项目初次搭建

This commit is contained in:
2025-02-13 16:29:28 +08:00
parent feef37cbd7
commit 3cb2a4c507
121 changed files with 19550 additions and 0 deletions

View File

@ -0,0 +1,19 @@
from typing import List
from fastapi import APIRouter
from fastapi import UploadFile
import os
upload = APIRouter()
@upload.post("/")
def upload_file(files: List[UploadFile]):
paths = []
for file in files:
path = os.path.join("images", file.filename)
with open(path, "wb") as f:
for line in file.file:
f.write(line)
paths.append(path)
return paths

34
app/api/sys/login_api.py Normal file
View File

@ -0,0 +1,34 @@
from fastapi import APIRouter, Depends
from sqlalchemy.orm import Session
from app.db.db_session import get_db
from app.model.schemas.sys_user_schemas import SysUserLogin
from app.common import reponse_code as rc
from app.model.crud import sys_user_crud as us
from app.common.bcrypt_pw import verify_password
from app.common.jwt_check import generate_token
from app.common.redis_cli import redis_conn
"""
用户登录统一接口
"""
login = APIRouter()
@login.post("/")
def login_check(user: SysUserLogin, session: Session = Depends(get_db)):
"""
登录验证并返回token
:param session:
:param user: 登录参数信息
:return: response
"""
query_user = us.get_user_by_username(username=user.username, session=session)
if query_user is None:
return rc.response_error('您输入的用户名不正确')
if not verify_password(user.password, query_user.password):
return rc.response_error("您输入的密码不正确")
if not query_user.user_status == '0':
return rc.response_error(msg="登录失败,账号已被禁用,请联系管理员")
token = generate_token(query_user.id, query_user.username)
redis_conn.set(query_user.id, token)
return rc.response_success(msg="登录成功", data=token)

View File

@ -0,0 +1,84 @@
from fastapi import APIRouter, Depends
from app.model.schemas.sys_user_schemas import SysUserOut, SysUserIN, SysUserPager
from app.common import reponse_code as rc
from app.model.crud import sys_user_crud as us
from app.model.model import SysUser
from app.common.redis_cli import redis_conn
from sqlalchemy.orm import Session
from app.db.db_session import get_db
"""
用户管理模块
"""
user = APIRouter()
@user.post("/pager")
def user_pager(user: SysUserPager, session: Session = Depends(get_db)):
pager = us.user_pager(user, session)
return rc.response_success_pager(pager)
@user.post("/")
def add_user(user: SysUserIN, session: Session = Depends(get_db)):
"""
新增用户
:param session:
:param user: 用户信息
:return:
"""
if us.check_username(user.username, session):
return rc.response_error(msg="该用户名已存在!")
else:
user_in= SysUser(**user.dict())
user_in.user_status = '0'
if us.add_user(user_in, session):
return rc.response_success(msg="保存成功")
else:
return rc.response_error(msg="保存失败")
@user.get("/{id}")
def get_user(id: int, session: Session = Depends(get_db)):
"""
根据用户id获取用户信息
:param session:
:param id: 用户id
:return: 用户信息
"""
user = us.get_user_by_id(id, session)
if user is None:
return rc.response_success(data=None)
user_out = SysUserOut(**dict(user))
return rc.response_success(data=user_out.dict())
@user.post("/stop/{id}")
def stop_user(id: int, session: Session = Depends(get_db)):
"""
停用用户。修改用户状态并删除保存过的登录redis
:param session:
:param id:
:return:
"""
user = us.get_user_by_id(id, session)
if user is None:
return rc.response_error("用户查询错误,请稍后再试")
us.stop_user(user)
redis_conn.delete(id)
return rc.response_success("停用用户成功")
@user.post("/start/{id}")
def start_user(id: int, session: Session = Depends(get_db)):
"""
启用用户。修改用户状态
:param session:
:param id:
:return:
"""
user = us.get_user_by_id(id, session)
if user is None:
return rc.response_error("用户查询错误,请稍后再试")
us.start_user(user)
return rc.response_success("启用用户成功")

23
app/application/app.py Normal file
View File

@ -0,0 +1,23 @@
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from app.application.token_middleware import TokenMiddleware
from app.application.logger_middleware import LoggerMiddleware
my_app = FastAPI()
'''
添加CROS中间件允许跨域请求
'''
my_app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
#注意中间的顺序,这个地方是倒序执行的
my_app.add_middleware(LoggerMiddleware)
my_app.add_middleware(TokenMiddleware)

View File

@ -0,0 +1,23 @@
from starlette.middleware.base import BaseHTTPMiddleware
from urllib.request import Request
from app.common.jwt_check import check_token
from app.common.logger_config import logger_http
class LoggerMiddleware(BaseHTTPMiddleware):
def __init__(self, app):
super().__init__(app)
async def dispatch(self, request: Request, call_next):
method = request.method
path = request.url.path
token = request.headers.get("Authorization")
user_id = None
if token:
decoded_payload = check_token(token)
user_id = decoded_payload['user_id']
logger_http.info(f"Path: {path},UserId: {user_id}, Method: {method}")
response = await call_next(request)
return response

View File

@ -0,0 +1,33 @@
from fastapi import status
from starlette.middleware.base import BaseHTTPMiddleware
from urllib.request import Request
from jwt import PyJWTError
from common import reponse_code as rc
from common import jwt_check as jc
class TokenMiddleware(BaseHTTPMiddleware):
def __init__(self, app):
super().__init__(app)
async def dispatch(self, request: Request, call_next):
"""
验证token中间件
:param request: Request请求
:param call_next:
:return:
"""
token = request.headers.get('Authorization')
path = request.url.path
if '/login' in path:
response = await call_next(request)
return response
if not token:
return rc.response_code_view(status.HTTP_401_UNAUTHORIZED, "缺少Token请重新验证")
try:
jc.check_token(token)
return await call_next(request)
except PyJWTError as error:
return rc.response_code_view(status.HTTP_401_UNAUTHORIZED, "Token错误或失效请重新验证")

13
app/common/bcrypt_pw.py Normal file
View File

@ -0,0 +1,13 @@
import bcrypt
#使用bcrypt对密码进行加密
def hash_password(password):
# 生成盐值并使用 bcrypt 加密密码
salt = bcrypt.gensalt()
hashed = bcrypt.hashpw(password.encode('utf-8'), salt)
return hashed
def verify_password(provided_password, stored_password):
# 验证提供的密码是否与存储的哈希值匹配
return bcrypt.checkpw(provided_password.encode('utf-8'), stored_password.encode('utf-8'))

50
app/common/jwt_check.py Normal file
View File

@ -0,0 +1,50 @@
import datetime
import jwt
from app.common.redis_cli import redis_conn
# 过期时间单位S
exp = 6000
# 加密秘钥
secret_key = 'syg15684712291'
def generate_token(user_id: int, username: str):
"""
根据用户id和用户名生成一个token
:param user_id: 用户id
:param username: 用户名
:return: token
"""
payload = {
'user_id': user_id,
'username': username,
'exp': datetime.datetime.utcnow() + datetime.timedelta(exp)
}
# 生成token
token = jwt.encode(payload, secret_key, algorithm='HS256')
return token
def check_token(token: str):
"""
验证token
:param token: token
:return: True or False
"""
try:
decoded_payload = jwt.decode(token, secret_key, algorithms=['HS256'])
user_id = decoded_payload['user_id']
token_redis = redis_conn.get(user_id)
if token_redis is None:
raise jwt.ExpiredSignatureError("Expired Token")
if token_redis != token:
raise jwt.ExpiredSignatureError("Invalid Token")
return decoded_payload
except jwt.ExpiredSignatureError:
raise jwt.ExpiredSignatureError("Expired Token")
except jwt.InvalidTokenError:
raise jwt.InvalidTokenError("Invalid Token")

View File

@ -0,0 +1,33 @@
import logging
import os
from logging.handlers import TimedRotatingFileHandler
from app.config.config_reader import log_dir
file_suffix = "%Y-%m-%d"
os.makedirs(log_dir, exist_ok=True)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
#所有http请求的日志
logger_http = logging.getLogger("api_log")
logger_http.setLevel(logging.DEBUG)
# 创建一个TimedRotatingFileHandler指定日志文件名、轮转周期和备份数量
api_log_file = os.path.join(log_dir, 'api.log')
api_handler = TimedRotatingFileHandler(api_log_file, when="midnight", interval=1, backupCount=30)
api_handler.setFormatter(formatter)
api_handler.suffix = file_suffix # 日志文件的后缀为日期格式
logger_http.addHandler(api_handler)
#所有sqlalchemy打印的日志
logger_sql = logging.getLogger("sqlalchemy.engine.Engine")
logger_sql.setLevel(logging.DEBUG)
# 创建文件处理器并设置级别
sql_log_file = os.path.join(log_dir, 'sql.log')
sql_handler = TimedRotatingFileHandler(sql_log_file, when="midnight", interval=1, backupCount=30)
sql_handler.setFormatter(formatter)
sql_handler.suffix = file_suffix # 日志文件的后缀为日期格式
logger_sql.addHandler(sql_handler)

4
app/common/redis_cli.py Normal file
View File

@ -0,0 +1,4 @@
import redis
from app.config.config_reader import redis_db, redis_password, redis_port, redis_host
redis_conn = redis.Redis(host=redis_host, port=redis_port, db=redis_db, password=redis_password, decode_responses=True)

View File

@ -0,0 +1,46 @@
from fastapi.responses import JSONResponse, Response
from fastapi import status
from app.db.page_util import Pager
def response_code_view(code: int,msg: str) -> Response:
return JSONResponse(
status_code=code,
content={
'code': code,
'msg': msg
}
)
def response_success(msg: str = "查询成功", data: object = None):
return JSONResponse(
status_code=status.HTTP_200_OK,
content={
'code': 200,
'msg': msg,
'data': data,
}
)
def response_success_pager(pager: Pager):
return JSONResponse(
status_code=status.HTTP_200_OK,
content={
'code': 200,
'msg': "查询成功",
'data': pager.data,
'total': pager.total
}
)
def response_error(msg:str):
return JSONResponse(
status_code=status.HTTP_200_OK,
content={
'code': 500,
'msg': msg,
'data': None,
}
)

View File

@ -0,0 +1,11 @@
[mysql]
database_url = mysql+pymysql://root:root@localhost:3306/aicheckv2
[redis]
host = localhost
port = 6379
db = 0
password = sdust2020
[log]
dir = D:\syg\workspace\logs

View File

@ -0,0 +1,11 @@
[mysql]
database_url = mysql+pymysql://root:root@localhost:3306/sun
[redis]
host = localhost
port = 6379
db = 0
password = 123456
[log]
dir = /Users/macbookpro/sunyg/workspace/logs

View File

@ -0,0 +1,21 @@
import configparser
import os
env = "dev"
script_directory = os.path.dirname(os.path.abspath(__file__))
config_path = os.path.join(script_directory, f'application_config_{env}.ini')
config = configparser.ConfigParser()
config.read(config_path)
database_url = config['mysql']['database_url']
redis_host = config.get('redis', 'host')
redis_port = config.get('redis', 'port')
redis_db = config.get('redis', 'db')
redis_password = config.get('redis', 'password')
log_dir = config.get('log', 'dir')

20
app/db/db_base.py Normal file
View File

@ -0,0 +1,20 @@
from sqlalchemy.ext.declarative import declarative_base, declared_attr
from sqlalchemy.orm import Mapped, mapped_column
import datetime
Base = declarative_base()
class DbCommon(Base):
__abstract__ = True
id: Mapped[int] = mapped_column(primary_key=True)
create_time: Mapped[datetime.datetime] = mapped_column(default=datetime.datetime.utcnow())
update_time: Mapped[datetime.datetime] = mapped_column(default=datetime.datetime.utcnow(), onupdate=datetime.datetime.utcnow())
def keys(self):
return ["id", "create_time", "update_time"]
@declared_attr
def __tablename__(cls):
return cls.__name__.lower()

9
app/db/db_engine.py Normal file
View File

@ -0,0 +1,9 @@
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker, scoped_session
from app.config.config_reader import database_url
db_engine = create_engine(database_url, echo=True, echo_pool=True)
db_session = sessionmaker(bind=db_engine, autoflush=False, autocommit=False, expire_on_commit=True)
session = scoped_session(db_session)

9
app/db/db_session.py Normal file
View File

@ -0,0 +1,9 @@
from app.db.db_engine import db_session
def get_db():
session = db_session()
try:
yield session
finally:
session.close()

26
app/db/page_util.py Normal file
View File

@ -0,0 +1,26 @@
from sqlalchemy.orm.query import Query
def get_pager(query: Query, pagerNum: int, pagerSize: int, ):
total = query.count()
data = query.limit(pagerSize).offset((pagerNum - 1) * pagerSize).all()
pager = Pager(total, data)
return pager
class Pager:
def __init__(self, total: int, data: object):
self.total = total
self.data = data
def keys(self):
keys = ["total", "data"]
return keys
def __getitem__(self, item):
'''
内置方法, 当使用obj['name']的形式的时候, 将调用这个方法, 这里返回的结果就是值
:param item:
:return:
'''
return getattr(self, item, None)

5
app/main.py Normal file
View File

@ -0,0 +1,5 @@
import uvicorn
from app.application.app import my_app
if __name__ == '__main__':
uvicorn.run("main:my_app", port=8080, reload=True)

