 'sum':
|
||||
return loss.sum()
|
||||
else: # 'none'
|
||||
return loss
|
||||
|
||||
|
||||
class ComputeLoss:
|
||||
sort_obj_iou = False
|
||||
|
||||
# Compute losses
|
||||
def __init__(self, model, autobalance=False):
|
||||
device = next(model.parameters()).device # get model device
|
||||
h = model.hyp # hyperparameters
|
||||
|
||||
# Define criteria
|
||||
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
|
||||
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
||||
|
||||
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
||||
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
|
||||
|
||||
# Focal loss
|
||||
g = h['fl_gamma'] # focal loss gamma
|
||||
if g > 0:
|
||||
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
||||
|
||||
m = de_parallel(model).model[-1] # Detect() module
|
||||
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
|
||||
self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index
|
||||
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
|
||||
self.na = m.na # number of anchors
|
||||
self.nc = m.nc # number of classes
|
||||
self.nl = m.nl # number of layers
|
||||
self.anchors = m.anchors
|
||||
self.device = device
|
||||
|
||||
def __call__(self, p, targets): # predictions, targets
|
||||
lcls = torch.zeros(1, device=self.device) # class loss
|
||||
lbox = torch.zeros(1, device=self.device) # box loss
|
||||
lobj = torch.zeros(1, device=self.device) # object loss
|
||||
tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets
|
||||
|
||||
# Losses
|
||||
for i, pi in enumerate(p): # layer index, layer predictions
|
||||
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
||||
tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
|
||||
|
||||
n = b.shape[0] # number of targets
|
||||
# 增加部分:判断tcls里面的标签是否超界,超界赋0
|
||||
for url in range(len(tcls[i])):
|
||||
if tcls[i][url] > (self.nc - 1):
|
||||
tcls[i][url] = 0
|
||||
if n:
|
||||
# pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # faster, requires torch 1.8.0
|
||||
pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1) # target-subset of predictions
|
||||
|
||||
# Regression
|
||||
pxy = pxy.sigmoid() * 2 - 0.5
|
||||
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
|
||||
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
||||
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
|
||||
lbox += (1.0 - iou).mean() # iou loss
|
||||
|
||||
# Objectness
|
||||
iou = iou.detach().clamp(0).type(tobj.dtype)
|
||||
if self.sort_obj_iou:
|
||||
j = iou.argsort()
|
||||
b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
|
||||
if self.gr < 1:
|
||||
iou = (1.0 - self.gr) + self.gr * iou
|
||||
tobj[b, a, gj, gi] = iou # iou ratio
|
||||
|
||||
# Classification
|
||||
if self.nc > 1: # cls loss (only if multiple classes)
|
||||
t = torch.full_like(pcls, self.cn, device=self.device) # targets
|
||||
t[range(n), tcls[i]] = self.cp
|
||||
lcls += self.BCEcls(pcls, t) # BCE
|
||||
|
||||
# Append targets to text file
|
||||
# with open('targets.txt', 'a') as file:
|
||||
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
||||
|
||||
obji = self.BCEobj(pi[..., 4], tobj)
|
||||
lobj += obji * self.balance[i] # obj loss
|
||||
if self.autobalance:
|
||||
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
|
||||
|
||||
if self.autobalance:
|
||||
self.balance = [x / self.balance[self.ssi] for x in self.balance]
|
||||
lbox *= self.hyp['box']
|
||||
lobj *= self.hyp['obj']
|
||||
lcls *= self.hyp['cls']
|
||||
bs = tobj.shape[0] # batch size
|
||||
|
||||
return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach()
|
||||
|
||||
def build_targets(self, p, targets):
|
||||
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
||||
na, nt = self.na, targets.shape[0] # number of anchors, targets
|
||||
tcls, tbox, indices, anch = [], [], [], []
|
||||
gain = torch.ones(7, device=self.device) # normalized to gridspace gain
|
||||
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
||||
targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2) # append anchor indices
|
||||
|
||||
g = 0.5 # bias
|
||||
off = torch.tensor(
|
||||
[
|
||||
[0, 0],
|
||||
[1, 0],
|
||||
[0, 1],
|
||||
[-1, 0],
|
||||
[0, -1], # j,k,l,m
|
||||
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
||||
],
|
||||
device=self.device).float() * g # offsets
|
||||
|
||||
for i in range(self.nl):
|
||||
anchors, shape = self.anchors[i], p[i].shape
|
||||
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
|
||||
|
||||
# Match targets to anchors
|
||||
t = targets * gain # shape(3,n,7)
|
||||
if nt:
|
||||
# Matches
|
||||
r = t[..., 4:6] / anchors[:, None] # wh ratio
|
||||
j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
||||
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
||||
t = t[j] # filter
|
||||
|
||||
# Offsets
|
||||
gxy = t[:, 2:4] # grid xy
|
||||
gxi = gain[[2, 3]] - gxy # inverse
|
||||
j, k = ((gxy % 1 < g) & (gxy > 1)).T
|
||||
l, m = ((gxi % 1 < g) & (gxi > 1)).T
|
||||
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
||||
t = t.repeat((5, 1, 1))[j]
|
||||
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
||||
else:
|
||||
t = targets[0]
|
||||
offsets = 0
|
||||
|
||||
# Define
|
||||
bc, gxy, gwh, a = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors
|
||||
a, (b, c) = a.long().view(-1), bc.long().T # anchors, image, class
|
||||
gij = (gxy - offsets).long()
|
||||
gi, gj = gij.T # grid indices
|
||||
|
||||
# Append
|
||||
indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid
|
||||
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
||||
anch.append(anchors[a]) # anchors
|
||||
tcls.append(c) # class
|
||||
|
||||
return tcls, tbox, indices, anch
|
367
app/yolov5/utils/metrics.py
Normal file
367
app/yolov5/utils/metrics.py
Normal file
@ -0,0 +1,367 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
Model validation metrics
|
||||
"""
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from app.yolov5.utils import TryExcept, threaded
|
||||
|
||||
|
||||
def fitness(x):
|
||||
# Model fitness as a weighted combination of metrics
|
||||
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
||||
return (x[:, :4] * w).sum(1)
|
||||
|
||||
|
||||
def smooth(y, f=0.05):
|
||||
# Box filter of fraction f
|
||||
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
|
||||
p = np.ones(nf // 2) # ones padding
|
||||
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
|
||||
return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed
|
||||
|
||||
|
||||
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16):
|
||||
""" Compute the average precision, given the recall and precision curves.
|
||||
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
||||
# Arguments
|
||||
tp: True positives (nparray, nx1 or nx10).
|
||||
conf: Objectness value from 0-1 (nparray).
|
||||
pred_cls: Predicted object classes (nparray).
|
||||
target_cls: True object classes (nparray).
|
||||
plot: Plot precision-recall curve at mAP@0.5
|
||||
save_dir: Plot save directory
|
||||
# Returns
|
||||
The average precision as computed in py-faster-rcnn.
