first commit
This commit is contained in:
438
app/yolov5/data/Objects365.yaml
Normal file
438
app/yolov5/data/Objects365.yaml
Normal file
@ -0,0 +1,438 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
# Objects365 dataset https://www.objects365.org/ by Megvii
|
||||
# Example usage: python train.py --data Objects365.yaml
|
||||
# parent
|
||||
# ├── yolov5
|
||||
# └── datasets
|
||||
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/Objects365 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1742289 images
|
||||
val: images/val # val images (relative to 'path') 80000 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: Person
|
||||
1: Sneakers
|
||||
2: Chair
|
||||
3: Other Shoes
|
||||
4: Hat
|
||||
5: Car
|
||||
6: Lamp
|
||||
7: Glasses
|
||||
8: Bottle
|
||||
9: Desk
|
||||
10: Cup
|
||||
11: Street Lights
|
||||
12: Cabinet/shelf
|
||||
13: Handbag/Satchel
|
||||
14: Bracelet
|
||||
15: Plate
|
||||
16: Picture/Frame
|
||||
17: Helmet
|
||||
18: Book
|
||||
19: Gloves
|
||||
20: Storage box
|
||||
21: Boat
|
||||
22: Leather Shoes
|
||||
23: Flower
|
||||
24: Bench
|
||||
25: Potted Plant
|
||||
26: Bowl/Basin
|
||||
27: Flag
|
||||
28: Pillow
|
||||
29: Boots
|
||||
30: Vase
|
||||
31: Microphone
|
||||
32: Necklace
|
||||
33: Ring
|
||||
34: SUV
|
||||
35: Wine Glass
|
||||
36: Belt
|
||||
37: Monitor/TV
|
||||
38: Backpack
|
||||
39: Umbrella
|
||||
40: Traffic Light
|
||||
41: Speaker
|
||||
42: Watch
|
||||
43: Tie
|
||||
44: Trash bin Can
|
||||
45: Slippers
|
||||
46: Bicycle
|
||||
47: Stool
|
||||
48: Barrel/bucket
|
||||
49: Van
|
||||
50: Couch
|
||||
51: Sandals
|
||||
52: Basket
|
||||
53: Drum
|
||||
54: Pen/Pencil
|
||||
55: Bus
|
||||
56: Wild Bird
|
||||
57: High Heels
|
||||
58: Motorcycle
|
||||
59: Guitar
|
||||
60: Carpet
|
||||
61: Cell Phone
|
||||
62: Bread
|
||||
63: Camera
|
||||
64: Canned
|
||||
65: Truck
|
||||
66: Traffic cone
|
||||
67: Cymbal
|
||||
68: Lifesaver
|
||||
69: Towel
|
||||
70: Stuffed Toy
|
||||
71: Candle
|
||||
72: Sailboat
|
||||
73: Laptop
|
||||
74: Awning
|
||||
75: Bed
|
||||
76: Faucet
|
||||
77: Tent
|
||||
78: Horse
|
||||
79: Mirror
|
||||
80: Power outlet
|
||||
81: Sink
|
||||
82: Apple
|
||||
83: Air Conditioner
|
||||
84: Knife
|
||||
85: Hockey Stick
|
||||
86: Paddle
|
||||
87: Pickup Truck
|
||||
88: Fork
|
||||
89: Traffic Sign
|
||||
90: Balloon
|
||||
91: Tripod
|
||||
92: Dog
|
||||
93: Spoon
|
||||
94: Clock
|
||||
95: Pot
|
||||
96: Cow
|
||||
97: Cake
|
||||
98: Dinning Table
|
||||
99: Sheep
|
||||
100: Hanger
|
||||
101: Blackboard/Whiteboard
|
||||
102: Napkin
|
||||
103: Other Fish
|
||||
104: Orange/Tangerine
|
||||
105: Toiletry
|
||||
106: Keyboard
|
||||
107: Tomato
|
||||
108: Lantern
|
||||
109: Machinery Vehicle
|
||||
110: Fan
|
||||
111: Green Vegetables
|
||||
112: Banana
|
||||
113: Baseball Glove
|
||||
114: Airplane
|
||||
115: Mouse
|
||||
116: Train
|
||||
117: Pumpkin
|
||||
118: Soccer
|
||||
119: Skiboard
|
||||
120: Luggage
|
||||
121: Nightstand
|
||||
122: Tea pot
|
||||
123: Telephone
|
||||
124: Trolley
|
||||
125: Head Phone
|
||||
126: Sports Car
|
||||
127: Stop Sign
|
||||
128: Dessert
|
||||
129: Scooter
|
||||
130: Stroller
|
||||
131: Crane
|
||||
132: Remote
|
||||
133: Refrigerator
|
||||
134: Oven
|
||||
135: Lemon
|
||||
136: Duck
|
||||
137: Baseball Bat
|
||||
138: Surveillance Camera
|
||||
139: Cat
|
||||
140: Jug
|
||||
141: Broccoli
|
||||
142: Piano
|
||||
143: Pizza
|
||||
144: Elephant
|
||||
145: Skateboard
|
||||