View File

@ -0,0 +1,67 @@
from app.model.model import SysUser
from app.model.schemas.sys_user_schemas import SysUserPager, SysUserOut
from app.common.bcrypt_pw import hash_password
from app.db.page_util import get_pager
from sqlalchemy import and_, desc
from sqlalchemy.orm import Session
def user_pager(user: SysUserPager, session: Session):
query = session.query(SysUser).order_by(desc(SysUser.id))
filters = []
if user.username is not None:
filters.append(SysUser.username.ilike(f"%{user.username}%"))
if user.dept_id is not None:
filters.append(SysUser.dept_id == user.dept_id)
if len(filters) > 0:
query.filter(and_(*filters))
pager = get_pager(query, user.pagerNum, user.pagerSize)
pager.data = [SysUserOut.from_orm(user) for user in pager.data]
return pager
def add_user(user: SysUser, session: Session):
user.password = hash_password(user.password)
session.add(user)
session.commit()
return user
def get_user_by_id(id: int, session: Session):
user = session.query(SysUser).filter(SysUser.id == id).first()
return user
def stop_user(user: SysUser, session: Session):
user.user_status = "1"
session.commit();
return user
def start_user(user: SysUser, session: Session):
user.user_status = "0"
session.commit();
return user
def get_user_by_username(username: str, session: Session):
user = session.query(SysUser).filter(SysUser.username == username).first()
return user
# 验证username的唯一性
def check_username(username: str, session: Session):
count = session.query(SysUser).filter(SysUser.username == username).count()
if count > 0:
return True
else:
return False
# 修改密码
def update_pw(user: SysUser, session: Session):
session.query(SysUser).filter_by(id=user.id).update({
"password": user.password
})
session.commit()

29
app/model/model.py Normal file
View File

@ -0,0 +1,29 @@
from app.db.db_base import DbCommon
from sqlalchemy import String,Integer
from sqlalchemy.orm import Mapped, mapped_column
class SysUser(DbCommon):
__tablename__ = "sys_user"
username: Mapped[str] = mapped_column(String(50), unique=True, nullable=False)
password: Mapped[str] = mapped_column(String(255))
dept_id: Mapped[int] = mapped_column(Integer)
login_name: Mapped[str] = mapped_column(String(255))
avatar: Mapped[str] = mapped_column(String(255))
user_status: Mapped[str] = mapped_column(String(10))
def keys(self):
keys = ["username", "password", "dept_id", "login_name", "avatar", "user_status"]
keys.extend(super().keys())
return keys
def __getitem__(self, item):
'''
内置方法, 当使用obj['name']的形式的时候, 将调用这个方法, 这里返回的结果就是值
:param item:
:return:
'''
return getattr(self, item, None)

View File

@ -0,0 +1,43 @@
from pydantic import BaseModel, Field
from typing import Optional
# 用户相关的原型
class SysUserIN(BaseModel):
username: Optional[str] = Field(..., description="用户名", max_length=50)
password: Optional[str] = Field(..., description="密码", max_length=30, min_length=6)
dept_id: Optional[str] = Field(None, description="部门id")
login_name: Optional[str] = Field(None, description="昵称", max_length=20)
class SysUserLogin(BaseModel):
username: Optional[str] = Field(..., description="用户名", max_length=50)
password: Optional[str] = Field(..., description="密码", max_length=30, min_length=6)
class SysUserOut(BaseModel):
id: Optional[int] = Field(..., description="id")
username: Optional[str] = Field(..., description="用户名")
dept_id: Optional[str] = Field(None, description="部门id")
dept_name: Optional[str] = Field(None, description="部门名称")
login_name: Optional[str] = Field(None, description="昵称")
class Config:
orm_mode = True
class SysUserUpdatePw(BaseModel):
id: Optional[int] = Field(..., description="id")
new_password: Optional[str] = Field(..., description="新密码", max_length=30, min_length=8)
original_password: Optional[str] = Field(..., description="旧密码", max_length=30, min_length=8)
class SysUserPager(BaseModel):
username: Optional[str] = Field(None, description="用户名")
dept_id: Optional[str] = Field(None, description="部门id")
login_name: Optional[str] = Field(None, description="昵称")
pagerNum: Optional[int] = Field(1, description="当前页码")
pagerSize: Optional[int] = Field(10, description="每页数量")
class Config:
orm_mode = True

39
requirements.txt Normal file
View File

@ -0,0 +1,39 @@
# aicheck_base requirements
# Usage: pip install -r requirements.txt
# API -------------------------------------------------------------------------
fastapi~=0.74.1 # fastapi基础包
pydantic~=1.9.0 # pydantic
email-validator==1.1.3
PyJWT~=2.3.0
python-multipart==0.0.5
redis~=4.1.4
SQLAlchemy~=2.0.34
uvicorn~=0.17.5
loguru~=0.6.0
xlrd~=2.0.1
bcrypt==3.2.0
pymysql==1.0.2
pynvml==12.0.0
requests-toolbelt==1.0.0
# YOLOV5 ----------------------------------------------------------------------
# BASE ------------------------------------------------------------------------
gitpython>=3.1.30
matplotlib>=3.3
numpy==2.0.2
opencv-python>=4.1.1
pillow>=10.3.0
psutil # system resources
PyYAML>=5.3.1
requests>=2.32.2
scipy==1.13.1
thop>=0.1.1 # FLOPs computation
torch>=1.8.0 # see https://pytorch.org/get-started/locally (recommended)
torchvision>=0.9.0
tqdm>=4.66.3
ultralytics>=8.2.34 # https://ultralytics.com
# Plotting --------------------------------------------------------------------
pandas==2.2.3
seaborn>=0.11.0

0
yolov5/__init__.py Normal file
View File

294
yolov5/benchmarks.py Normal file
View File

@ -0,0 +1,294 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
Run YOLOv5 benchmarks on all supported export formats.
Format | `export.py --include` | Model
--- | --- | ---
PyTorch | - | yolov5s.pt
TorchScript | `torchscript` | yolov5s.torchscript
ONNX | `onnx` | yolov5s.onnx
OpenVINO | `openvino` | yolov5s_openvino_model/
TensorRT | `engine` | yolov5s.engine
CoreML | `coreml` | yolov5s.mlpackage
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
TensorFlow GraphDef | `pb` | yolov5s.pb
TensorFlow Lite | `tflite` | yolov5s.tflite
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov5s_web_model/
Requirements:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
Usage:
$ python benchmarks.py --weights yolov5s.pt --img 640
"""
import argparse
import platform
import sys
import time
from pathlib import Path
import pandas as pd
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
# ROOT = ROOT.relative_to(Path.cwd()) # relative
import export
from models.experimental import attempt_load
from models.yolo import SegmentationModel
from segment.val import run as val_seg
from utils import notebook_init
from utils.general import LOGGER, check_yaml, file_size, print_args
from utils.torch_utils import select_device
from val import run as val_det
def run(
weights=ROOT / "yolov5s.pt", # weights path
imgsz=640, # inference size (pixels)
batch_size=1, # batch size
data=ROOT / "data/coco128.yaml", # dataset.yaml path
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
half=False, # use FP16 half-precision inference
test=False, # test exports only
pt_only=False, # test PyTorch only
hard_fail=False, # throw error on benchmark failure
):
"""
Run YOLOv5 benchmarks on multiple export formats and log results for model performance evaluation.
Args:
weights (Path | str): Path to the model weights file (default: ROOT / "yolov5s.pt").
imgsz (int): Inference size in pixels (default: 640).
batch_size (int): Batch size for inference (default: 1).
data (Path | str): Path to the dataset.yaml file (default: ROOT / "data/coco128.yaml").
device (str): CUDA device, e.g., '0' or '0,1,2,3' or 'cpu' (default: "").
half (bool): Use FP16 half-precision inference (default: False).
test (bool): Test export formats only (default: False).
pt_only (bool): Test PyTorch format only (default: False).
hard_fail (bool): Throw an error on benchmark failure if True (default: False).
Returns:
None. Logs information about the benchmark results, including the format, size, mAP50-95, and inference time.
Notes:
Supported export formats and models include PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML,
TensorFlow SavedModel, TensorFlow GraphDef, TensorFlow Lite, and TensorFlow Edge TPU. Edge TPU and TF.js
are unsupported.
Example:
```python
$ python benchmarks.py --weights yolov5s.pt --img 640
```
Usage:
Install required packages:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU support
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU support
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
Run benchmarks:
$ python benchmarks.py --weights yolov5s.pt --img 640
"""
y, t = [], time.time()
device = select_device(device)
model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
try:
assert i not in (9, 10), "inference not supported" # Edge TPU and TF.js are unsupported
assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML
if "cpu" in device.type:
assert cpu, "inference not supported on CPU"
if "cuda" in device.type:
assert gpu, "inference not supported on GPU"
# Export
if f == "-":
w = weights # PyTorch format
else:
w = export.run(
weights=weights, imgsz=[imgsz], include=[f], batch_size=batch_size, device=device, half=half
)[-1] # all others
assert suffix in str(w), "export failed"
# Validate
if model_type == SegmentationModel:
result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
else: # DetectionModel:
result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
speed = result[2][1] # times (preprocess, inference, postprocess)
y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
except Exception as e:
if hard_fail:
assert type(e) is AssertionError, f"Benchmark --hard-fail for {name}: {e}"
LOGGER.warning(f"WARNING ⚠️ Benchmark failure for {name}: {e}")
y.append([name, None, None, None]) # mAP, t_inference
if pt_only and i == 0:
break # break after PyTorch
# Print results
LOGGER.info("\n")
parse_opt()
notebook_init() # print system info
c = ["Format", "Size (MB)", "mAP50-95", "Inference time (ms)"] if map else ["Format", "Export", "", ""]
py = pd.DataFrame(y, columns=c)
LOGGER.info(f"\nBenchmarks complete ({time.time() - t:.2f}s)")
LOGGER.info(str(py if map else py.iloc[:, :2]))
if hard_fail and isinstance(hard_fail, str):
metrics = py["mAP50-95"].array # values to compare to floor
floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
assert all(x > floor for x in metrics if pd.notna(x)), f"HARD FAIL: mAP50-95 < floor {floor}"
return py
def test(
weights=ROOT / "yolov5s.pt", # weights path
imgsz=640, # inference size (pixels)
batch_size=1, # batch size
data=ROOT / "data/coco128.yaml", # dataset.yaml path
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
half=False, # use FP16 half-precision inference
test=False, # test exports only
pt_only=False, # test PyTorch only
hard_fail=False, # throw error on benchmark failure
):
"""
Run YOLOv5 export tests for all supported formats and log the results, including export statuses.
Args:
weights (Path | str): Path to the model weights file (.pt format). Default is 'ROOT / "yolov5s.pt"'.
imgsz (int): Inference image size (in pixels). Default is 640.
batch_size (int): Batch size for testing. Default is 1.
data (Path | str): Path to the dataset configuration file (.yaml format). Default is 'ROOT / "data/coco128.yaml"'.
device (str): Device for running the tests, can be 'cpu' or a specific CUDA device ('0', '0,1,2,3', etc.). Default is an empty string.
half (bool): Use FP16 half-precision for inference if True. Default is False.
test (bool): Test export formats only without running inference. Default is False.
pt_only (bool): Test only the PyTorch model if True. Default is False.
hard_fail (bool): Raise error on export or test failure if True. Default is False.
Returns:
pd.DataFrame: DataFrame containing the results of the export tests, including format names and export statuses.
Examples:
```python
$ python benchmarks.py --weights yolov5s.pt --img 640
```
Notes:
Supported export formats and models include PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML, TensorFlow
SavedModel, TensorFlow GraphDef, TensorFlow Lite, and TensorFlow Edge TPU. Edge TPU and TF.js are unsupported.
Usage:
Install required packages:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU support
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU support
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
Run export tests:
$ python benchmarks.py --weights yolov5s.pt --img 640
"""
y, t = [], time.time()
device = select_device(device)
for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
try:
w = (
weights
if f == "-"
else export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]
) # weights
assert suffix in str(w), "export failed"
y.append([name, True])
except Exception:
y.append([name, False]) # mAP, t_inference
# Print results
LOGGER.info("\n")
parse_opt()
notebook_init() # print system info
py = pd.DataFrame(y, columns=["Format", "Export"])
LOGGER.info(f"\nExports complete ({time.time() - t:.2f}s)")
LOGGER.info(str(py))
return py
def parse_opt():
"""
Parses command-line arguments for YOLOv5 model inference configuration.
Args:
weights (str): The path to the weights file. Defaults to 'ROOT / "yolov5s.pt"'.
imgsz (int): Inference size in pixels. Defaults to 640.
batch_size (int): Batch size. Defaults to 1.
data (str): Path to the dataset YAML file. Defaults to 'ROOT / "data/coco128.yaml"'.
device (str): CUDA device, e.g., '0' or '0,1,2,3' or 'cpu'. Defaults to an empty string (auto-select).
half (bool): Use FP16 half-precision inference. This is a flag and defaults to False.
test (bool): Test exports only. This is a flag and defaults to False.
pt_only (bool): Test PyTorch only. This is a flag and defaults to False.
hard_fail (bool | str): Throw an error on benchmark failure. Can be a boolean or a string representing a minimum
metric floor, e.g., '0.29'. Defaults to False.
Returns:
argparse.Namespace: Parsed command-line arguments encapsulated in an argparse Namespace object.
Notes:
The function modifies the 'opt.data' by checking and validating the YAML path using 'check_yaml()'.
The parsed arguments are printed for reference using 'print_args()'.
"""
parser = argparse.ArgumentParser()
parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path")
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)")
parser.add_argument("--batch-size", type=int, default=1, help="batch size")
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
parser.add_argument("--test", action="store_true", help="test exports only")
parser.add_argument("--pt-only", action="store_true", help="test PyTorch only")
parser.add_argument("--hard-fail", nargs="?", const=True, default=False, help="Exception on error or < min metric")
opt = parser.parse_args()
opt.data = check_yaml(opt.data) # check YAML
print_args(vars(opt))
return opt
def main(opt):
"""
Executes YOLOv5 benchmark tests or main training/inference routines based on the provided command-line arguments.
Args:
opt (argparse.Namespace): Parsed command-line arguments including options for weights, image size, batch size, data
configuration, device, and other flags for inference settings.
Returns:
None: This function does not return any value. It leverages side-effects such as logging and running benchmarks.
Example:
```python
if __name__ == "__main__":
opt = parse_opt()
main(opt)
```
Notes:
- For a complete list of supported export formats and their respective requirements, refer to the
[Ultralytics YOLOv5 Export Formats](https://github.com/ultralytics/yolov5#export-formats).
- Ensure that you have installed all necessary dependencies by following the installation instructions detailed in
the [main repository](https://github.com/ultralytics/yolov5#installation).
```shell
# Running benchmarks on default weights and image size
$ python benchmarks.py --weights yolov5s.pt --img 640
```
"""
test(**vars(opt)) if opt.test else run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)