|
||||
"""
|
||||
|
||||
# Sort by objectness
|
||||
i = np.argsort(-conf)
|
||||
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
||||
|
||||
# Find unique classes
|
||||
unique_classes, nt = np.unique(target_cls, return_counts=True)
|
||||
nc = unique_classes.shape[0] # number of classes, number of detections
|
||||
|
||||
# Create Precision-Recall curve and compute AP for each class
|
||||
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
||||
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
|
||||
for ci, c in enumerate(unique_classes):
|
||||
i = pred_cls == c
|
||||
n_l = nt[ci] # number of labels
|
||||
n_p = i.sum() # number of predictions
|
||||
if n_p == 0 or n_l == 0:
|
||||
continue
|
||||
|
||||
# Accumulate FPs and TPs
|
||||
fpc = (1 - tp[i]).cumsum(0)
|
||||
tpc = tp[i].cumsum(0)
|
||||
|
||||
# Recall
|
||||
recall = tpc / (n_l + eps) # recall curve
|
||||
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
|
||||
|
||||
# Precision
|
||||
precision = tpc / (tpc + fpc) # precision curve
|
||||
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
|
||||
|
||||
# AP from recall-precision curve
|
||||
for j in range(tp.shape[1]):
|
||||
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
||||
if plot and j == 0:
|
||||
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
||||
|
||||
# Compute F1 (harmonic mean of precision and recall)
|
||||
f1 = 2 * p * r / (p + r + eps)
|
||||
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
|
||||
names = dict(enumerate(names)) # to dict
|
||||
# if plot:
|
||||
# plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
|
||||
# plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
|
||||
# plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
|
||||
# plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
|
||||
|
||||
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index
|
||||
p, r, f1 = p[:, i], r[:, i], f1[:, i]
|
||||
tp = (r * nt).round() # true positives
|
||||
fp = (tp / (p + eps) - tp).round() # false positives
|
||||
return tp, fp, p, r, f1, ap, unique_classes.astype(int)
|
||||
|
||||
|
||||
def compute_ap(recall, precision):
|
||||
""" Compute the average precision, given the recall and precision curves
|
||||
# Arguments
|
||||
recall: The recall curve (list)
|
||||
precision: The precision curve (list)
|
||||
# Returns
|
||||
Average precision, precision curve, recall curve
|
||||
"""
|
||||
|
||||
# Append sentinel values to beginning and end
|
||||
mrec = np.concatenate(([0.0], recall, [1.0]))
|
||||
mpre = np.concatenate(([1.0], precision, [0.0]))
|
||||
|
||||
# Compute the precision envelope
|
||||
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
||||
|
||||
# Integrate area under curve
|
||||
method = 'interp' # methods: 'continuous', 'interp'
|
||||
if method == 'interp':
|
||||
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
||||
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
||||
else: # 'continuous'
|
||||
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
||||
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
||||
|
||||
return ap, mpre, mrec
|
||||
|
||||
|
||||
class ConfusionMatrix:
|
||||
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
|
||||
def __init__(self, nc, conf=0.25, iou_thres=0.45):
|
||||
self.matrix = np.zeros((nc + 1, nc + 1))
|
||||
self.nc = nc # number of classes
|
||||
self.conf = conf
|
||||
self.iou_thres = iou_thres
|
||||
|
||||
def process_batch(self, detections, labels):
|
||||
"""
|
||||
Return intersection-over-union (Jaccard index) of boxes.
|
||||
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||||
Arguments:
|
||||
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
||||
labels (Array[M, 5]), class, x1, y1, x2, y2
|
||||
Returns:
|
||||
None, updates confusion matrix accordingly
|
||||
"""
|
||||
if detections is None:
|
||||
gt_classes = labels.int()
|
||||
for gc in gt_classes:
|
||||
self.matrix[self.nc, gc] += 1 # background FN
|
||||
return
|
||||
|
||||
detections = detections[detections[:, 4] > self.conf]
|
||||
gt_classes = labels[:, 0].int()
|
||||
detection_classes = detections[:, 5].int()
|
||||
iou = box_iou(labels[:, 1:], detections[:, :4])
|
||||
|
||||
x = torch.where(iou > self.iou_thres)
|
||||
if x[0].shape[0]:
|
||||
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
|
||||
if x[0].shape[0] > 1:
|
||||
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
||||
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
||||
else:
|
||||
matches = np.zeros((0, 3))
|
||||
|
||||
n = matches.shape[0] > 0
|
||||
m0, m1, _ = matches.transpose().astype(int)
|
||||
for i, gc in enumerate(gt_classes):
|
||||
j = m0 == i
|
||||
if n and sum(j) == 1:
|
||||
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
|
||||
else:
|
||||
self.matrix[self.nc, gc] += 1 # background FP
|
||||
|
||||
if n:
|
||||
for i, dc in enumerate(detection_classes):
|
||||
if not any(m1 == i):
|
||||
self.matrix[dc, self.nc] += 1 # background FN
|
||||
|
||||
def matrix(self):
|
||||
return self.matrix
|
||||
|
||||
def tp_fp(self):
|
||||
tp = self.matrix.diagonal() # true positives
|
||||
fp = self.matrix.sum(1) - tp # false positives
|
||||
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
|
||||
return tp[:-1], fp[:-1] # remove background class
|
||||
|
||||
@TryExcept('WARNING: ConfusionMatrix plot failure: ')
|
||||
def plot(self, normalize=True, save_dir='', names=()):
|
||||
import seaborn as sn
|
||||
|
||||
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns
|
||||
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
|
||||
|
||||
fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
|
||||
nc, nn = self.nc, len(names) # number of classes, names
|
||||
sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size
|
||||
labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
|
||||
sn.heatmap(array,
|
||||
ax=ax,
|
||||
annot=nc < 30,
|
||||
annot_kws={
|
||||
"size": 8},
|
||||
cmap='Blues',
|
||||
fmt='.2f',
|
||||
square=True,
|
||||
vmin=0.0,
|
||||
xticklabels=names + ['background FP'] if labels else "auto",
|
||||
yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
|
||||
ax.set_ylabel('True')
|
||||
ax.set_ylabel('Predicted')
|
||||
ax.set_title('Confusion Matrix')
|
||||
#fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
|
||||
plt.close(fig)
|
||||
|
||||
def print(self):
|
||||
for i in range(self.nc + 1):
|
||||
print(' '.join(map(str, self.matrix[i])))
|
||||
|
||||
|
||||
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
|
||||
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
|
||||
|
||||
# Get the coordinates of bounding boxes
|
||||
if xywh: # transform from xywh to xyxy
|
||||
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, 1), box2.chunk(4, 1)
|
||||
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
|
||||
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
|
||||
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
|
||||
else: # x1, y1, x2, y2 = box1
|
||||
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, 1)
|
||||
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, 1)
|
||||
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1
|
||||
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1
|
||||
|
||||
# Intersection area
|
||||
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
||||
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
||||
|
||||
# Union Area
|
||||
union = w1 * h1 + w2 * h2 - inter + eps
|
||||
|
||||
# IoU
|
||||
iou = inter / union
|
||||
if CIoU or DIoU or GIoU:
|
||||
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
|
||||
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
|
||||
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
||||
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
||||
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
|
||||
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
||||
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2)
|
||||
with torch.no_grad():
|
||||
alpha = v / (v - iou + (1 + eps))
|
||||
return iou - (rho2 / c2 + v * alpha) # CIoU
|
||||
return iou - rho2 / c2 # DIoU
|
||||
c_area = cw * ch + eps # convex area
|
||||
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
||||
return iou # IoU
|
||||
|
||||
|
||||
def box_area(box):
|
||||
# box = xyxy(4,n)
|
||||
return (box[2] - box[0]) * (box[3] - box[1])
|
||||
|
||||
|
||||
def box_iou(box1, box2, eps=1e-7):
|
||||
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
||||
"""
|
||||
Return intersection-over-union (Jaccard index) of boxes.