146: Surfboard
|
||||
147: Gun
|
||||
148: Skating and Skiing shoes
|
||||
149: Gas stove
|
||||
150: Donut
|
||||
151: Bow Tie
|
||||
152: Carrot
|
||||
153: Toilet
|
||||
154: Kite
|
||||
155: Strawberry
|
||||
156: Other Balls
|
||||
157: Shovel
|
||||
158: Pepper
|
||||
159: Computer Box
|
||||
160: Toilet Paper
|
||||
161: Cleaning Products
|
||||
162: Chopsticks
|
||||
163: Microwave
|
||||
164: Pigeon
|
||||
165: Baseball
|
||||
166: Cutting/chopping Board
|
||||
167: Coffee Table
|
||||
168: Side Table
|
||||
169: Scissors
|
||||
170: Marker
|
||||
171: Pie
|
||||
172: Ladder
|
||||
173: Snowboard
|
||||
174: Cookies
|
||||
175: Radiator
|
||||
176: Fire Hydrant
|
||||
177: Basketball
|
||||
178: Zebra
|
||||
179: Grape
|
||||
180: Giraffe
|
||||
181: Potato
|
||||
182: Sausage
|
||||
183: Tricycle
|
||||
184: Violin
|
||||
185: Egg
|
||||
186: Fire Extinguisher
|
||||
187: Candy
|
||||
188: Fire Truck
|
||||
189: Billiards
|
||||
190: Converter
|
||||
191: Bathtub
|
||||
192: Wheelchair
|
||||
193: Golf Club
|
||||
194: Briefcase
|
||||
195: Cucumber
|
||||
196: Cigar/Cigarette
|
||||
197: Paint Brush
|
||||
198: Pear
|
||||
199: Heavy Truck
|
||||
200: Hamburger
|
||||
201: Extractor
|
||||
202: Extension Cord
|
||||
203: Tong
|
||||
204: Tennis Racket
|
||||
205: Folder
|
||||
206: American Football
|
||||
207: earphone
|
||||
208: Mask
|
||||
209: Kettle
|
||||
210: Tennis
|
||||
211: Ship
|
||||
212: Swing
|
||||
213: Coffee Machine
|
||||
214: Slide
|
||||
215: Carriage
|
||||
216: Onion
|
||||
217: Green beans
|
||||
218: Projector
|
||||
219: Frisbee
|
||||
220: Washing Machine/Drying Machine
|
||||
221: Chicken
|
||||
222: Printer
|
||||
223: Watermelon
|
||||
224: Saxophone
|
||||
225: Tissue
|
||||
226: Toothbrush
|
||||
227: Ice cream
|
||||
228: Hot-air balloon
|
||||
229: Cello
|
||||
230: French Fries
|
||||
231: Scale
|
||||
232: Trophy
|
||||
233: Cabbage
|
||||
234: Hot dog
|
||||
235: Blender
|
||||
236: Peach
|
||||
237: Rice
|
||||
238: Wallet/Purse
|
||||
239: Volleyball
|
||||
240: Deer
|
||||
241: Goose
|
||||
242: Tape
|
||||
243: Tablet
|
||||
244: Cosmetics
|
||||
245: Trumpet
|
||||
246: Pineapple
|
||||
247: Golf Ball
|
||||
248: Ambulance
|
||||
249: Parking meter
|
||||
250: Mango
|
||||
251: Key
|
||||
252: Hurdle
|
||||
253: Fishing Rod
|
||||
254: Medal
|
||||
255: Flute
|
||||
256: Brush
|
||||
257: Penguin
|
||||
258: Megaphone
|
||||
259: Corn
|
||||
260: Lettuce
|
||||
261: Garlic
|
||||
262: Swan
|
||||
263: Helicopter
|
||||
264: Green Onion
|
||||
265: Sandwich
|
||||
266: Nuts
|
||||
267: Speed Limit Sign
|
||||
268: Induction Cooker
|
||||
269: Broom
|
||||
270: Trombone
|
||||
271: Plum
|
||||
272: Rickshaw
|
||||
273: Goldfish
|
||||
274: Kiwi fruit
|
||||
275: Router/modem
|
||||
276: Poker Card
|
||||
277: Toaster
|
||||
278: Shrimp
|
||||
279: Sushi
|
||||
280: Cheese
|
||||
281: Notepaper
|
||||
282: Cherry
|
||||
283: Pliers
|
||||
284: CD
|
||||
285: Pasta
|
||||
286: Hammer
|
||||
287: Cue
|
||||
288: Avocado
|
||||
289: Hamimelon
|
||||
290: Flask
|
||||
291: Mushroom
|
||||
292: Screwdriver
|
||||
293: Soap
|
||||
294: Recorder
|
||||
295: Bear
|
||||
296: Eggplant
|
||||
297: Board Eraser
|
||||
298: Coconut
|
||||
299: Tape Measure/Ruler
|
||||
300: Pig
|
||||
301: Showerhead
|
||||
302: Globe
|
||||
303: Chips
|
||||
304: Steak
|
||||
305: Crosswalk Sign
|
||||
306: Stapler
|
||||
307: Camel
|
||||
308: Formula 1
|
||||
309: Pomegranate
|
||||
310: Dishwasher
|
||||
311: Crab
|
||||
312: Hoverboard
|