View File

@ -0,0 +1,35 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Hyperparameters for Objects365 training
# python train.py --weights yolov5m.pt --data Objects365.yaml --evolve
# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
lr0: 0.00258
lrf: 0.17
momentum: 0.779
weight_decay: 0.00058
warmup_epochs: 1.33
warmup_momentum: 0.86
warmup_bias_lr: 0.0711
box: 0.0539
cls: 0.299
cls_pw: 0.825
obj: 0.632
obj_pw: 1.0
iou_t: 0.2
anchor_t: 3.44
anchors: 3.2
fl_gamma: 0.0
hsv_h: 0.0188
hsv_s: 0.704
hsv_v: 0.36
degrees: 0.0
translate: 0.0902
scale: 0.491
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
mosaic: 1.0
mixup: 0.0
copy_paste: 0.0

View File

@ -0,0 +1,41 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Hyperparameters for VOC training
# python train.py --batch 128 --weights yolov5m6.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.scratch-med.yaml --evolve
# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
# YOLOv5 Hyperparameter Evolution Results
# Best generation: 467
# Last generation: 996
# metrics/precision, metrics/recall, metrics/mAP_0.5, metrics/mAP_0.5:0.95, val/box_loss, val/obj_loss, val/cls_loss
# 0.87729, 0.85125, 0.91286, 0.72664, 0.0076739, 0.0042529, 0.0013865
lr0: 0.00334
lrf: 0.15135
momentum: 0.74832
weight_decay: 0.00025
warmup_epochs: 3.3835
warmup_momentum: 0.59462
warmup_bias_lr: 0.18657
box: 0.02
cls: 0.21638
cls_pw: 0.5
obj: 0.51728
obj_pw: 0.67198
iou_t: 0.2
anchor_t: 3.3744
fl_gamma: 0.0
hsv_h: 0.01041
hsv_s: 0.54703
hsv_v: 0.27739
degrees: 0.0
translate: 0.04591
scale: 0.75544
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
mosaic: 0.85834
mixup: 0.04266
copy_paste: 0.0
anchors: 3.412

View File

@ -0,0 +1,36 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Hyperparameters when using Albumentations frameworks
# python train.py --hyp hyp.no-augmentation.yaml
# See https://github.com/ultralytics/yolov5/pull/3882 for YOLOv5 + Albumentations Usage examples
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.3 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 0.7 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
# anchors: 3 # anchors per output layer (0 to ignore)
# this parameters are all zero since we want to use albumentation framework
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0 # image HSV-Hue augmentation (fraction)
hsv_s: 0 # image HSV-Saturation augmentation (fraction)
hsv_v: 0 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0 # image translation (+/- fraction)
scale: 0 # image scale (+/- gain)
shear: 0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.0 # image flip left-right (probability)
mosaic: 0.0 # image mosaic (probability)
mixup: 0.0 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)

View File

@ -0,0 +1,35 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Hyperparameters for high-augmentation COCO training from scratch
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.3 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 0.7 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
# anchors: 3 # anchors per output layer (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.9 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.1 # image mixup (probability)
copy_paste: 0.1 # segment copy-paste (probability)

View File

@ -0,0 +1,35 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Hyperparameters for low-augmentation COCO training from scratch
# python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
# anchors: 3 # anchors per output layer (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.5 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.0 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)

View File

@ -0,0 +1,35 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Hyperparameters for medium-augmentation COCO training from scratch
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.3 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 0.7 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
# anchors: 3 # anchors per output layer (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.9 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.1 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)

View File

@ -0,0 +1,22 @@
#!/bin/bash
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
# Download latest models from https://github.com/ultralytics/yolov5/releases
# Example usage: bash data/scripts/download_weights.sh
# parent
# └── yolov5
# ├── yolov5s.pt ← downloads here
# ├── yolov5m.pt
# └── ...
python - <<EOF
from utils.downloads import attempt_download
p5 = list('nsmlx') # P5 models
p6 = [f'{x}6' for x in p5] # P6 models
cls = [f'{x}-cls' for x in p5] # classification models
seg = [f'{x}-seg' for x in p5] # classification models
for x in p5 + p6 + cls + seg:
attempt_download(f'weights/yolov5{x}.pt')
EOF

438
yolov5/detect.py Normal file
View File

@ -0,0 +1,438 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
Usage - sources:
$ python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/LNwODJXcvt4' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Usage - formats:
$ python detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlpackage # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
"""
import argparse
import csv
import os
import platform
import sys
from pathlib import Path
import torch
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from ultralytics.utils.plotting import Annotator, colors, save_one_box
from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (
LOGGER,
Profile,
check_file,
check_img_size,
check_imshow,
check_requirements,
colorstr,
cv2,
increment_path,
non_max_suppression,
print_args,
scale_boxes,
strip_optimizer,
xyxy2xywh,
)
from utils.torch_utils import select_device, smart_inference_mode
@smart_inference_mode()
def run(
weights=ROOT / "yolov5s.pt", # model path or triton URL
source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam)
data=ROOT / "data/coco128.yaml", # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_format=0, # save boxes coordinates in YOLO format or Pascal-VOC format (0 for YOLO and 1 for Pascal-VOC)
save_csv=False, # save results in CSV format
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / "runs/detect", # save results to project/name
name="exp", # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
):
"""
Runs YOLOv5 detection inference on various sources like images, videos, directories, streams, etc.
Args:
weights (str | Path): Path to the model weights file or a Triton URL. Default is 'yolov5s.pt'.
source (str | Path): Input source, which can be a file, directory, URL, glob pattern, screen capture, or webcam
index. Default is 'data/images'.
data (str | Path): Path to the dataset YAML file. Default is 'data/coco128.yaml'.
imgsz (tuple[int, int]): Inference image size as a tuple (height, width). Default is (640, 640).
conf_thres (float): Confidence threshold for detections. Default is 0.25.
iou_thres (float): Intersection Over Union (IOU) threshold for non-max suppression. Default is 0.45.
max_det (int): Maximum number of detections per image. Default is 1000.
device (str): CUDA device identifier (e.g., '0' or '0,1,2,3') or 'cpu'. Default is an empty string, which uses the
best available device.
view_img (bool): If True, display inference results using OpenCV. Default is False.
save_txt (bool): If True, save results in a text file. Default is False.
save_csv (bool): If True, save results in a CSV file. Default is False.
save_conf (bool): If True, include confidence scores in the saved results. Default is False.
save_crop (bool): If True, save cropped prediction boxes. Default is False.
nosave (bool): If True, do not save inference images or videos. Default is False.
classes (list[int]): List of class indices to filter detections by. Default is None.
agnostic_nms (bool): If True, perform class-agnostic non-max suppression. Default is False.
augment (bool): If True, use augmented inference. Default is False.
visualize (bool): If True, visualize feature maps. Default is False.
update (bool): If True, update all models' weights. Default is False.
project (str | Path): Directory to save results. Default is 'runs/detect'.
name (str): Name of the current experiment; used to create a subdirectory within 'project'. Default is 'exp'.
exist_ok (bool): If True, existing directories with the same name are reused instead of being incremented. Default is
False.
line_thickness (int): Thickness of bounding box lines in pixels. Default is 3.
hide_labels (bool): If True, do not display labels on bounding boxes. Default is False.
hide_conf (bool): If True, do not display confidence scores on bounding boxes. Default is False.
half (bool): If True, use FP16 half-precision inference. Default is False.
dnn (bool): If True, use OpenCV DNN backend for ONNX inference. Default is False.
vid_stride (int): Stride for processing video frames, to skip frames between processing. Default is 1.
Returns:
None
Examples:
```python
from ultralytics import run
# Run inference on an image
run(source='data/images/example.jpg', weights='yolov5s.pt', device='0')
# Run inference on a video with specific confidence threshold
run(source='data/videos/example.mp4', weights='yolov5s.pt', conf_thres=0.4, device='0')
```
"""
source = str(source)
save_img = not nosave and not source.endswith(".txt") # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
screenshot = source.lower().startswith("screen")
if is_url and is_file:
source = check_file(source) # download
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
bs = 1 # batch_size
if webcam:
view_img = check_imshow(warn=True)
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
bs = len(dataset)
elif screenshot:
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
if model.xml and im.shape[0] > 1:
ims = torch.chunk(im, im.shape[0], 0)
# Inference
with dt[1]:
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
if model.xml and im.shape[0] > 1:
pred = None
for image in ims:
if pred is None:
pred = model(image, augment=augment, visualize=visualize).unsqueeze(0)
else:
pred = torch.cat((pred, model(image, augment=augment, visualize=visualize).unsqueeze(0)), dim=0)
pred = [pred, None]
else:
pred = model(im, augment=augment, visualize=visualize)
# NMS
with dt[2]:
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
# Define the path for the CSV file
csv_path = save_dir / "predictions.csv"
# Create or append to the CSV file
def write_to_csv(image_name, prediction, confidence):
"""Writes prediction data for an image to a CSV file, appending if the file exists."""
data = {"Image Name": image_name, "Prediction": prediction, "Confidence": confidence}
file_exists = os.path.isfile(csv_path)
with open(csv_path, mode="a", newline="") as f:
writer = csv.DictWriter(f, fieldnames=data.keys())
if not file_exists:
writer.writeheader()
writer.writerow(data)
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f"{i}: "
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt
s += "{:g}x{:g} ".format(*im.shape[2:]) # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
c = int(cls) # integer class
label = names[c] if hide_conf else f"{names[c]}"
confidence = float(conf)
confidence_str = f"{confidence:.2f}"
if save_csv:
write_to_csv(p.name, label, confidence_str)
if save_txt: # Write to file
if save_format == 0:
coords = (
(xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
) # normalized xywh
else:
coords = (torch.tensor(xyxy).view(1, 4) / gn).view(-1).tolist() # xyxy
line = (cls, *coords, conf) if save_conf else (cls, *coords) # label format
with open(f"{txt_path}.txt", "a") as f:
f.write(("%g " * len(line)).rstrip() % line + "\n")
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}")
annotator.box_label(xyxy, label, color=colors(c, True))
if save_crop:
save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)
# Stream results
im0 = annotator.result()
if view_img:
if platform.system() == "Linux" and p not in windows:
windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == "image":
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
vid_writer[i].write(im0)
# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1e3:.1f}ms")
# Print results
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
def parse_opt():
"""
Parse command-line arguments for YOLOv5 detection, allowing custom inference options and model configurations.
Args:
--weights (str | list[str], optional): Model path or Triton URL. Defaults to ROOT / 'yolov5s.pt'.
--source (str, optional): File/dir/URL/glob/screen/0(webcam). Defaults to ROOT / 'data/images'.
--data (str, optional): Dataset YAML path. Provides dataset configuration information.
--imgsz (list[int], optional): Inference size (height, width). Defaults to [640].
--conf-thres (float, optional): Confidence threshold. Defaults to 0.25.
--iou-thres (float, optional): NMS IoU threshold. Defaults to 0.45.
--max-det (int, optional): Maximum number of detections per image. Defaults to 1000.
--device (str, optional): CUDA device, i.e., '0' or '0,1,2,3' or 'cpu'. Defaults to "".
--view-img (bool, optional): Flag to display results. Defaults to False.
--save-txt (bool, optional): Flag to save results to *.txt files. Defaults to False.
--save-csv (bool, optional): Flag to save results in CSV format. Defaults to False.
--save-conf (bool, optional): Flag to save confidences in labels saved via --save-txt. Defaults to False.
--save-crop (bool, optional): Flag to save cropped prediction boxes. Defaults to False.
--nosave (bool, optional): Flag to prevent saving images/videos. Defaults to False.
--classes (list[int], optional): List of classes to filter results by, e.g., '--classes 0 2 3'. Defaults to None.
--agnostic-nms (bool, optional): Flag for class-agnostic NMS. Defaults to False.
--augment (bool, optional): Flag for augmented inference. Defaults to False.
--visualize (bool, optional): Flag for visualizing features. Defaults to False.
--update (bool, optional): Flag to update all models in the model directory. Defaults to False.
--project (str, optional): Directory to save results. Defaults to ROOT / 'runs/detect'.
--name (str, optional): Sub-directory name for saving results within --project. Defaults to 'exp'.
--exist-ok (bool, optional): Flag to allow overwriting if the project/name already exists. Defaults to False.
--line-thickness (int, optional): Thickness (in pixels) of bounding boxes. Defaults to 3.
--hide-labels (bool, optional): Flag to hide labels in the output. Defaults to False.
--hide-conf (bool, optional): Flag to hide confidences in the output. Defaults to False.
--half (bool, optional): Flag to use FP16 half-precision inference. Defaults to False.
--dnn (bool, optional): Flag to use OpenCV DNN for ONNX inference. Defaults to False.
--vid-stride (int, optional): Video frame-rate stride, determining the number of frames to skip in between
consecutive frames. Defaults to 1.
Returns:
argparse.Namespace: Parsed command-line arguments as an argparse.Namespace object.
Example:
```python
from ultralytics import YOLOv5
args = YOLOv5.parse_opt()
```
"""
parser = argparse.ArgumentParser()
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path or triton URL")
parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold")
parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold")
parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image")
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--view-img", action="store_true", help="show results")
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
parser.add_argument(
"--save-format",
type=int,
default=0,
help="whether to save boxes coordinates in YOLO format or Pascal-VOC format when save-txt is True, 0 for YOLO and 1 for Pascal-VOC",
)
parser.add_argument("--save-csv", action="store_true", help="save results in CSV format")
parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes")
parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")
parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS")
parser.add_argument("--augment", action="store_true", help="augmented inference")
parser.add_argument("--visualize", action="store_true", help="visualize features")
parser.add_argument("--update", action="store_true", help="update all models")
parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name")
parser.add_argument("--name", default="exp", help="save results to project/name")
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)")
parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels")
parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences")
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt
def main(opt):
"""
Executes YOLOv5 model inference based on provided command-line arguments, validating dependencies before running.
Args:
opt (argparse.Namespace): Command-line arguments for YOLOv5 detection. See function `parse_opt` for details.
Returns:
None
Note:
This function performs essential pre-execution checks and initiates the YOLOv5 detection process based on user-specified
options. Refer to the usage guide and examples for more information about different sources and formats at:
https://github.com/ultralytics/ultralytics
Example usage:
```python
if __name__ == "__main__":
opt = parse_opt()
main(opt)
```
"""
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)