|
||||
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||||
Arguments:
|
||||
box1 (Tensor[N, 4])
|
||||
box2 (Tensor[M, 4])
|
||||
Returns:
|
||||
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
||||
IoU values for every element in boxes1 and boxes2
|
||||
"""
|
||||
|
||||
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
||||
(a1, a2), (b1, b2) = box1[:, None].chunk(2, 2), box2.chunk(2, 1)
|
||||
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
|
||||
|
||||
# IoU = inter / (area1 + area2 - inter)
|
||||
return inter / (box_area(box1.T)[:, None] + box_area(box2.T) - inter + eps)
|
||||
|
||||
|
||||
def bbox_ioa(box1, box2, eps=1e-7):
|
||||
""" Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
|
||||
box1: np.array of shape(4)
|
||||
box2: np.array of shape(nx4)
|
||||
returns: np.array of shape(n)
|
||||
"""
|
||||
|
||||
# Get the coordinates of bounding boxes
|
||||
b1_x1, b1_y1, b1_x2, b1_y2 = box1
|
||||
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
|
||||
|
||||
# Intersection area
|
||||
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
|
||||
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
|
||||
|
||||
# box2 area
|
||||
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
|
||||
|
||||
# Intersection over box2 area
|
||||
return inter_area / box2_area
|
||||
|
||||
|
||||
def wh_iou(wh1, wh2, eps=1e-7):
|
||||
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
|
||||
wh1 = wh1[:, None] # [N,1,2]
|
||||
wh2 = wh2[None] # [1,M,2]
|
||||
inter = torch.min(wh1, wh2).prod(2) # [N,M]
|
||||
return inter / (wh1.prod(2) + wh2.prod(2) - inter + eps) # iou = inter / (area1 + area2 - inter)
|
||||
|
||||
|
||||
# Plots ----------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
@threaded
|
||||
def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()):
|
||||
# Precision-recall curve
|
||||
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
||||
py = np.stack(py, axis=1)
|
||||
|
||||
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
||||
for i, y in enumerate(py.T):
|
||||
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
|
||||
else:
|
||||
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
|
||||
|
||||
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
|
||||
ax.set_xlabel('Recall')
|
||||
ax.set_ylabel('Precision')
|
||||
ax.set_xlim(0, 1)
|
||||
ax.set_ylim(0, 1)
|
||||
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
||||
ax.set_title('Precision-Recall Curve')
|
||||
fig.savefig(save_dir, dpi=250)
|
||||
plt.close(fig)
|
||||
|
||||
|
||||
@threaded
|
||||
def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'):
|
||||
# Metric-confidence curve
|
||||
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
||||
|
||||
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
||||
for i, y in enumerate(py):
|
||||
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
|
||||
else:
|
||||
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
|
||||
|
||||
y = smooth(py.mean(0), 0.05)
|
||||
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
|
||||
ax.set_xlabel(xlabel)
|
||||
ax.set_ylabel(ylabel)
|
||||
ax.set_xlim(0, 1)
|
||||
ax.set_ylim(0, 1)
|
||||
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
||||
ax.set_title(f'{ylabel}-Confidence Curve')
|
||||
fig.savefig(save_dir, dpi=250)
|
||||
plt.close(fig)
|
519
app/yolov5/utils/plots.py
Normal file
519
app/yolov5/utils/plots.py
Normal file
@ -0,0 +1,519 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
Plotting utils
|
||||
"""
|
||||
|
||||
import contextlib
|
||||
import math
|
||||
import os
|
||||
from copy import copy
|
||||
from pathlib import Path
|
||||
from urllib.error import URLError
|
||||
|
||||
import cv2
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import seaborn as sn
|
||||
import torch
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
|
||||
from app.yolov5.utils import TryExcept, threaded
|
||||
from app.yolov5.utils.general import (CONFIG_DIR, FONT, LOGGER, check_font, check_requirements, clip_coords, increment_path,
|
||||
is_ascii, xywh2xyxy, xyxy2xywh)
|
||||
from app.yolov5.utils.metrics import fitness
|
||||
|
||||
# Settings
|
||||
RANK = int(os.getenv('RANK', -1))
|
||||
matplotlib.rc('font', **{'size': 11})
|
||||
matplotlib.use('Agg') # for writing to files only
|
||||
|
||||
|
||||
class Colors:
|
||||
# Ultralytics color palette https://ultralytics.com/
|
||||
def __init__(self):
|
||||
# hex = matplotlib.colors.TABLEAU_COLORS.values()
|
||||
hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
|
||||
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
|
||||
self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
|
||||
self.n = len(self.palette)
|
||||
|
||||
def __call__(self, i, bgr=False):
|
||||
c = self.palette[int(i) % self.n]
|
||||
return (c[2], c[1], c[0]) if bgr else c
|
||||
|
||||
@staticmethod
|
||||
def hex2rgb(h): # rgb order (PIL)
|
||||
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
|
||||
|
||||
|
||||
colors = Colors() # create instance for 'from utils.plots import colors'
|
||||
|
||||
|
||||
def check_pil_font(font=FONT, size=10):
|
||||
# Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary
|
||||
font = Path(font)
|
||||
font = font if font.exists() else (CONFIG_DIR / font.name)
|
||||
try:
|
||||
return ImageFont.truetype(str(font) if font.exists() else font.name, size)
|
||||
except Exception: # download if missing
|
||||
try:
|
||||
check_font(font)
|
||||
return ImageFont.truetype(str(font), size)
|
||||
except TypeError:
|
||||
check_requirements('Pillow>=8.4.0') # known issue https://github.com/ultralytics/yolov5/issues/5374
|
||||
except URLError: # not online
|
||||
return ImageFont.load_default()
|
||||
|
||||
|
||||
class Annotator:
|
||||
# YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
|
||||
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
|
||||
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
|
||||
non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic
|
||||
self.pil = pil or non_ascii
|
||||
if self.pil: # use PIL
|
||||
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
|
||||
self.draw = ImageDraw.Draw(self.im)
|
||||
self.font = check_pil_font(font='Arial.Unicode.ttf' if non_ascii else font,
|
||||
size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12))
|
||||
else: # use cv2
|
||||
self.im = im
|
||||
self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width
|
||||
|
||||
def box_label(self, box, label='', color=(128, 128, 128), txt_color=(0, 255, 0)):
|
||||
# Add one xyxy box to image with label
|
||||
if self.pil or not is_ascii(label):
|
||||
self.draw.rectangle(box, width=self.lw, outline=color) # box
|
||||
if label:
|
||||
w, h = self.font.getsize(label) # text width, height
|
||||
outside = box[1] - h >= 0 # label fits outside box
|
||||
self.draw.rectangle(
|
||||
(box[0], box[1] - h if outside else box[1], box[0] + w + 1,
|
||||
box[1] + 1 if outside else box[1] + h + 1),
|
||||
fill=color,
|
||||
)
|
||||
# self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0
|
||||
self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