||||
313: Meat ball
|
||||
314: Rice Cooker
|
||||
315: Tuba
|
||||
316: Calculator
|
||||
317: Papaya
|
||||
318: Antelope
|
||||
319: Parrot
|
||||
320: Seal
|
||||
321: Butterfly
|
||||
322: Dumbbell
|
||||
323: Donkey
|
||||
324: Lion
|
||||
325: Urinal
|
||||
326: Dolphin
|
||||
327: Electric Drill
|
||||
328: Hair Dryer
|
||||
329: Egg tart
|
||||
330: Jellyfish
|
||||
331: Treadmill
|
||||
332: Lighter
|
||||
333: Grapefruit
|
||||
334: Game board
|
||||
335: Mop
|
||||
336: Radish
|
||||
337: Baozi
|
||||
338: Target
|
||||
339: French
|
||||
340: Spring Rolls
|
||||
341: Monkey
|
||||
342: Rabbit
|
||||
343: Pencil Case
|
||||
344: Yak
|
||||
345: Red Cabbage
|
||||
346: Binoculars
|
||||
347: Asparagus
|
||||
348: Barbell
|
||||
349: Scallop
|
||||
350: Noddles
|
||||
351: Comb
|
||||
352: Dumpling
|
||||
353: Oyster
|
||||
354: Table Tennis paddle
|
||||
355: Cosmetics Brush/Eyeliner Pencil
|
||||
356: Chainsaw
|
||||
357: Eraser
|
||||
358: Lobster
|
||||
359: Durian
|
||||
360: Okra
|
||||
361: Lipstick
|
||||
362: Cosmetics Mirror
|
||||
363: Curling
|
||||
364: Table Tennis
|
||||
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
from tqdm import tqdm
|
||||
|
||||
from utils.general import Path, check_requirements, download, np, xyxy2xywhn
|
||||
|
||||
check_requirements(('pycocotools>=2.0',))
|
||||
from pycocotools.coco import COCO
|
||||
|
||||
# Make Directories
|
||||
dir = Path(yaml['path']) # dataset root dir
|
||||
for p in 'images', 'labels':
|
||||
(dir / p).mkdir(parents=True, exist_ok=True)
|
||||
for q in 'train', 'val':
|
||||
(dir / p / q).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Train, Val Splits
|
||||
for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
|
||||
print(f"Processing {split} in {patches} patches ...")
|
||||
images, labels = dir / 'images' / split, dir / 'labels' / split
|
||||
|
||||
# Download
|
||||
url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
|
||||
if split == 'train':
|
||||
download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False) # annotations json
|
||||
download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8)
|
||||
elif split == 'val':
|
||||
download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False) # annotations json
|
||||
download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8)
|
||||
download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8)
|
||||
|
||||
# Move
|
||||
for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
|
||||
f.rename(images / f.name) # move to /images/{split}
|
||||
|
||||
# Labels
|
||||
coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
|
||||
names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
|
||||
for cid, cat in enumerate(names):
|
||||
catIds = coco.getCatIds(catNms=[cat])
|
||||
imgIds = coco.getImgIds(catIds=catIds)
|
||||
for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
|
||||
width, height = im["width"], im["height"]
|
||||
path = Path(im["file_name"]) # image filename
|
||||
try:
|
||||
with open(labels / path.with_suffix('.txt').name, 'a') as file:
|
||||
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
|
||||
for a in coco.loadAnns(annIds):
|
||||
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
|
||||
xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
|
||||
x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
|
||||
file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
|
||||
except Exception as e:
|
||||
print(e)
|
Reference in New Issue
Block a user