1546
yolov5/export.py Normal file

File diff suppressed because it is too large Load Diff

510
yolov5/hubconf.py Normal file
View File

@ -0,0 +1,510 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5.
Usage:
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # official model
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') # from branch
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') # custom/local model
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') # local repo
"""
import torch
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
"""
Creates or loads a YOLOv5 model, with options for pretrained weights and model customization.
Args:
name (str): Model name (e.g., 'yolov5s') or path to the model checkpoint (e.g., 'path/to/best.pt').
pretrained (bool, optional): If True, loads pretrained weights into the model. Defaults to True.
channels (int, optional): Number of input channels the model expects. Defaults to 3.
classes (int, optional): Number of classes the model is expected to detect. Defaults to 80.
autoshape (bool, optional): If True, applies the YOLOv5 .autoshape() wrapper for various input formats. Defaults to True.
verbose (bool, optional): If True, prints detailed information during the model creation/loading process. Defaults to True.
device (str | torch.device | None, optional): Device to use for model parameters (e.g., 'cpu', 'cuda'). If None, selects
the best available device. Defaults to None.
Returns:
(DetectMultiBackend | AutoShape): The loaded YOLOv5 model, potentially wrapped with AutoShape if specified.
Examples:
```python
import torch
from ultralytics import _create
# Load an official YOLOv5s model with pretrained weights
model = _create('yolov5s')
# Load a custom model from a local checkpoint
model = _create('path/to/custom_model.pt', pretrained=False)
# Load a model with specific input channels and classes
model = _create('yolov5s', channels=1, classes=10)
```
Notes:
For more information on model loading and customization, visit the
[YOLOv5 PyTorch Hub Documentation](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading).
"""
from pathlib import Path
from models.common import AutoShape, DetectMultiBackend
from models.experimental import attempt_load
from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
from utils.downloads import attempt_download
from utils.general import LOGGER, ROOT, check_requirements, intersect_dicts, logging
from utils.torch_utils import select_device
if not verbose:
LOGGER.setLevel(logging.WARNING)
check_requirements(ROOT / "requirements.txt", exclude=("opencv-python", "tensorboard", "thop"))
name = Path(name)
path = name.with_suffix(".pt") if name.suffix == "" and not name.is_dir() else name # checkpoint path
try:
device = select_device(device)
if pretrained and channels == 3 and classes == 80:
try:
model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
if autoshape:
if model.pt and isinstance(model.model, ClassificationModel):
LOGGER.warning(
"WARNING ⚠️ YOLOv5 ClassificationModel is not yet AutoShape compatible. "
"You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224)."
)
elif model.pt and isinstance(model.model, SegmentationModel):
LOGGER.warning(
"WARNING ⚠️ YOLOv5 SegmentationModel is not yet AutoShape compatible. "
"You will not be able to run inference with this model."
)
else:
model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
except Exception:
model = attempt_load(path, device=device, fuse=False) # arbitrary model
else:
cfg = list((Path(__file__).parent / "models").rglob(f"{path.stem}.yaml"))[0] # model.yaml path
model = DetectionModel(cfg, channels, classes) # create model
if pretrained:
ckpt = torch.load(attempt_download(path), map_location=device) # load
csd = ckpt["model"].float().state_dict() # checkpoint state_dict as FP32
csd = intersect_dicts(csd, model.state_dict(), exclude=["anchors"]) # intersect
model.load_state_dict(csd, strict=False) # load
if len(ckpt["model"].names) == classes:
model.names = ckpt["model"].names # set class names attribute
if not verbose:
LOGGER.setLevel(logging.INFO) # reset to default
return model.to(device)
except Exception as e:
help_url = "https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading"
s = f"{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help."
raise Exception(s) from e
def custom(path="path/to/model.pt", autoshape=True, _verbose=True, device=None):
"""
Loads a custom or local YOLOv5 model from a given path with optional autoshaping and device specification.
Args:
path (str): Path to the custom model file (e.g., 'path/to/model.pt').
autoshape (bool): Apply YOLOv5 .autoshape() wrapper to model if True, enabling compatibility with various input
types (default is True).
_verbose (bool): If True, prints all informational messages to the screen; otherwise, operates silently
(default is True).
device (str | torch.device | None): Device to load the model on, e.g., 'cpu', 'cuda', torch.device('cuda:0'), etc.
(default is None, which automatically selects the best available device).
Returns:
torch.nn.Module: A YOLOv5 model loaded with the specified parameters.
Notes:
For more details on loading models from PyTorch Hub:
https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading
Examples:
```python
# Load model from a given path with autoshape enabled on the best available device
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt')
# Load model from a local path without autoshape on the CPU device
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local', autoshape=False, device='cpu')
```
"""
return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Instantiates the YOLOv5-nano model with options for pretraining, input channels, class count, autoshaping,
verbosity, and device.
Args:
pretrained (bool): If True, loads pretrained weights into the model. Defaults to True.
channels (int): Number of input channels for the model. Defaults to 3.
classes (int): Number of classes for object detection. Defaults to 80.
autoshape (bool): If True, applies the YOLOv5 .autoshape() wrapper to the model for various formats (file/URI/PIL/
cv2/np) and non-maximum suppression (NMS) during inference. Defaults to True.
_verbose (bool): If True, prints detailed information to the screen. Defaults to True.
device (str | torch.device | None): Specifies the device to use for model computation. If None, uses the best device
available (i.e., GPU if available, otherwise CPU). Defaults to None.
Returns:
DetectionModel | ClassificationModel | SegmentationModel: The instantiated YOLOv5-nano model, potentially with
pretrained weights and autoshaping applied.
Notes:
For further details on loading models from PyTorch Hub, refer to [PyTorch Hub models](https://pytorch.org/hub/
ultralytics_yolov5).
Examples:
```python
import torch
from ultralytics import yolov5n
# Load the YOLOv5-nano model with defaults
model = yolov5n()
# Load the YOLOv5-nano model with a specific device
model = yolov5n(device='cuda')
```
"""
return _create("yolov5n", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Create a YOLOv5-small (yolov5s) model with options for pretraining, input channels, class count, autoshaping,
verbosity, and device configuration.
Args:
pretrained (bool, optional): Flag to load pretrained weights into the model. Defaults to True.
channels (int, optional): Number of input channels. Defaults to 3.
classes (int, optional): Number of model classes. Defaults to 80.
autoshape (bool, optional): Whether to wrap the model with YOLOv5's .autoshape() for handling various input formats.
Defaults to True.
_verbose (bool, optional): Flag to print detailed information regarding model loading. Defaults to True.
device (str | torch.device | None, optional): Device to use for model computation, can be 'cpu', 'cuda', or
torch.device instances. If None, automatically selects the best available device. Defaults to None.
Returns:
torch.nn.Module: The YOLOv5-small model configured and loaded according to the specified parameters.
Example:
```python
import torch
# Load the official YOLOv5-small model with pretrained weights
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
# Load the YOLOv5-small model from a specific branch
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s')
# Load a custom YOLOv5-small model from a local checkpoint
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt')
# Load a local YOLOv5-small model specifying source as local repository
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local')
```
Notes:
For more details on model loading and customization, visit
the [YOLOv5 PyTorch Hub Documentation](https://pytorch.org/hub/ultralytics_yolov5).
"""
return _create("yolov5s", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Instantiates the YOLOv5-medium model with customizable pretraining, channel count, class count, autoshaping,
verbosity, and device.
Args:
pretrained (bool, optional): Whether to load pretrained weights into the model. Default is True.
channels (int, optional): Number of input channels. Default is 3.
classes (int, optional): Number of model classes. Default is 80.
autoshape (bool, optional): Apply YOLOv5 .autoshape() wrapper to the model for handling various input formats.
Default is True.
_verbose (bool, optional): Whether to print detailed information to the screen. Default is True.
device (str | torch.device | None, optional): Device specification to use for model parameters (e.g., 'cpu', 'cuda').
Default is None.
Returns:
torch.nn.Module: The instantiated YOLOv5-medium model.
Usage Example:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5m') # Load YOLOv5-medium from Ultralytics repository
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5m') # Load from the master branch
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5m.pt') # Load a custom/local YOLOv5-medium model
model = torch.hub.load('.', 'custom', 'yolov5m.pt', source='local') # Load from a local repository
```
For more information, visit https://pytorch.org/hub/ultralytics_yolov5.
"""
return _create("yolov5m", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Creates YOLOv5-large model with options for pretraining, channels, classes, autoshaping, verbosity, and device
selection.
Args:
pretrained (bool): Load pretrained weights into the model. Default is True.
channels (int): Number of input channels. Default is 3.
classes (int): Number of model classes. Default is 80.
autoshape (bool): Apply YOLOv5 .autoshape() wrapper to model. Default is True.
_verbose (bool): Print all information to screen. Default is True.
device (str | torch.device | None): Device to use for model parameters, e.g., 'cpu', 'cuda', or a torch.device instance.
Default is None.
Returns:
YOLOv5 model (torch.nn.Module): The YOLOv5-large model instantiated with specified configurations and possibly
pretrained weights.
Examples:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5l')
```
Notes:
For additional details, refer to the PyTorch Hub models documentation:
https://pytorch.org/hub/ultralytics_yolov5
"""
return _create("yolov5l", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Perform object detection using the YOLOv5-xlarge model with options for pretraining, input channels, class count,
autoshaping, verbosity, and device specification.
Args:
pretrained (bool): If True, loads pretrained weights into the model. Defaults to True.
channels (int): Number of input channels for the model. Defaults to 3.
classes (int): Number of model classes for object detection. Defaults to 80.
autoshape (bool): If True, applies the YOLOv5 .autoshape() wrapper for handling different input formats. Defaults to
True.
_verbose (bool): If True, prints detailed information during model loading. Defaults to True.
device (str | torch.device | None): Device specification for computing the model, e.g., 'cpu', 'cuda:0', torch.device('cuda').
Defaults to None.
Returns:
torch.nn.Module: The YOLOv5-xlarge model loaded with the specified parameters, optionally with pretrained weights and
autoshaping applied.
Example:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5x')
```
For additional details, refer to the official YOLOv5 PyTorch Hub models documentation:
https://pytorch.org/hub/ultralytics_yolov5
"""
return _create("yolov5x", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Creates YOLOv5-nano-P6 model with options for pretraining, channels, classes, autoshaping, verbosity, and device.
Args:
pretrained (bool, optional): If True, loads pretrained weights into the model. Default is True.
channels (int, optional): Number of input channels. Default is 3.
classes (int, optional): Number of model classes. Default is 80.
autoshape (bool, optional): If True, applies the YOLOv5 .autoshape() wrapper to the model. Default is True.
_verbose (bool, optional): If True, prints all information to screen. Default is True.
device (str | torch.device | None, optional): Device to use for model parameters. Can be 'cpu', 'cuda', or None.
Default is None.
Returns:
torch.nn.Module: YOLOv5-nano-P6 model loaded with the specified configurations.
Example:
```python
import torch
model = yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device='cuda')
```
Notes:
For more information on PyTorch Hub models, visit: https://pytorch.org/hub/ultralytics_yolov5
"""
return _create("yolov5n6", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Instantiate the YOLOv5-small-P6 model with options for pretraining, input channels, number of classes, autoshaping,
verbosity, and device selection.
Args:
pretrained (bool): If True, loads pretrained weights. Default is True.
channels (int): Number of input channels. Default is 3.
classes (int): Number of object detection classes. Default is 80.
autoshape (bool): If True, applies YOLOv5 .autoshape() wrapper to the model, allowing for varied input formats.
Default is True.
_verbose (bool): If True, prints detailed information during model loading. Default is True.
device (str | torch.device | None): Device specification for model parameters (e.g., 'cpu', 'cuda', or torch.device).
Default is None, which selects an available device automatically.
Returns:
torch.nn.Module: The YOLOv5-small-P6 model instance.
Usage:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5s6')
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s6') # load from a specific branch
model = torch.hub.load('ultralytics/yolov5', 'custom', 'path/to/yolov5s6.pt') # custom/local model
model = torch.hub.load('.', 'custom', 'path/to/yolov5s6.pt', source='local') # local repo model
```
Notes:
- For more information, refer to the PyTorch Hub models documentation at https://pytorch.org/hub/ultralytics_yolov5
Raises:
Exception: If there is an error during model creation or loading, with a suggestion to visit the YOLOv5
tutorials for help.
"""
return _create("yolov5s6", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Create YOLOv5-medium-P6 model with options for pretraining, channel count, class count, autoshaping, verbosity, and
device.
Args:
pretrained (bool): If True, loads pretrained weights. Default is True.
channels (int): Number of input channels. Default is 3.
classes (int): Number of model classes. Default is 80.
autoshape (bool): Apply YOLOv5 .autoshape() wrapper to the model for file/URI/PIL/cv2/np inputs and NMS.
Default is True.
_verbose (bool): If True, prints detailed information to the screen. Default is True.
device (str | torch.device | None): Device to use for model parameters. Default is None, which uses the
best available device.
Returns:
torch.nn.Module: The YOLOv5-medium-P6 model.
Refer to the PyTorch Hub models documentation: https://pytorch.org/hub/ultralytics_yolov5 for additional details.
Example:
```python
import torch
# Load YOLOv5-medium-P6 model
model = torch.hub.load('ultralytics/yolov5', 'yolov5m6')
```
Notes:
- The model can be loaded with pre-trained weights for better performance on specific tasks.
- The autoshape feature simplifies input handling by allowing various popular data formats.
"""
return _create("yolov5m6", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Instantiate the YOLOv5-large-P6 model with options for pretraining, channel and class counts, autoshaping,
verbosity, and device selection.
Args:
pretrained (bool, optional): If True, load pretrained weights into the model. Default is True.
channels (int, optional): Number of input channels. Default is 3.
classes (int, optional): Number of model classes. Default is 80.
autoshape (bool, optional): If True, apply YOLOv5 .autoshape() wrapper to the model for input flexibility. Default is True.
_verbose (bool, optional): If True, print all information to the screen. Default is True.
device (str | torch.device | None, optional): Device to use for model parameters, e.g., 'cpu', 'cuda', or torch.device.
If None, automatically selects the best available device. Default is None.
Returns:
torch.nn.Module: The instantiated YOLOv5-large-P6 model.
Example:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5l6') # official model
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5l6') # from specific branch
model = torch.hub.load('ultralytics/yolov5', 'custom', 'path/to/yolov5l6.pt') # custom/local model
model = torch.hub.load('.', 'custom', 'path/to/yolov5l6.pt', source='local') # local repository
```
Note:
Refer to [PyTorch Hub Documentation](https://pytorch.org/hub/ultralytics_yolov5) for additional usage instructions.
"""
return _create("yolov5l6", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Creates the YOLOv5-xlarge-P6 model with options for pretraining, number of input channels, class count, autoshaping,
verbosity, and device selection.
Args:
pretrained (bool): If True, loads pretrained weights into the model. Default is True.
channels (int): Number of input channels. Default is 3.
classes (int): Number of model classes. Default is 80.
autoshape (bool): If True, applies YOLOv5 .autoshape() wrapper to the model. Default is True.
_verbose (bool): If True, prints all information to the screen. Default is True.
device (str | torch.device | None): Device to use for model parameters, can be a string, torch.device object, or
None for default device selection. Default is None.
Returns:
torch.nn.Module: The instantiated YOLOv5-xlarge-P6 model.
Example:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5x6') # load the YOLOv5-xlarge-P6 model
```
Note:
For more information on YOLOv5 models, visit the official documentation:
https://docs.ultralytics.com/yolov5
"""
return _create("yolov5x6", pretrained, channels, classes, autoshape, _verbose, device)
if __name__ == "__main__":
import argparse
from pathlib import Path
import numpy as np
from PIL import Image
from utils.general import cv2, print_args
# Argparser
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="yolov5s", help="model name")
opt = parser.parse_args()
print_args(vars(opt))
# Model
model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
# model = custom(path='path/to/model.pt') # custom
# Images
imgs = [
"data/images/zidane.jpg", # filename
Path("data/images/zidane.jpg"), # Path
"https://ultralytics.com/images/zidane.jpg", # URI
cv2.imread("data/images/bus.jpg")[:, :, ::-1], # OpenCV
Image.open("data/images/bus.jpg"), # PIL
np.zeros((320, 640, 3)),
] # numpy
# Inference
results = model(imgs, size=320) # batched inference
# Results
results.print()
results.save()