|
||||
else: # cv2
|
||||
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
|
||||
cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
|
||||
if label:
|
||||
tf = max(self.lw - 1, 1) # font thickness
|
||||
w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height
|
||||
outside = p1[1] - h >= 3
|
||||
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
|
||||
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled
|
||||
cv2.putText(self.im,
|
||||
label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
|
||||
0,
|
||||
self.lw / 3,
|
||||
txt_color,
|
||||
thickness=tf,
|
||||
lineType=cv2.LINE_AA)
|
||||
|
||||
def rectangle(self, xy, fill=None, outline=None, width=1):
|
||||
# Add rectangle to image (PIL-only)
|
||||
self.draw.rectangle(xy, fill, outline, width)
|
||||
|
||||
def text(self, xy, text, txt_color=(255, 255, 255), anchor='top'):
|
||||
# Add text to image (PIL-only)
|
||||
if anchor == 'bottom': # start y from font bottom
|
||||
w, h = self.font.getsize(text) # text width, height
|
||||
xy[1] += 1 - h
|
||||
self.draw.text(xy, text, fill=txt_color, font=self.font)
|
||||
|
||||
def result(self):
|
||||
# Return annotated image as array
|
||||
return np.asarray(self.im)
|
||||
|
||||
|
||||
def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
|
||||
"""
|
||||
x: Features to be visualized
|
||||
module_type: Module type
|
||||
stage: Module stage within model
|
||||
n: Maximum number of feature maps to plot
|
||||
save_dir: Directory to save results
|
||||
"""
|
||||
if 'Detect' not in module_type:
|
||||
batch, channels, height, width = x.shape # batch, channels, height, width
|
||||
if height > 1 and width > 1:
|
||||
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
|
||||
|
||||
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
|
||||
n = min(n, channels) # number of plots
|
||||
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
|
||||
ax = ax.ravel()
|
||||
plt.subplots_adjust(wspace=0.05, hspace=0.05)
|
||||
for i in range(n):
|
||||
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
|
||||
ax[i].axis('off')
|
||||
|
||||
LOGGER.info(f'Saving {f}... ({n}/{channels})')
|
||||
plt.title('Features')
|
||||
plt.savefig(f, dpi=300, bbox_inches='tight')
|
||||
plt.close()
|
||||
np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save
|
||||
|
||||
|
||||
def hist2d(x, y, n=100):
|
||||
# 2d histogram used in labels.png and evolve.png
|
||||
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
|
||||
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
|
||||
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
|
||||
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
|
||||
return np.log(hist[xidx, yidx])
|
||||
|
||||
|
||||
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
|
||||
from scipy.signal import butter, filtfilt
|
||||
|
||||
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
|
||||
def butter_lowpass(cutoff, fs, order):
|
||||
nyq = 0.5 * fs
|
||||
normal_cutoff = cutoff / nyq
|
||||
return butter(order, normal_cutoff, btype='low', analog=False)
|
||||
|
||||
b, a = butter_lowpass(cutoff, fs, order=order)
|
||||
return filtfilt(b, a, data) # forward-backward filter
|
||||
|
||||
|
||||
def output_to_target(output):
|
||||
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
|
||||
targets = []
|
||||
for i, o in enumerate(output):
|
||||
targets.extend([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf] for *box, conf, cls in o.cpu().numpy())
|
||||
return np.array(targets)
|
||||
|
||||
|
||||
@threaded
|
||||
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=1920, max_subplots=16):
|
||||
# Plot image grid with labels
|
||||
if isinstance(images, torch.Tensor):
|
||||
images = images.cpu().float().numpy()
|
||||
if isinstance(targets, torch.Tensor):
|
||||
targets = targets.cpu().numpy()
|
||||
if np.max(images[0]) <= 1:
|
||||
images *= 255 # de-normalise (optional)
|
||||
bs, _, h, w = images.shape # batch size, _, height, width
|
||||
bs = min(bs, max_subplots) # limit plot images
|
||||
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
||||
|
||||
# Build Image
|
||||
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
|
||||
for i, im in enumerate(images):
|
||||
if i == max_subplots: # if last batch has fewer images than we expect
|
||||
break
|
||||
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
||||
im = im.transpose(1, 2, 0)
|
||||
mosaic[y:y + h, x:x + w, :] = im
|
||||
|
||||
# Resize (optional)
|
||||
scale = max_size / ns / max(h, w)
|
||||
if scale < 1:
|
||||
h = math.ceil(scale * h)
|
||||
w = math.ceil(scale * w)
|
||||
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
|
||||
|
||||
# Annotate
|
||||
fs = int((h + w) * ns * 0.01) # font size
|
||||
annotator = Annotator(mosaic, line_width=round(fs/5), font_size=fs*2, pil=True, example=names)
|
||||
for i in range(i + 1):
|
||||
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
||||
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
|
||||
if paths:
|
||||
annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
|
||||
if len(targets) > 0:
|
||||
ti = targets[targets[:, 0] == i] # image targets
|
||||
boxes = xywh2xyxy(ti[:, 2:6]).T
|
||||
classes = ti[:, 1].astype('int')
|
||||
labels = ti.shape[1] == 6 # labels if no conf column
|
||||
conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
|
||||
|
||||
if boxes.shape[1]:
|
||||
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
||||
boxes[[0, 2]] *= w # scale to pixels
|
||||
boxes[[1, 3]] *= h
|
||||
elif scale < 1: # absolute coords need scale if image scales
|
||||
boxes *= scale
|
||||
boxes[[0, 2]] += x
|
||||
boxes[[1, 3]] += y
|
||||
for j, box in enumerate(boxes.T.tolist()):
|
||||
cls = classes[j]
|
||||
color = colors(cls)
|
||||
cls = names[cls] if names else cls
|
||||
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
||||
label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
|
||||
annotator.box_label(box, label, color=color)
|
||||
annotator.im.save(fname) # save
|
||||
|
||||
|
||||
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
|
||||
# Plot LR simulating training for full epochs
|
||||
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
|
||||
y = []
|
||||
for _ in range(epochs):
|
||||
scheduler.step()
|
||||
y.append(optimizer.param_groups[0]['lr'])
|
||||
plt.plot(y, '.-', label='LR')
|
||||
plt.xlabel('epoch')
|
||||
plt.ylabel('LR')
|
||||
plt.grid()
|
||||
plt.xlim(0, epochs)
|
||||
plt.ylim(0)
|
||||
plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
|
||||
plt.close()
|
||||
|
||||
|
||||
def plot_val_txt(): # from utils.plots import *; plot_val()
|
||||
# Plot val.txt histograms
|
||||
x = np.loadtxt('val.txt', dtype=np.float32)
|
||||
box = xyxy2xywh(x[:, :4])
|
||||
cx, cy = box[:, 0], box[:, 1]
|
||||
|
||||
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
|
||||
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
|
||||
ax.set_aspect('equal')
|
||||
plt.savefig('hist2d.png', dpi=300)
|
||||
|
||||
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
|
||||
ax[0].hist(cx, bins=600)
|
||||
ax[1].hist(cy, bins=600)
|
||||
plt.savefig('hist1d.png', dpi=200)
|
||||
|
||||
|
||||
def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
|
||||
# Plot targets.txt histograms
|
||||
x = np.loadtxt('targets.txt', dtype=np.float32).T
|
||||
s = ['x targets', 'y targets', 'width targets', 'height targets']
|
||||
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
|
||||
ax = ax.ravel()
|
||||
for i in range(4):
|
||||
ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}')
|
||||
ax[i].legend()
|
||||
ax[i].set_title(s[i])
|
||||
plt.savefig('targets.jpg', dpi=200)
|
||||
|
||||
|
||||
def plot_val_study(file='', dir='', x=None): # from utils.plots import *; plot_val_study()
|
||||
# Plot file=study.txt generated by val.py (or plot all study*.txt in dir)
|
||||
save_dir = Path(file).parent if file else Path(dir)
|
||||
plot2 = False # plot additional results
|
||||
if plot2:
|
||||
ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
|
||||
|
||||
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
|
||||
# for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
|
||||
for f in sorted(save_dir.glob('study*.txt')):
|
||||
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
|
||||
x = np.arange(y.shape[1]) if x is None else np.array(x)
|
||||
if plot2:
|
||||
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)']
|
||||
for i in range(7):
|
||||
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
|
||||
ax[i].set_title(s[i])
|
||||
|
||||
j = y[3].argmax() + 1
|
||||
ax2.plot(y[5, 1:j],
|
||||
y[3, 1:j] * 1E2,
|
||||
'.-',
|
||||
linewidth=2,
|
||||
markersize=8,
|
||||
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
|
||||
|
||||
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
|
||||
'k.-',
|
||||
linewidth=2,
|
||||
markersize=8,
|
||||
alpha=.25,
|
||||
label='EfficientDet')
|
||||
|
||||
ax2.grid(alpha=0.2)
|
||||
ax2.set_yticks(np.arange(20, 60, 5))
|
||||
ax2.set_xlim(0, 57)
|
||||
ax2.set_ylim(25, 55)
|
||||
ax2.set_xlabel('GPU Speed (ms/img)')
|
||||
ax2.set_ylabel('COCO AP val')
|
||||
ax2.legend(loc='lower right')
|
||||
f = save_dir / 'study.png'
|
||||
print(f'Saving {f}...')
|
||||
plt.savefig(f, dpi=300)
|
||||
|
||||
|
||||
@TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395
|
||||
def plot_labels(labels, names=(), save_dir=Path('')):
|
||||
# plot dataset labels
|
||||
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
|
||||
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
|
||||
nc = int(c.max() + 1) # number of classes
|
||||
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
|
||||
|
||||
# seaborn correlogram
|
||||
sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
|
||||
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
|
||||
plt.close()
|
||||
|
||||
# matplotlib labels
|
||||
matplotlib.use('svg') # faster
|
||||
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
|
||||
y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
|
||||
with contextlib.suppress(Exception): # color histogram bars by class
|
||||
[y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195
|
||||
ax[0].set_ylabel('instances')
|
||||
if 0 < len(names) < 30:
|
||||
ax[0].set_xticks(range(len(names)))
|
||||
ax[0].set_xticklabels(names, rotation=90, fontsize=10)
|
||||
else:
|
||||
ax[0].set_xlabel('classes')
|
||||
sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
|
||||
sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
|
||||
|
||||
# rectangles
|
||||
labels[:, 1:3] = 0.5 # center
|
||||
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
|
||||
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
|
||||
for cls, *box in labels[:1000]:
|
||||
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
|
||||
ax[1].imshow(img)
|
||||
ax[1].axis('off')
|
||||
|
||||
for a in [0, 1, 2, 3]:
|
||||
for s in ['top', 'right', 'left', 'bottom']:
|
||||
ax[a].spines[s].set_visible(False)
|
||||
|
||||
plt.savefig(save_dir / 'labels.jpg', dpi=200)
|
||||
matplotlib.use('Agg')
|
||||
plt.close()
|
||||
|
||||
|
||||
def imshow_cls(im, labels=None, pred=None, names=None, nmax=25, verbose=False, f=Path('images.jpg')):
|
||||
# Show classification image grid with labels (optional) and predictions (optional)
|
||||
from yolov5.utils.augmentations import denormalize
|
||||
|
||||
names = names or [f'class{i}' for i in range(1000)]
|
||||
blocks = torch.chunk(denormalize(im.clone()).cpu().float(), len(im),
|
||||
dim=0) # select batch index 0, block by channels
|
||||
n = min(len(blocks), nmax) # number of plots
|
||||
m = min(8, round(n ** 0.5)) # 8 x 8 default
|
||||
fig, ax = plt.subplots(math.ceil(n / m), m) # 8 rows x n/8 cols
|
||||
ax = ax.ravel() if m > 1 else [ax]
|
||||
# plt.subplots_adjust(wspace=0.05, hspace=0.05)
|
||||
for i in range(n):
|
||||
ax[i].imshow(blocks[i].squeeze().permute((1, 2, 0)).numpy().clip(0.0, 1.0))
|
||||
ax[i].axis('off')
|
||||
if labels is not None:
|
||||
s = names[labels[i]] + (f'—{names[pred[i]]}' if pred is not None else '')
|
||||
ax[i].set_title(s, fontsize=8, verticalalignment='top')
|
||||
plt.savefig(f, dpi=300, bbox_inches='tight')
|
||||
plt.close()
|
||||
if verbose:
|
||||
LOGGER.info(f"Saving {f}")
|
||||
if labels is not None:
|
||||
LOGGER.info('True: ' + ' '.join(f'{names[i]:3s}' for i in labels[:nmax]))
|
||||
if pred is not None:
|
||||
LOGGER.info('Predicted:' + ' '.join(f'{names[i]:3s}' for i in pred[:nmax]))
|
||||
return f
|
||||
|
||||
|
||||
def plot_evolve(evolve_csv='path/to/evolve.csv'): # from utils.plots import *; plot_evolve()
|
||||
# Plot evolve.csv hyp evolution results
|
||||
evolve_csv = Path(evolve_csv)
|
||||
data = pd.read_csv(evolve_csv)
|
||||
keys = [x.strip() for x in data.columns]
|
||||
x = data.values
|
||||
f = fitness(x)
|
||||
j = np.argmax(f) # max fitness index
|
||||
plt.figure(figsize=(10, 12), tight_layout=True)
|
||||
matplotlib.rc('font', **{'size': 8})
|
||||
print(f'Best results from row {j} of {evolve_csv}:')
|
||||
for i, k in enumerate(keys[7:]):
|
||||
v = x[:, 7 + i]
|
||||
mu = v[j] # best single result
|
||||
plt.subplot(6, 5, i + 1)
|
||||
plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
|
||||
plt.plot(mu, f.max(), 'k+', markersize=15)
|
||||
plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9}) # limit to 40 characters
|
||||
if i % 5 != 0:
|
||||
plt.yticks([])
|
||||
print(f'{k:>15}: {mu:.3g}')
|
||||
f = evolve_csv.with_suffix('.png') # filename
|
||||
plt.savefig(f, dpi=200)
|
||||
plt.close()
|
||||
print(f'Saved {f}')
|
||||
|
||||
|
||||
def plot_results(file='path/to/results.csv', dir=''):
|
||||
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
|
||||
save_dir = Path(file).parent if file else Path(dir)
|
||||
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
|
||||
ax = ax.ravel()
|
||||
files = list(save_dir.glob('results*.csv'))
|
||||
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
|
||||
for f in files:
|
||||
try:
|
||||
data = pd.read_csv(f)
|
||||
s = [x.strip() for x in data.columns]
|
||||
x = data.values[:, 0]
|
||||
for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
|
||||
y = data.values[:, j].astype('float')
|
||||