View File

@ -0,0 +1 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

1111
yolov5/models/common.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,130 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Experimental modules."""
import math
import numpy as np
import torch
import torch.nn as nn
from utils.downloads import attempt_download
class Sum(nn.Module):
"""Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070."""
def __init__(self, n, weight=False):
"""Initializes a module to sum outputs of layers with number of inputs `n` and optional weighting, supporting 2+
inputs.
"""
super().__init__()
self.weight = weight # apply weights boolean
self.iter = range(n - 1) # iter object
if weight:
self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
def forward(self, x):
"""Processes input through a customizable weighted sum of `n` inputs, optionally applying learned weights."""
y = x[0] # no weight
if self.weight:
w = torch.sigmoid(self.w) * 2
for i in self.iter:
y = y + x[i + 1] * w[i]
else:
for i in self.iter:
y = y + x[i + 1]
return y
class MixConv2d(nn.Module):
"""Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595."""
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
"""Initializes MixConv2d with mixed depth-wise convolutional layers, taking input and output channels (c1, c2),
kernel sizes (k), stride (s), and channel distribution strategy (equal_ch).
"""
super().__init__()
n = len(k) # number of convolutions
if equal_ch: # equal c_ per group
i = torch.linspace(0, n - 1e-6, c2).floor() # c2 indices
c_ = [(i == g).sum() for g in range(n)] # intermediate channels
else: # equal weight.numel() per group
b = [c2] + [0] * n
a = np.eye(n + 1, n, k=-1)
a -= np.roll(a, 1, axis=1)
a *= np.array(k) ** 2
a[0] = 1
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
self.m = nn.ModuleList(
[nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)]
)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.SiLU()
def forward(self, x):
"""Performs forward pass by applying SiLU activation on batch-normalized concatenated convolutional layer
outputs.
"""
return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
class Ensemble(nn.ModuleList):
"""Ensemble of models."""
def __init__(self):
"""Initializes an ensemble of models to be used for aggregated predictions."""
super().__init__()
def forward(self, x, augment=False, profile=False, visualize=False):
"""Performs forward pass aggregating outputs from an ensemble of models.."""
y = [module(x, augment, profile, visualize)[0] for module in self]
# y = torch.stack(y).max(0)[0] # max ensemble
# y = torch.stack(y).mean(0) # mean ensemble
y = torch.cat(y, 1) # nms ensemble
return y, None # inference, train output
def attempt_load(weights, device=None, inplace=True, fuse=True):
"""
Loads and fuses an ensemble or single YOLOv5 model from weights, handling device placement and model adjustments.
Example inputs: weights=[a,b,c] or a single model weights=[a] or weights=a.
"""
from models.yolo import Detect, Model
model = Ensemble()
for w in weights if isinstance(weights, list) else [weights]:
ckpt = torch.load(attempt_download(w), map_location="cpu") # load
ckpt = (ckpt.get("ema") or ckpt["model"]).to(device).float() # FP32 model
# Model compatibility updates
if not hasattr(ckpt, "stride"):
ckpt.stride = torch.tensor([32.0])
if hasattr(ckpt, "names") and isinstance(ckpt.names, (list, tuple)):
ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, "fuse") else ckpt.eval()) # model in eval mode
# Module updates
for m in model.modules():
t = type(m)
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
m.inplace = inplace
if t is Detect and not isinstance(m.anchor_grid, list):
delattr(m, "anchor_grid")
setattr(m, "anchor_grid", [torch.zeros(1)] * m.nl)
elif t is nn.Upsample and not hasattr(m, "recompute_scale_factor"):
m.recompute_scale_factor = None # torch 1.11.0 compatibility
# Return model
if len(model) == 1:
return model[-1]
# Return detection ensemble
print(f"Ensemble created with {weights}\n")
for k in "names", "nc", "yaml":
setattr(model, k, getattr(model[0], k))
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
assert all(model[0].nc == m.nc for m in model), f"Models have different class counts: {[m.nc for m in model]}"
return model

View File

@ -0,0 +1,57 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Default anchors for COCO data
# P5 -------------------------------------------------------------------------------------------------------------------
# P5-640:
anchors_p5_640:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# P6 -------------------------------------------------------------------------------------------------------------------
# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
anchors_p6_640:
- [9, 11, 21, 19, 17, 41] # P3/8
- [43, 32, 39, 70, 86, 64] # P4/16
- [65, 131, 134, 130, 120, 265] # P5/32
- [282, 180, 247, 354, 512, 387] # P6/64
# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
anchors_p6_1280:
- [19, 27, 44, 40, 38, 94] # P3/8
- [96, 68, 86, 152, 180, 137] # P4/16
- [140, 301, 303, 264, 238, 542] # P5/32
- [436, 615, 739, 380, 925, 792] # P6/64
# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
anchors_p6_1920:
- [28, 41, 67, 59, 57, 141] # P3/8
- [144, 103, 129, 227, 270, 205] # P4/16
- [209, 452, 455, 396, 358, 812] # P5/32
- [653, 922, 1109, 570, 1387, 1187] # P6/64
# P7 -------------------------------------------------------------------------------------------------------------------
# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
anchors_p7_640:
- [11, 11, 13, 30, 29, 20] # P3/8
- [30, 46, 61, 38, 39, 92] # P4/16
- [78, 80, 146, 66, 79, 163] # P5/32
- [149, 150, 321, 143, 157, 303] # P6/64
- [257, 402, 359, 290, 524, 372] # P7/128
# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
anchors_p7_1280:
- [19, 22, 54, 36, 32, 77] # P3/8
- [70, 83, 138, 71, 75, 173] # P4/16
- [165, 159, 148, 334, 375, 151] # P5/32
- [334, 317, 251, 626, 499, 474] # P6/64
- [750, 326, 534, 814, 1079, 818] # P7/128
# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
anchors_p7_1920:
- [29, 34, 81, 55, 47, 115] # P3/8
- [105, 124, 207, 107, 113, 259] # P4/16
- [247, 238, 222, 500, 563, 227] # P5/32
- [501, 476, 376, 939, 749, 711] # P6/64
- [1126, 489, 801, 1222, 1618, 1227] # P7/128

View File

@ -0,0 +1,52 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# darknet53 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [32, 3, 1]], # 0
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
[-1, 1, Bottleneck, [64]],
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
[-1, 2, Bottleneck, [128]],
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
[-1, 8, Bottleneck, [256]],
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
[-1, 8, Bottleneck, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
[-1, 4, Bottleneck, [1024]], # 10
]
# YOLOv3-SPP head
head: [
[-1, 1, Bottleneck, [1024, False]],
[-1, 1, SPP, [512, [5, 9, 13]]],
[-1, 1, Conv, [1024, 3, 1]],
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
[-2, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P4
[-1, 1, Bottleneck, [512, False]],
[-1, 1, Bottleneck, [512, False]],
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
[-2, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P3
[-1, 1, Bottleneck, [256, False]],
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

View File

@ -0,0 +1,42 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [10, 14, 23, 27, 37, 58] # P4/16
- [81, 82, 135, 169, 344, 319] # P5/32
# YOLOv3-tiny backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [16, 3, 1]], # 0
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
[-1, 1, Conv, [32, 3, 1]],
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
[-1, 1, Conv, [64, 3, 1]],
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
[-1, 1, Conv, [128, 3, 1]],
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
[-1, 1, Conv, [256, 3, 1]],
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
[-1, 1, Conv, [512, 3, 1]],
[-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
[-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
]
# YOLOv3-tiny head
head: [
[-1, 1, Conv, [1024, 3, 1]],
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
[-2, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P4
[-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
[[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
]

View File

@ -0,0 +1,52 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# darknet53 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [32, 3, 1]], # 0
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
[-1, 1, Bottleneck, [64]],
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
[-1, 2, Bottleneck, [128]],
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
[-1, 8, Bottleneck, [256]],
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
[-1, 8, Bottleneck, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
[-1, 4, Bottleneck, [1024]], # 10
]
# YOLOv3 head
head: [
[-1, 1, Bottleneck, [1024, False]],
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, Conv, [1024, 3, 1]],
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
[-2, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P4
[-1, 1, Bottleneck, [512, False]],
[-1, 1, Bottleneck, [512, False]],
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
[-2, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P3
[-1, 1, Bottleneck, [256, False]],
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