# y[y == 0] = np.nan # don't show zero values
|
||||
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
|
||||
ax[i].set_title(s[j], fontsize=12)
|
||||
# if j in [8, 9, 10]: # share train and val loss y axes
|
||||
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
||||
except Exception as e:
|
||||
LOGGER.info(f'Warning: Plotting error for {f}: {e}')
|
||||
ax[1].legend()
|
||||
fig.savefig(save_dir / 'results.png', dpi=200)
|
||||
plt.close()
|
||||
|
||||
|
||||
def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
|
||||
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
|
||||
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
|
||||
s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
|
||||
files = list(Path(save_dir).glob('frames*.txt'))
|
||||
for fi, f in enumerate(files):
|
||||
try:
|
||||
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
|
||||
n = results.shape[1] # number of rows
|
||||
x = np.arange(start, min(stop, n) if stop else n)
|
||||
results = results[:, x]
|
||||
t = (results[0] - results[0].min()) # set t0=0s
|
||||
results[0] = x
|
||||
for i, a in enumerate(ax):
|
||||
if i < len(results):
|
||||
label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
|
||||
a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
|
||||
a.set_title(s[i])
|
||||
a.set_xlabel('time (s)')
|
||||
# if fi == len(files) - 1:
|
||||
# a.set_ylim(bottom=0)
|
||||
for side in ['top', 'right']:
|
||||
a.spines[side].set_visible(False)
|
||||
else:
|
||||
a.remove()
|
||||
except Exception as e:
|
||||
print(f'Warning: Plotting error for {f}; {e}')
|
||||
ax[1].legend()
|
||||
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
|
||||
|
||||
|
||||
def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True):
|
||||
# Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
|
||||
xyxy = torch.tensor(xyxy).view(-1, 4)
|
||||
b = xyxy2xywh(xyxy) # boxes
|
||||
if square:
|
||||
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
|
||||
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
|
||||
xyxy = xywh2xyxy(b).long()
|
||||
clip_coords(xyxy, im.shape)
|
||||
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
|
||||
if save:
|
||||
file.parent.mkdir(parents=True, exist_ok=True) # make directory
|
||||
f = str(increment_path(file).with_suffix('.jpg'))
|
||||
# cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
|
||||
Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB
|
||||
return crop
|
430
app/yolov5/utils/torch_utils.py
Normal file
430
app/yolov5/utils/torch_utils.py
Normal file
@ -0,0 +1,430 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
"""
|
||||
PyTorch utils
|
||||
"""
|
||||
|
||||
import math
|
||||
import os
|
||||
import platform
|
||||
import subprocess
|
||||
import time
|
||||
import warnings
|
||||
from contextlib import contextmanager
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
|
||||
from app.yolov5.utils.general import LOGGER, check_version, colorstr, file_date, git_describe
|
||||
|
||||
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
||||
RANK = int(os.getenv('RANK', -1))
|
||||
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
|
||||
|
||||
try:
|
||||
import thop # for FLOPs computation
|
||||
except ImportError:
|
||||
thop = None
|
||||
|
||||
# Suppress PyTorch warnings
|
||||
warnings.filterwarnings('ignore', message='User provided device_type of \'cuda\', but CUDA is not available. Disabling')
|
||||
|
||||
|
||||
def smart_inference_mode(torch_1_9=check_version(torch.__version__, '1.9.0')):
|
||||
# Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator
|
||||
def decorate(fn):
|
||||
return (torch.inference_mode if torch_1_9 else torch.no_grad)()(fn)
|
||||
|
||||
return decorate
|
||||
|
||||
|
||||
def smartCrossEntropyLoss(label_smoothing=0.0):
|
||||
# Returns nn.CrossEntropyLoss with label smoothing enabled for torch>=1.10.0
|
||||
if check_version(torch.__version__, '1.10.0'):
|
||||
return nn.CrossEntropyLoss(label_smoothing=label_smoothing)
|
||||
if label_smoothing > 0:
|
||||
LOGGER.warning(f'WARNING: label smoothing {label_smoothing} requires torch>=1.10.0')
|
||||
return nn.CrossEntropyLoss()
|
||||
|
||||
|
||||
def smart_DDP(model):
|
||||
# Model DDP creation with checks
|
||||
assert not check_version(torch.__version__, '1.12.0', pinned=True), \
|
||||
'torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. ' \
|
||||
'Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395'
|
||||
if check_version(torch.__version__, '1.11.0'):
|
||||
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True)
|
||||
else:
|
||||
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
|
||||
|
||||
|
||||
def reshape_classifier_output(model, n=1000):
|
||||
# Update a TorchVision classification model to class count 'n' if required
|
||||
from models.common import Classify
|
||||
name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module
|
||||
if isinstance(m, Classify): # YOLOv5 Classify() head
|
||||
if m.linear.out_features != n:
|
||||
m.linear = nn.Linear(m.linear.in_features, n)
|
||||
elif isinstance(m, nn.Linear): # ResNet, EfficientNet
|
||||
if m.out_features != n:
|
||||
setattr(model, name, nn.Linear(m.in_features, n))
|
||||
elif isinstance(m, nn.Sequential):
|
||||
types = [type(x) for x in m]
|
||||
if nn.Linear in types:
|
||||
i = types.index(nn.Linear) # nn.Linear index
|
||||
if m[i].out_features != n:
|
||||
m[i] = nn.Linear(m[i].in_features, n)
|
||||
elif nn.Conv2d in types:
|
||||
i = types.index(nn.Conv2d) # nn.Conv2d index
|
||||
if m[i].out_channels != n:
|
||||
m[i] = nn.Conv2d(m[i].in_channels, n, m[i].kernel_size, m[i].stride, bias=m[i].bias)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def torch_distributed_zero_first(local_rank: int):
|
||||
# Decorator to make all processes in distributed training wait for each local_master to do something
|
||||
if local_rank not in [-1, 0]:
|
||||
dist.barrier(device_ids=[local_rank])
|
||||
yield
|
||||
if local_rank == 0:
|
||||
dist.barrier(device_ids=[0])
|
||||
|
||||
|
||||
def device_count():
|
||||
# Returns number of CUDA devices available. Safe version of torch.cuda.device_count(). Supports Linux and Windows
|
||||
assert platform.system() in ('Linux', 'Windows'), 'device_count() only supported on Linux or Windows'
|
||||
try:
|
||||
cmd = 'nvidia-smi -L | wc -l' if platform.system() == 'Linux' else 'nvidia-smi -L | find /c /v ""' # Windows
|
||||
return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1])
|
||||
except Exception:
|
||||
return 0
|
||||
|
||||
|
||||
def select_device(device='', batch_size=0, newline=True):
|
||||
# device = None or 'cpu' or 0 or '0' or '0,1,2,3'
|
||||
s = f'YOLOv5 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} '
|
||||
device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0'
|
||||
cpu = device == 'cpu'
|
||||
mps = device == 'mps' # Apple Metal Performance Shaders (MPS)
|
||||
if cpu or mps:
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
|
||||
elif device: # non-cpu device requested
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available()
|
||||
print(torch.cuda.is_available())
|
||||
assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
|
||||
f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
|
||||
|
||||
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
|
||||
devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
|
||||
n = len(devices) # device count
|
||||
if n > 1 and batch_size > 0: # check batch_size is divisible by device_count
|
||||
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
|
||||
space = ' ' * (len(s) + 1)
|
||||
for i, d in enumerate(devices):
|
||||
p = torch.cuda.get_device_properties(i)
|
||||
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB
|
||||
arg = 'cuda:0'
|
||||
elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available(): # prefer MPS if available
|
||||
s += 'MPS\n'
|
||||
arg = 'mps'
|
||||
else: # revert to CPU
|
||||
s += 'CPU\n'
|
||||
arg = 'cpu'
|
||||
|
||||
if not newline:
|
||||
s = s.rstrip()
|
||||
LOGGER.info(s)
|
||||
return torch.device(arg)
|
||||
|
||||
|
||||
def time_sync():
|
||||
# PyTorch-accurate time
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
return time.time()
|
||||
|
||||
|
||||
def profile(input, ops, n=10, device=None):
|
||||
""" YOLOv5 speed/memory/FLOPs profiler
|
||||
Usage:
|
||||
input = torch.randn(16, 3, 640, 640)
|
||||
m1 = lambda x: x * torch.sigmoid(x)
|
||||
m2 = nn.SiLU()
|
||||
profile(input, [m1, m2], n=100) # profile over 100 iterations
|
||||
"""
|
||||
results = []
|
||||
if not isinstance(device, torch.device):
|
||||
device = select_device(device)
|
||||
print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
|
||||
f"{'input':>24s}{'output':>24s}")
|
||||
|
||||
for x in input if isinstance(input, list) else [input]:
|
||||
x = x.to(device)
|
||||
x.requires_grad = True
|
||||
for m in ops if isinstance(ops, list) else [ops]:
|
||||
m = m.to(device) if hasattr(m, 'to') else m # device
|
||||
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
|
||||
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
|
||||
try:
|
||||
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs
|
||||
except Exception:
|
||||
flops = 0
|
||||
|
||||
try:
|
||||
for _ in range(n):
|
||||
t[0] = time_sync()
|
||||
y = m(x)
|
||||
t[1] = time_sync()
|
||||
try:
|
||||
_ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
|
||||
t[2] = time_sync()
|
||||
except Exception: # no backward method
|
||||
# print(e) # for debug
|
||||
t[2] = float('nan')
|
||||
tf += (t[1] - t[0]) * 1000 / n # ms per op forward
|
||||
tb += (t[2] - t[1]) * 1000 / n # ms per op backward
|
||||
mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB)
|
||||
s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes
|
||||
p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters
|
||||
print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
|
||||
results.append([p, flops, mem, tf, tb, s_in, s_out])
|
||||
except Exception as e:
|
||||
print(e)
|
||||
results.append(None)
|
||||
torch.cuda.empty_cache()
|
||||
return results
|
||||
|
||||
|
||||
def is_parallel(model):
|
||||
# Returns True if model is of type DP or DDP
|
||||
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
||||
|
||||
|
||||
def de_parallel(model):
|
||||
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP
|
||||
return model.module if is_parallel(model) else model
|
||||
|
||||
|
||||
def initialize_weights(model):
|
||||
for m in model.modules():
|
||||
t = type(m)
|
||||
if t is nn.Conv2d:
|
||||
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
elif t is nn.BatchNorm2d:
|
||||
m.eps = 1e-3
|
||||
m.momentum = 0.03
|
||||
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
|
||||
m.inplace = True
|
||||
|
||||
|
||||
def find_modules(model, mclass=nn.Conv2d):
|
||||
# Finds layer indices matching module class 'mclass'
|
||||
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
|
||||
|
||||
|
||||
def sparsity(model):
|
||||
# Return global model sparsity
|
||||
a, b = 0, 0
|
||||
for p in model.parameters():
|
||||
a += p.numel()
|
||||
b += (p == 0).sum()
|
||||
return b / a
|
||||
|
||||
|
||||
def prune(model, amount=0.3):
|
||||
# Prune model to requested global sparsity
|
||||
import torch.nn.utils.prune as prune
|
||||
for name, m in model.named_modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
prune.l1_unstructured(m, name='weight', amount=amount) # prune
|
||||
prune.remove(m, 'weight') # make permanent
|
||||
LOGGER.info(f'Model pruned to {sparsity(model):.3g} global sparsity')
|
||||
|
||||
|
||||
def fuse_conv_and_bn(conv, bn):
|
||||
# Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
|
||||
fusedconv = nn.Conv2d(conv.in_channels,
|
||||
conv.out_channels,
|
||||
kernel_size=conv.kernel_size,
|
||||
stride=conv.stride,
|
||||
padding=conv.padding,
|
||||
groups=conv.groups,
|
||||
bias=True).requires_grad_(False).to(conv.weight.device)
|
||||
|
||||
# Prepare filters
|
||||
w_conv = conv.weight.clone().view(conv.out_channels, -1)
|
||||
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
||||
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
|
||||
|
||||
# Prepare spatial bias
|
||||
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
|
||||
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
||||
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
||||
|
||||
return fusedconv
|
||||
|
||||
|
||||
def model_info(model, verbose=False, imgsz=640):
|
||||
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
|
||||
n_p = sum(x.numel() for x in model.parameters()) # number parameters
|
||||
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
|
||||
if verbose:
|
||||
print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
|
||||
for i, (name, p) in enumerate(model.named_parameters()):
|
||||
name = name.replace('module_list.', '')
|
||||
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
|
||||
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
|
||||
|
||||
try: # FLOPs
|
||||
p = next(model.parameters())
|
||||
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 # max stride
|
||||
im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
|
||||
flops = thop.profile(deepcopy(model), inputs=(im,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs
|
||||
imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float
|
||||
fs = f', {flops * imgsz[0] / stride * imgsz[1] / stride:.1f} GFLOPs' # 640x640 GFLOPs
|
||||
except Exception:
|
||||
fs = ''
|
||||
|
||||
name = Path(model.yaml_file).stem.replace('yolov5', 'YOLOv5') if hasattr(model, 'yaml_file') else 'Model'
|
||||
LOGGER.info(f"{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
|
||||
|
||||
|
||||
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
|
||||
# Scales img(bs,3,y,x) by ratio constrained to gs-multiple
|
||||
if ratio == 1.0:
|
||||
return img
|
||||
h, w = img.shape[2:]
|
||||
s = (int(h * ratio), int(w * ratio)) # new size
|
||||
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
|
||||
if not same_shape: # pad/crop img
|
||||
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
|
||||
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
|
||||
|
||||
|
||||
def copy_attr(a, b, include=(), exclude=()):