View File

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 BiFPN head
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14, 6], 1, Concat, [1]], # cat P4 <--- BiFPN change
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

View File

@ -0,0 +1,43 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 FPN head
head: [
[-1, 3, C3, [1024, False]], # 10 (P5/32-large)
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 1, Conv, [512, 1, 1]],
[-1, 3, C3, [512, False]], # 14 (P4/16-medium)
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 1, Conv, [256, 1, 1]],
[-1, 3, C3, [256, False]], # 18 (P3/8-small)
[[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

View File

@ -0,0 +1,55 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 2], 1, Concat, [1]], # cat backbone P2
[-1, 1, C3, [128, False]], # 21 (P2/4-xsmall)
[-1, 1, Conv, [128, 3, 2]],
[[-1, 18], 1, Concat, [1]], # cat head P3
[-1, 3, C3, [256, False]], # 24 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 27 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 30 (P5/32-large)
[[21, 24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5)
]

View File

@ -0,0 +1,42 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head with (P3, P4) outputs
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[[17, 20], 1, Detect, [nc, anchors]], # Detect(P3, P4)
]

View File

@ -0,0 +1,57 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
[-1, 3, C3, [768]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 11
]
# YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs
head: [
[-1, 1, Conv, [768, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P5
[-1, 3, C3, [768, False]], # 15
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 19
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 20], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 16], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
[-1, 1, Conv, [768, 3, 2]],
[[-1, 12], 1, Concat, [1]], # cat head P6
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
]

View File

@ -0,0 +1,68 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
[-1, 3, C3, [768]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
[-1, 3, C3, [1024]],
[-1, 1, Conv, [1280, 3, 2]], # 11-P7/128
[-1, 3, C3, [1280]],
[-1, 1, SPPF, [1280, 5]], # 13
]
# YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs
head: [
[-1, 1, Conv, [1024, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 10], 1, Concat, [1]], # cat backbone P6
[-1, 3, C3, [1024, False]], # 17
[-1, 1, Conv, [768, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P5
[-1, 3, C3, [768, False]], # 21
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 25
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 29 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 26], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 32 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 22], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [768, False]], # 35 (P5/32-large)
[-1, 1, Conv, [768, 3, 2]],
[[-1, 18], 1, Concat, [1]], # cat head P6
[-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge)
[-1, 1, Conv, [1024, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P7
[-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge)
[[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7)
]

View File

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 PANet head
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

View File

@ -0,0 +1,61 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [19, 27, 44, 40, 38, 94] # P3/8
- [96, 68, 86, 152, 180, 137] # P4/16
- [140, 301, 303, 264, 238, 542] # P5/32
- [436, 615, 739, 380, 925, 792] # P6/64
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
[-1, 3, C3, [768]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 11
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [768, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P5
[-1, 3, C3, [768, False]], # 15
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 19
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 20], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 16], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
[-1, 1, Conv, [768, 3, 2]],
[[-1, 12], 1, Concat, [1]], # cat head P6
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
]

View File

@ -0,0 +1,61 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.67 # model depth multiple
width_multiple: 0.75 # layer channel multiple
anchors:
- [19, 27, 44, 40, 38, 94] # P3/8
- [96, 68, 86, 152, 180, 137] # P4/16
- [140, 301, 303, 264, 238, 542] # P5/32
- [436, 615, 739, 380, 925, 792] # P6/64
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
[-1, 3, C3, [768]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 11
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [768, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P5
[-1, 3, C3, [768, False]], # 15
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 19
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 20], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 16], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
[-1, 1, Conv, [768, 3, 2]],
[[-1, 12], 1, Concat, [1]], # cat head P6
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
]

View File

@ -0,0 +1,61 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple
anchors:
- [19, 27, 44, 40, 38, 94] # P3/8
- [96, 68, 86, 152, 180, 137] # P4/16
- [140, 301, 303, 264, 238, 542] # P5/32
- [436, 615, 739, 380, 925, 792] # P6/64
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
[-1, 3, C3, [768]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 11
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [768, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P5
[-1, 3, C3, [768, False]], # 15
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 19
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 20], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 16], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
[-1, 1, Conv, [768, 3, 2]],
[[-1, 12], 1, Concat, [1]], # cat head P6
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
]

View File

@ -0,0 +1,50 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
activation: nn.LeakyReLU(0.1) # <----- Conv() activation used throughout entire YOLOv5 model
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

View File

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, GhostConv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3Ghost, [128]],
[-1, 1, GhostConv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3Ghost, [256]],
[-1, 1, GhostConv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3Ghost, [512]],
[-1, 1, GhostConv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3Ghost, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head: [
[-1, 1, GhostConv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3Ghost, [512, False]], # 13
[-1, 1, GhostConv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3Ghost, [256, False]], # 17 (P3/8-small)
[-1, 1, GhostConv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3Ghost, [512, False]], # 20 (P4/16-medium)
[-1, 1, GhostConv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3Ghost, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

View File

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3TR, [1024]], # 9 <--- C3TR() Transformer module
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

View File

@ -0,0 +1,61 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [19, 27, 44, 40, 38, 94] # P3/8
- [96, 68, 86, 152, 180, 137] # P4/16
- [140, 301, 303, 264, 238, 542] # P5/32
- [436, 615, 739, 380, 925, 792] # P6/64
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
[-1, 3, C3, [768]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 11
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [768, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P5
[-1, 3, C3, [768, False]], # 15
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 19
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 20], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 16], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
[-1, 1, Conv, [768, 3, 2]],
[[-1, 12], 1, Concat, [1]], # cat head P6
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
]

View File

@ -0,0 +1,61 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.33 # model depth multiple
width_multiple: 1.25 # layer channel multiple
anchors:
- [19, 27, 44, 40, 38, 94] # P3/8
- [96, 68, 86, 152, 180, 137] # P4/16
- [140, 301, 303, 264, 238, 542] # P5/32
- [436, 615, 739, 380, 925, 792] # P6/64
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
[-1, 3, C3, [768]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 11
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [768, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P5
[-1, 3, C3, [768, False]], # 15
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 19
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 20], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 16], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
[-1, 1, Conv, [768, 3, 2]],
[[-1, 12], 1, Concat, [1]], # cat head P6
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
]

View File

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
]

View File

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.67 # model depth multiple
width_multiple: 0.75 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
]

View File

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
]

View File

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.5 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
]

View File

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.33 # model depth multiple
width_multiple: 1.25 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
]

797
yolov5/models/tf.py Normal file
View File

@ -0,0 +1,797 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
TensorFlow, Keras and TFLite versions of YOLOv5
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127.
Usage:
$ python models/tf.py --weights yolov5s.pt
Export:
$ python export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
"""
import argparse
import sys
from copy import deepcopy
from pathlib import Path
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
# ROOT = ROOT.relative_to(Path.cwd()) # relative
import numpy as np
import tensorflow as tf
import torch
import torch.nn as nn
from tensorflow import keras
from models.common import (
C3,
SPP,
SPPF,
Bottleneck,
BottleneckCSP,
C3x,
Concat,
Conv,
CrossConv,
DWConv,
DWConvTranspose2d,
Focus,
autopad,
)
from models.experimental import MixConv2d, attempt_load
from models.yolo import Detect, Segment
from utils.activations import SiLU
from utils.general import LOGGER, make_divisible, print_args
class TFBN(keras.layers.Layer):
"""TensorFlow BatchNormalization wrapper for initializing with optional pretrained weights."""
def __init__(self, w=None):
"""Initializes a TensorFlow BatchNormalization layer with optional pretrained weights."""
super().__init__()
self.bn = keras.layers.BatchNormalization(
beta_initializer=keras.initializers.Constant(w.bias.numpy()),
gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
epsilon=w.eps,
)
def call(self, inputs):
"""Applies batch normalization to the inputs."""
return self.bn(inputs)
class TFPad(keras.layers.Layer):
"""Pads input tensors in spatial dimensions 1 and 2 with specified integer or tuple padding values."""
def __init__(self, pad):
"""
Initializes a padding layer for spatial dimensions 1 and 2 with specified padding, supporting both int and tuple
inputs.
Inputs are
"""
super().__init__()
if isinstance(pad, int):
self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
else: # tuple/list
self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]])
def call(self, inputs):
"""Pads input tensor with zeros using specified padding, suitable for int and tuple pad dimensions."""
return tf.pad(inputs, self.pad, mode="constant", constant_values=0)
class TFConv(keras.layers.Layer):
"""Implements a standard convolutional layer with optional batch normalization and activation for TensorFlow."""
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
"""
Initializes a standard convolution layer with optional batch normalization and activation; supports only
group=1.
Inputs are ch_in, ch_out, weights, kernel, stride, padding, groups.
"""
super().__init__()
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
# TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
# see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
conv = keras.layers.Conv2D(
filters=c2,
kernel_size=k,
strides=s,
padding="SAME" if s == 1 else "VALID",
use_bias=not hasattr(w, "bn"),
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
bias_initializer="zeros" if hasattr(w, "bn") else keras.initializers.Constant(w.conv.bias.numpy()),
)
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
self.bn = TFBN(w.bn) if hasattr(w, "bn") else tf.identity
self.act = activations(w.act) if act else tf.identity
def call(self, inputs):
"""Applies convolution, batch normalization, and activation function to input tensors."""
return self.act(self.bn(self.conv(inputs)))
class TFDWConv(keras.layers.Layer):
"""Initializes a depthwise convolution layer with optional batch normalization and activation for TensorFlow."""
def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None):
"""
Initializes a depthwise convolution layer with optional batch normalization and activation for TensorFlow
models.
Input are ch_in, ch_out, weights, kernel, stride, padding, groups.
"""
super().__init__()
assert c2 % c1 == 0, f"TFDWConv() output={c2} must be a multiple of input={c1} channels"
conv = keras.layers.DepthwiseConv2D(
kernel_size=k,
depth_multiplier=c2 // c1,
strides=s,
padding="SAME" if s == 1 else "VALID",
use_bias=not hasattr(w, "bn"),
depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
bias_initializer="zeros" if hasattr(w, "bn") else keras.initializers.Constant(w.conv.bias.numpy()),
)
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
self.bn = TFBN(w.bn) if hasattr(w, "bn") else tf.identity
self.act = activations(w.act) if act else tf.identity
def call(self, inputs):
"""Applies convolution, batch normalization, and activation function to input tensors."""
return self.act(self.bn(self.conv(inputs)))
class TFDWConvTranspose2d(keras.layers.Layer):
"""Implements a depthwise ConvTranspose2D layer for TensorFlow with specific settings."""
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None):
"""
Initializes depthwise ConvTranspose2D layer with specific channel, kernel, stride, and padding settings.
Inputs are ch_in, ch_out, weights, kernel, stride, padding, groups.
"""
super().__init__()
assert c1 == c2, f"TFDWConv() output={c2} must be equal to input={c1} channels"
assert k == 4 and p1 == 1, "TFDWConv() only valid for k=4 and p1=1"
weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy()
self.c1 = c1
self.conv = [
keras.layers.Conv2DTranspose(
filters=1,
kernel_size=k,
strides=s,
padding="VALID",
output_padding=p2,
use_bias=True,
kernel_initializer=keras.initializers.Constant(weight[..., i : i + 1]),
bias_initializer=keras.initializers.Constant(bias[i]),
)
for i in range(c1)
]
def call(self, inputs):
"""Processes input through parallel convolutions and concatenates results, trimming border pixels."""
return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1]
class TFFocus(keras.layers.Layer):
"""Focuses spatial information into channel space using pixel shuffling and convolution for TensorFlow models."""
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
"""
Initializes TFFocus layer to focus width and height information into channel space with custom convolution
parameters.
Inputs are ch_in, ch_out, kernel, stride, padding, groups.
"""
super().__init__()
self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
def call(self, inputs):
"""
Performs pixel shuffling and convolution on input tensor, downsampling by 2 and expanding channels by 4.
Example x(b,w,h,c) -> y(b,w/2,h/2,4c).
"""
inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]]
return self.conv(tf.concat(inputs, 3))
class TFBottleneck(keras.layers.Layer):
"""Implements a TensorFlow bottleneck layer with optional shortcut connections for efficient feature extraction."""
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None):
"""
Initializes a standard bottleneck layer for TensorFlow models, expanding and contracting channels with optional
shortcut.
Arguments are ch_in, ch_out, shortcut, groups, expansion.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
self.add = shortcut and c1 == c2
def call(self, inputs):
"""Performs forward pass; if shortcut is True & input/output channels match, adds input to the convolution
result.
"""
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
class TFCrossConv(keras.layers.Layer):
"""Implements a cross convolutional layer with optional expansion, grouping, and shortcut for TensorFlow."""
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None):
"""Initializes cross convolution layer with optional expansion, grouping, and shortcut addition capabilities."""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1)
self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2)
self.add = shortcut and c1 == c2
def call(self, inputs):
"""Passes input through two convolutions optionally adding the input if channel dimensions match."""
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
class TFConv2d(keras.layers.Layer):
"""Implements a TensorFlow 2D convolution layer, mimicking PyTorch's nn.Conv2D for specified filters and stride."""
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
"""Initializes a TensorFlow 2D convolution layer, mimicking PyTorch's nn.Conv2D functionality for given filter
sizes and stride.
"""
super().__init__()
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
self.conv = keras.layers.Conv2D(
filters=c2,
kernel_size=k,
strides=s,
padding="VALID",
use_bias=bias,
kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()),
bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None,
)
def call(self, inputs):
"""Applies a convolution operation to the inputs and returns the result."""
return self.conv(inputs)
class TFBottleneckCSP(keras.layers.Layer):
"""Implements a CSP bottleneck layer for TensorFlow models to enhance gradient flow and efficiency."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
"""
Initializes CSP bottleneck layer with specified channel sizes, count, shortcut option, groups, and expansion
ratio.
Inputs are ch_in, ch_out, number, shortcut, groups, expansion.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
self.bn = TFBN(w.bn)
self.act = lambda x: keras.activations.swish(x)
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
def call(self, inputs):
"""Processes input through the model layers, concatenates, normalizes, activates, and reduces the output
dimensions.
"""
y1 = self.cv3(self.m(self.cv1(inputs)))
y2 = self.cv2(inputs)
return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
class TFC3(keras.layers.Layer):
"""CSP bottleneck layer with 3 convolutions for TensorFlow, supporting optional shortcuts and group convolutions."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
"""
Initializes CSP Bottleneck with 3 convolutions, supporting optional shortcuts and group convolutions.
Inputs are ch_in, ch_out, number, shortcut, groups, expansion.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
def call(self, inputs):
"""
Processes input through a sequence of transformations for object detection (YOLOv5).
See https://github.com/ultralytics/yolov5.
"""
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
class TFC3x(keras.layers.Layer):
"""A TensorFlow layer for enhanced feature extraction using cross-convolutions in object detection models."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
"""
Initializes layer with cross-convolutions for enhanced feature extraction in object detection models.
Inputs are ch_in, ch_out, number, shortcut, groups, expansion.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
self.m = keras.Sequential(
[TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)]
)
def call(self, inputs):
"""Processes input through cascaded convolutions and merges features, returning the final tensor output."""
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
class TFSPP(keras.layers.Layer):
"""Implements spatial pyramid pooling for YOLOv3-SPP with specific channels and kernel sizes."""
def __init__(self, c1, c2, k=(5, 9, 13), w=None):
"""Initializes a YOLOv3-SPP layer with specific input/output channels and kernel sizes for pooling."""
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding="SAME") for x in k]
def call(self, inputs):
"""Processes input through two TFConv layers and concatenates with max-pooled outputs at intermediate stage."""
x = self.cv1(inputs)
return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
class TFSPPF(keras.layers.Layer):
"""Implements a fast spatial pyramid pooling layer for TensorFlow with optimized feature extraction."""
def __init__(self, c1, c2, k=5, w=None):
"""Initializes a fast spatial pyramid pooling layer with customizable in/out channels, kernel size, and
weights.
"""
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding="SAME")
def call(self, inputs):
"""Executes the model's forward pass, concatenating input features with three max-pooled versions before final
convolution.
"""
x = self.cv1(inputs)
y1 = self.m(x)
y2 = self.m(y1)
return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
class TFDetect(keras.layers.Layer):
"""Implements YOLOv5 object detection layer in TensorFlow for predicting bounding boxes and class probabilities."""
def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None):
"""Initializes YOLOv5 detection layer for TensorFlow with configurable classes, anchors, channels, and image
size.
"""
super().__init__()
self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [tf.zeros(1)] * self.nl # init grid
self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2])
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
self.training = False # set to False after building model
self.imgsz = imgsz
for i in range(self.nl):
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
self.grid[i] = self._make_grid(nx, ny)
def call(self, inputs):
"""Performs forward pass through the model layers to predict object bounding boxes and classifications."""
z = [] # inference output
x = []
for i in range(self.nl):
x.append(self.m[i](inputs[i]))
# x(bs,20,20,255) to x(bs,3,20,20,85)
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])
if not self.training: # inference
y = x[i]
grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
xy = (tf.sigmoid(y[..., 0:2]) * 2 + grid) * self.stride[i] # xy
wh = tf.sigmoid(y[..., 2:4]) ** 2 * anchor_grid
# Normalize xywh to 0-1 to reduce calibration error
xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
y = tf.concat([xy, wh, tf.sigmoid(y[..., 4 : 5 + self.nc]), y[..., 5 + self.nc :]], -1)
z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1),)
@staticmethod
def _make_grid(nx=20, ny=20):
"""Generates a 2D grid of coordinates in (x, y) format with shape [1, 1, ny*nx, 2]."""
# return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
class TFSegment(TFDetect):
"""YOLOv5 segmentation head for TensorFlow, combining detection and segmentation."""
def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), imgsz=(640, 640), w=None):
"""Initializes YOLOv5 Segment head with specified channel depths, anchors, and input size for segmentation
models.
"""
super().__init__(nc, anchors, ch, imgsz, w)
self.nm = nm # number of masks
self.npr = npr # number of protos
self.no = 5 + nc + self.nm # number of outputs per anchor
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] # output conv
self.proto = TFProto(ch[0], self.npr, self.nm, w=w.proto) # protos
self.detect = TFDetect.call
def call(self, x):
"""Applies detection and proto layers on input, returning detections and optionally protos if training."""
p = self.proto(x[0])
# p = TFUpsample(None, scale_factor=4, mode='nearest')(self.proto(x[0])) # (optional) full-size protos
p = tf.transpose(p, [0, 3, 1, 2]) # from shape(1,160,160,32) to shape(1,32,160,160)
x = self.detect(self, x)
return (x, p) if self.training else (x[0], p)
class TFProto(keras.layers.Layer):
"""Implements convolutional and upsampling layers for feature extraction in YOLOv5 segmentation."""
def __init__(self, c1, c_=256, c2=32, w=None):
"""Initializes TFProto layer with convolutional and upsampling layers for feature extraction and
transformation.
"""
super().__init__()
self.cv1 = TFConv(c1, c_, k=3, w=w.cv1)
self.upsample = TFUpsample(None, scale_factor=2, mode="nearest")
self.cv2 = TFConv(c_, c_, k=3, w=w.cv2)
self.cv3 = TFConv(c_, c2, w=w.cv3)
def call(self, inputs):
"""Performs forward pass through the model, applying convolutions and upscaling on input tensor."""
return self.cv3(self.cv2(self.upsample(self.cv1(inputs))))
class TFUpsample(keras.layers.Layer):
"""Implements a TensorFlow upsampling layer with specified size, scale factor, and interpolation mode."""
def __init__(self, size, scale_factor, mode, w=None):
"""
Initializes a TensorFlow upsampling layer with specified size, scale_factor, and mode, ensuring scale_factor is
even.
Warning: all arguments needed including 'w'
"""
super().__init__()
assert scale_factor % 2 == 0, "scale_factor must be multiple of 2"
self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * scale_factor, x.shape[2] * scale_factor), mode)
# self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
# with default arguments: align_corners=False, half_pixel_centers=False
# self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
# size=(x.shape[1] * 2, x.shape[2] * 2))
def call(self, inputs):
"""Applies upsample operation to inputs using nearest neighbor interpolation."""
return self.upsample(inputs)
class TFConcat(keras.layers.Layer):
"""Implements TensorFlow's version of torch.concat() for concatenating tensors along the last dimension."""
def __init__(self, dimension=1, w=None):
"""Initializes a TensorFlow layer for NCHW to NHWC concatenation, requiring dimension=1."""
super().__init__()
assert dimension == 1, "convert only NCHW to NHWC concat"
self.d = 3
def call(self, inputs):
"""Concatenates a list of tensors along the last dimension, used for NCHW to NHWC conversion."""
return tf.concat(inputs, self.d)
def parse_model(d, ch, model, imgsz):
"""Parses a model definition dict `d` to create YOLOv5 model layers, including dynamic channel adjustments."""
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
anchors, nc, gd, gw, ch_mul = (
d["anchors"],
d["nc"],
d["depth_multiple"],
d["width_multiple"],
d.get("channel_multiple"),
)
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
if not ch_mul:
ch_mul = 8
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args
m_str = m
m = eval(m) if isinstance(m, str) else m # eval strings
for j, a in enumerate(args):
try:
args[j] = eval(a) if isinstance(a, str) else a # eval strings
except NameError:
pass
n = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in [
nn.Conv2d,
Conv,
DWConv,
DWConvTranspose2d,
Bottleneck,
SPP,
SPPF,
MixConv2d,
Focus,
CrossConv,
BottleneckCSP,
C3,
C3x,
]:
c1, c2 = ch[f], args[0]
c2 = make_divisible(c2 * gw, ch_mul) if c2 != no else c2
args = [c1, c2, *args[1:]]
if m in [BottleneckCSP, C3, C3x]:
args.insert(2, n)
n = 1
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
elif m in [Detect, Segment]:
args.append([ch[x + 1] for x in f])
if isinstance(args[1], int): # number of anchors
args[1] = [list(range(args[1] * 2))] * len(f)
if m is Segment:
args[3] = make_divisible(args[3] * gw, ch_mul)
args.append(imgsz)
else:
c2 = ch[f]
tf_m = eval("TF" + m_str.replace("nn.", ""))
m_ = (
keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)])
if n > 1
else tf_m(*args, w=model.model[i])
) # module
torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace("__main__.", "") # module type
np = sum(x.numel() for x in torch_m_.parameters()) # number params
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
LOGGER.info(f"{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}") # print
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
ch.append(c2)
return keras.Sequential(layers), sorted(save)
class TFModel:
"""Implements YOLOv5 model in TensorFlow, supporting TensorFlow, Keras, and TFLite formats for object detection."""
def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None, model=None, imgsz=(640, 640)):
"""Initializes TF YOLOv5 model with specified configuration, channels, classes, model instance, and input
size.
"""
super().__init__()
if isinstance(cfg, dict):
self.yaml = cfg # model dict
else: # is *.yaml
import yaml # for torch hub
self.yaml_file = Path(cfg).name
with open(cfg) as f:
self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
# Define model
if nc and nc != self.yaml["nc"]:
LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
self.yaml["nc"] = nc # override yaml value
self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
def predict(
self,
inputs,
tf_nms=False,
agnostic_nms=False,
topk_per_class=100,
topk_all=100,
iou_thres=0.45,
conf_thres=0.25,
):
"""Runs inference on input data, with an option for TensorFlow NMS."""
y = [] # outputs
x = inputs
for m in self.model.layers:
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
x = m(x) # run
y.append(x if m.i in self.savelist else None) # save output
# Add TensorFlow NMS
if tf_nms:
boxes = self._xywh2xyxy(x[0][..., :4])
probs = x[0][:, :, 4:5]
classes = x[0][:, :, 5:]
scores = probs * classes
if agnostic_nms:
nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
else:
boxes = tf.expand_dims(boxes, 2)
nms = tf.image.combined_non_max_suppression(
boxes, scores, topk_per_class, topk_all, iou_thres, conf_thres, clip_boxes=False
)
return (nms,)
return x # output [1,6300,85] = [xywh, conf, class0, class1, ...]
# x = x[0] # [x(1,6300,85), ...] to x(6300,85)
# xywh = x[..., :4] # x(6300,4) boxes
# conf = x[..., 4:5] # x(6300,1) confidences
# cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
# return tf.concat([conf, cls, xywh], 1)
@staticmethod
def _xywh2xyxy(xywh):
"""Converts bounding box format from [x, y, w, h] to [x1, y1, x2, y2], where xy1=top-left and xy2=bottom-
right.
"""
x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
class AgnosticNMS(keras.layers.Layer):
"""Performs agnostic non-maximum suppression (NMS) on detected objects using IoU and confidence thresholds."""
def call(self, input, topk_all, iou_thres, conf_thres):
"""Performs agnostic NMS on input tensors using given thresholds and top-K selection."""
return tf.map_fn(
lambda x: self._nms(x, topk_all, iou_thres, conf_thres),
input,
fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
name="agnostic_nms",
)
@staticmethod
def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25):
"""Performs agnostic non-maximum suppression (NMS) on detected objects, filtering based on IoU and confidence
thresholds.
"""
boxes, classes, scores = x
class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
scores_inp = tf.reduce_max(scores, -1)
selected_inds = tf.image.non_max_suppression(
boxes, scores_inp, max_output_size=topk_all, iou_threshold=iou_thres, score_threshold=conf_thres
)
selected_boxes = tf.gather(boxes, selected_inds)
padded_boxes = tf.pad(
selected_boxes,
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
mode="CONSTANT",
constant_values=0.0,
)
selected_scores = tf.gather(scores_inp, selected_inds)
padded_scores = tf.pad(
selected_scores,
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
mode="CONSTANT",
constant_values=-1.0,
)
selected_classes = tf.gather(class_inds, selected_inds)
padded_classes = tf.pad(
selected_classes,
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
mode="CONSTANT",
constant_values=-1.0,
)
valid_detections = tf.shape(selected_inds)[0]
return padded_boxes, padded_scores, padded_classes, valid_detections
def activations(act=nn.SiLU):
"""Converts PyTorch activations to TensorFlow equivalents, supporting LeakyReLU, Hardswish, and SiLU/Swish."""
if isinstance(act, nn.LeakyReLU):
return lambda x: keras.activations.relu(x, alpha=0.1)
elif isinstance(act, nn.Hardswish):
return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667
elif isinstance(act, (nn.SiLU, SiLU)):
return lambda x: keras.activations.swish(x)
else:
raise Exception(f"no matching TensorFlow activation found for PyTorch activation {act}")
def representative_dataset_gen(dataset, ncalib=100):
"""Generates a representative dataset for calibration by yielding transformed numpy arrays from the input
dataset.
"""
for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
im = np.transpose(img, [1, 2, 0])
im = np.expand_dims(im, axis=0).astype(np.float32)
im /= 255
yield [im]
if n >= ncalib:
break
def run(
weights=ROOT / "yolov5s.pt", # weights path
imgsz=(640, 640), # inference size h,w
batch_size=1, # batch size
dynamic=False, # dynamic batch size
):
# PyTorch model
"""Exports YOLOv5 model from PyTorch to TensorFlow and Keras formats, performing inference for validation."""
im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
model = attempt_load(weights, device=torch.device("cpu"), inplace=True, fuse=False)
_ = model(im) # inference
model.info()
# TensorFlow model
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
_ = tf_model.predict(im) # inference
# Keras model
im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
keras_model.summary()
LOGGER.info("PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.")
def parse_opt():
"""Parses and returns command-line options for model inference, including weights path, image size, batch size, and
dynamic batching.
"""
parser = argparse.ArgumentParser()
parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path")
parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
parser.add_argument("--batch-size", type=int, default=1, help="batch size")
parser.add_argument("--dynamic", action="store_true", help="dynamic batch size")
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt
def main(opt):
"""Executes the YOLOv5 model run function with parsed command line options."""
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)