|
||||
# Copy attributes from b to a, options to only include [...] and to exclude [...]
|
||||
for k, v in b.__dict__.items():
|
||||
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
|
||||
continue
|
||||
else:
|
||||
setattr(a, k, v)
|
||||
|
||||
|
||||
def smart_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5):
|
||||
# YOLOv5 3-param group optimizer: 0) weights with decay, 1) weights no decay, 2) biases no decay
|
||||
g = [], [], [] # optimizer parameter groups
|
||||
bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d()
|
||||
for v in model.modules():
|
||||
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias (no decay)
|
||||
g[2].append(v.bias)
|
||||
if isinstance(v, bn): # weight (no decay)
|
||||
g[1].append(v.weight)
|
||||
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)
|
||||
g[0].append(v.weight)
|
||||
|
||||
if name == 'Adam':
|
||||
optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) # adjust beta1 to momentum
|
||||
elif name == 'AdamW':
|
||||
optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0)
|
||||
elif name == 'RMSProp':
|
||||
optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum)
|
||||
elif name == 'SGD':
|
||||
optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True)
|
||||
else:
|
||||
raise NotImplementedError(f'Optimizer {name} not implemented.')
|
||||
|
||||
optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay
|
||||
optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights)
|
||||
LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups "
|
||||
f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias")
|
||||
return optimizer
|
||||
|
||||
|
||||
def smart_hub_load(repo='ultralytics/yolov5', model='yolov5s', **kwargs):
|
||||
# YOLOv5 torch.hub.load() wrapper with smart error/issue handling
|
||||
if check_version(torch.__version__, '1.9.1'):
|
||||
kwargs['skip_validation'] = True # validation causes GitHub API rate limit errors
|
||||
if check_version(torch.__version__, '1.12.0'):
|
||||
kwargs['trust_repo'] = True # argument required starting in torch 0.12
|
||||
try:
|
||||
return torch.hub.load(repo, model, **kwargs)
|
||||
except Exception:
|
||||
return torch.hub.load(repo, model, force_reload=True, **kwargs)
|
||||
|
||||
|
||||
def smart_resume(ckpt, optimizer, ema=None, weights='yolov5s.pt', epochs=300, resume=True):
|
||||
# Resume training from a partially trained checkpoint
|
||||
best_fitness = 0.0
|
||||
start_epoch = ckpt['epoch'] + 1
|
||||
if ckpt['optimizer'] is not None:
|
||||
optimizer.load_state_dict(ckpt['optimizer']) # optimizer
|
||||
best_fitness = ckpt['best_fitness']
|
||||
if ema and ckpt.get('ema'):
|
||||
ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) # EMA
|
||||
ema.updates = ckpt['updates']
|
||||
if resume:
|
||||
assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.\n' \
|
||||
f"Start a new training without --resume, i.e. 'python train.py --weights {weights}'"
|
||||
LOGGER.info(f'Resuming training from {weights} from epoch {start_epoch} to {epochs} total epochs')
|
||||
if epochs < start_epoch:
|
||||
LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
|
||||
epochs += ckpt['epoch'] # finetune additional epochs
|
||||
return best_fitness, start_epoch, epochs
|
||||
|
||||
|
||||
class EarlyStopping:
|
||||
# YOLOv5 simple early stopper
|
||||
def __init__(self, patience=30):
|
||||
self.best_fitness = 0.0 # i.e. mAP
|
||||
self.best_epoch = 0
|
||||
self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop
|
||||
self.possible_stop = False # possible stop may occur next epoch
|
||||
|
||||
def __call__(self, epoch, fitness):
|
||||
if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training
|
||||
self.best_epoch = epoch
|
||||
self.best_fitness = fitness
|
||||
delta = epoch - self.best_epoch # epochs without improvement
|
||||
self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch
|
||||
stop = delta >= self.patience # stop training if patience exceeded
|
||||
if stop:
|
||||
LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. '
|
||||
f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n'
|
||||
f'To update EarlyStopping(patience={self.patience}) pass a new patience value, '
|
||||
f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.')
|
||||
return stop
|
||||
|
||||
|
||||
class ModelEMA:
|
||||
""" Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
|
||||
Keeps a moving average of everything in the model state_dict (parameters and buffers)
|
||||
For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
|
||||
"""
|
||||
|
||||
def __init__(self, model, decay=0.9999, tau=2000, updates=0):
|
||||
# Create EMA
|
||||
self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA
|
||||
self.updates = updates # number of EMA updates
|
||||
self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs)
|
||||
for p in self.ema.parameters():
|
||||
p.requires_grad_(False)
|
||||
|
||||
def update(self, model):
|
||||
# Update EMA parameters
|
||||
self.updates += 1
|
||||
d = self.decay(self.updates)
|
||||
|
||||
msd = de_parallel(model).state_dict() # model state_dict
|
||||
for k, v in self.ema.state_dict().items():
|
||||
if v.dtype.is_floating_point: # true for FP16 and FP32
|
||||
v *= d
|
||||
v += (1 - d) * msd[k].detach()
|
||||
# assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype} and model {msd[k].dtype} must be FP32'
|
||||
|
||||
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
|
||||
# Update EMA attributes
|
||||
copy_attr(self.ema, model, include, exclude)
|
Reference in New Issue
Block a user