495
yolov5/models/yolo.py Normal file
View File

@ -0,0 +1,495 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
YOLO-specific modules.
Usage:
$ python models/yolo.py --cfg yolov5s.yaml
"""
import argparse
import contextlib
import math
import os
import platform
import sys
from copy import deepcopy
from pathlib import Path
import torch
import torch.nn as nn
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
if platform.system() != "Windows":
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import (
C3,
C3SPP,
C3TR,
SPP,
SPPF,
Bottleneck,
BottleneckCSP,
C3Ghost,
C3x,
Classify,
Concat,
Contract,
Conv,
CrossConv,
DetectMultiBackend,
DWConv,
DWConvTranspose2d,
Expand,
Focus,
GhostBottleneck,
GhostConv,
Proto,
)
from models.experimental import MixConv2d
from utils.autoanchor import check_anchor_order
from utils.general import LOGGER, check_version, check_yaml, colorstr, make_divisible, print_args
from utils.plots import feature_visualization
from utils.torch_utils import (
fuse_conv_and_bn,
initialize_weights,
model_info,
profile,
scale_img,
select_device,
time_sync,
)
try:
import thop # for FLOPs computation
except ImportError:
thop = None
class Detect(nn.Module):
"""YOLOv5 Detect head for processing input tensors and generating detection outputs in object detection models."""
stride = None # strides computed during build
dynamic = False # force grid reconstruction
export = False # export mode
def __init__(self, nc=80, anchors=(), ch=(), inplace=True):
"""Initializes YOLOv5 detection layer with specified classes, anchors, channels, and inplace operations."""
super().__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.empty(0) for _ in range(self.nl)] # init grid
self.anchor_grid = [torch.empty(0) for _ in range(self.nl)] # init anchor grid
self.register_buffer("anchors", torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
self.inplace = inplace # use inplace ops (e.g. slice assignment)
def forward(self, x):
"""Processes input through YOLOv5 layers, altering shape for detection: `x(bs, 3, ny, nx, 85)`."""
z = [] # inference output
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
if isinstance(self, Segment): # (boxes + masks)
xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)
xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i] # xy
wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i] # wh
y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)
else: # Detect (boxes only)
xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)
xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy
wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh
y = torch.cat((xy, wh, conf), 4)
z.append(y.view(bs, self.na * nx * ny, self.no))
return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, "1.10.0")):
"""Generates a mesh grid for anchor boxes with optional compatibility for torch versions < 1.10."""
d = self.anchors[i].device
t = self.anchors[i].dtype
shape = 1, self.na, ny, nx, 2 # grid shape
y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
yv, xv = torch.meshgrid(y, x, indexing="ij") if torch_1_10 else torch.meshgrid(y, x) # torch>=0.7 compatibility
grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5
anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
return grid, anchor_grid
class Segment(Detect):
"""YOLOv5 Segment head for segmentation models, extending Detect with mask and prototype layers."""
def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), inplace=True):
"""Initializes YOLOv5 Segment head with options for mask count, protos, and channel adjustments."""
super().__init__(nc, anchors, ch, inplace)
self.nm = nm # number of masks
self.npr = npr # number of protos
self.no = 5 + nc + self.nm # number of outputs per anchor
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
self.proto = Proto(ch[0], self.npr, self.nm) # protos
self.detect = Detect.forward
def forward(self, x):
"""Processes input through the network, returning detections and prototypes; adjusts output based on
training/export mode.
"""
p = self.proto(x[0])
x = self.detect(self, x)
return (x, p) if self.training else (x[0], p) if self.export else (x[0], p, x[1])
class BaseModel(nn.Module):
"""YOLOv5 base model."""
def forward(self, x, profile=False, visualize=False):
"""Executes a single-scale inference or training pass on the YOLOv5 base model, with options for profiling and
visualization.
"""
return self._forward_once(x, profile, visualize) # single-scale inference, train
def _forward_once(self, x, profile=False, visualize=False):
"""Performs a forward pass on the YOLOv5 model, enabling profiling and feature visualization options."""
y, dt = [], [] # outputs
for m in self.model:
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
self._profile_one_layer(m, x, dt)
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)
return x
def _profile_one_layer(self, m, x, dt):
"""Profiles a single layer's performance by computing GFLOPs, execution time, and parameters."""
c = m == self.model[-1] # is final layer, copy input as inplace fix
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1e9 * 2 if thop else 0 # FLOPs
t = time_sync()
for _ in range(10):
m(x.copy() if c else x)
dt.append((time_sync() - t) * 100)
if m == self.model[0]:
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
LOGGER.info(f"{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}")
if c:
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
def fuse(self):
"""Fuses Conv2d() and BatchNorm2d() layers in the model to improve inference speed."""
LOGGER.info("Fusing layers... ")
for m in self.model.modules():
if isinstance(m, (Conv, DWConv)) and hasattr(m, "bn"):
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
delattr(m, "bn") # remove batchnorm
m.forward = m.forward_fuse # update forward
self.info()
return self
def info(self, verbose=False, img_size=640):
"""Prints model information given verbosity and image size, e.g., `info(verbose=True, img_size=640)`."""
model_info(self, verbose, img_size)
def _apply(self, fn):
"""Applies transformations like to(), cpu(), cuda(), half() to model tensors excluding parameters or registered
buffers.
"""
self = super()._apply(fn)
m = self.model[-1] # Detect()
if isinstance(m, (Detect, Segment)):
m.stride = fn(m.stride)
m.grid = list(map(fn, m.grid))
if isinstance(m.anchor_grid, list):
m.anchor_grid = list(map(fn, m.anchor_grid))
return self
class DetectionModel(BaseModel):
"""YOLOv5 detection model class for object detection tasks, supporting custom configurations and anchors."""
def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None, anchors=None):
"""Initializes YOLOv5 model with configuration file, input channels, number of classes, and custom anchors."""
super().__init__()
if isinstance(cfg, dict):
self.yaml = cfg # model dict
else: # is *.yaml
import yaml # for torch hub
self.yaml_file = Path(cfg).name
with open(cfg, encoding="ascii", errors="ignore") as f:
self.yaml = yaml.safe_load(f) # model dict
# Define model
ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels
if nc and nc != self.yaml["nc"]:
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
self.yaml["nc"] = nc # override yaml value
if anchors:
LOGGER.info(f"Overriding model.yaml anchors with anchors={anchors}")
self.yaml["anchors"] = round(anchors) # override yaml value
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
self.names = [str(i) for i in range(self.yaml["nc"])] # default names
self.inplace = self.yaml.get("inplace", True)
# Build strides, anchors
m = self.model[-1] # Detect()
if isinstance(m, (Detect, Segment)):
def _forward(x):
"""Passes the input 'x' through the model and returns the processed output."""
return self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)
s = 256 # 2x min stride
m.inplace = self.inplace
m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))]) # forward
check_anchor_order(m)
m.anchors /= m.stride.view(-1, 1, 1)
self.stride = m.stride
self._initialize_biases() # only run once
# Init weights, biases
initialize_weights(self)
self.info()
LOGGER.info("")
def forward(self, x, augment=False, profile=False, visualize=False):
"""Performs single-scale or augmented inference and may include profiling or visualization."""
if augment:
return self._forward_augment(x) # augmented inference, None
return self._forward_once(x, profile, visualize) # single-scale inference, train
def _forward_augment(self, x):
"""Performs augmented inference across different scales and flips, returning combined detections."""
img_size = x.shape[-2:] # height, width
s = [1, 0.83, 0.67] # scales
f = [None, 3, None] # flips (2-ud, 3-lr)
y = [] # outputs
for si, fi in zip(s, f):
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
yi = self._forward_once(xi)[0] # forward
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
yi = self._descale_pred(yi, fi, si, img_size)
y.append(yi)
y = self._clip_augmented(y) # clip augmented tails
return torch.cat(y, 1), None # augmented inference, train
def _descale_pred(self, p, flips, scale, img_size):
"""De-scales predictions from augmented inference, adjusting for flips and image size."""
if self.inplace:
p[..., :4] /= scale # de-scale
if flips == 2:
p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
elif flips == 3:
p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
else:
x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
if flips == 2:
y = img_size[0] - y # de-flip ud
elif flips == 3:
x = img_size[1] - x # de-flip lr
p = torch.cat((x, y, wh, p[..., 4:]), -1)
return p
def _clip_augmented(self, y):
"""Clips augmented inference tails for YOLOv5 models, affecting first and last tensors based on grid points and
layer counts.
"""
nl = self.model[-1].nl # number of detection layers (P3-P5)
g = sum(4**x for x in range(nl)) # grid points
e = 1 # exclude layer count
i = (y[0].shape[1] // g) * sum(4**x for x in range(e)) # indices
y[0] = y[0][:, :-i] # large
i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
y[-1] = y[-1][:, i:] # small
return y
def _initialize_biases(self, cf=None):
"""
Initializes biases for YOLOv5's Detect() module, optionally using class frequencies (cf).
For details see https://arxiv.org/abs/1708.02002 section 3.3.
"""
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
m = self.model[-1] # Detect() module
for mi, s in zip(m.m, m.stride): # from
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
b.data[:, 5 : 5 + m.nc] += (
math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum())
) # cls
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
Model = DetectionModel # retain YOLOv5 'Model' class for backwards compatibility
class SegmentationModel(DetectionModel):
"""YOLOv5 segmentation model for object detection and segmentation tasks with configurable parameters."""
def __init__(self, cfg="yolov5s-seg.yaml", ch=3, nc=None, anchors=None):
"""Initializes a YOLOv5 segmentation model with configurable params: cfg (str) for configuration, ch (int) for channels, nc (int) for num classes, anchors (list)."""
super().__init__(cfg, ch, nc, anchors)
class ClassificationModel(BaseModel):
"""YOLOv5 classification model for image classification tasks, initialized with a config file or detection model."""
def __init__(self, cfg=None, model=None, nc=1000, cutoff=10):
"""Initializes YOLOv5 model with config file `cfg`, input channels `ch`, number of classes `nc`, and `cuttoff`
index.
"""
super().__init__()
self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
def _from_detection_model(self, model, nc=1000, cutoff=10):
"""Creates a classification model from a YOLOv5 detection model, slicing at `cutoff` and adding a classification
layer.
"""
if isinstance(model, DetectMultiBackend):
model = model.model # unwrap DetectMultiBackend
model.model = model.model[:cutoff] # backbone
m = model.model[-1] # last layer
ch = m.conv.in_channels if hasattr(m, "conv") else m.cv1.conv.in_channels # ch into module
c = Classify(ch, nc) # Classify()
c.i, c.f, c.type = m.i, m.f, "models.common.Classify" # index, from, type
model.model[-1] = c # replace
self.model = model.model
self.stride = model.stride
self.save = []
self.nc = nc
def _from_yaml(self, cfg):
"""Creates a YOLOv5 classification model from a specified *.yaml configuration file."""
self.model = None
def parse_model(d, ch):
"""Parses a YOLOv5 model from a dict `d`, configuring layers based on input channels `ch` and model architecture."""
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
anchors, nc, gd, gw, act, ch_mul = (
d["anchors"],
d["nc"],
d["depth_multiple"],
d["width_multiple"],
d.get("activation"),
d.get("channel_multiple"),
)
if act:
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
LOGGER.info(f"{colorstr('activation:')} {act}") # print
if not ch_mul:
ch_mul = 8
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args
m = eval(m) if isinstance(m, str) else m # eval strings
for j, a in enumerate(args):
with contextlib.suppress(NameError):
args[j] = eval(a) if isinstance(a, str) else a # eval strings
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in {
Conv,
GhostConv,
Bottleneck,
GhostBottleneck,
SPP,
SPPF,
DWConv,
MixConv2d,
Focus,
CrossConv,
BottleneckCSP,
C3,
C3TR,
C3SPP,
C3Ghost,
nn.ConvTranspose2d,
DWConvTranspose2d,
C3x,
}:
c1, c2 = ch[f], args[0]
if c2 != no: # if not output
c2 = make_divisible(c2 * gw, ch_mul)
args = [c1, c2, *args[1:]]
if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
args.insert(2, n) # number of repeats
n = 1
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum(ch[x] for x in f)
# TODO: channel, gw, gd
elif m in {Detect, Segment}:
args.append([ch[x] for x in f])
if isinstance(args[1], int): # number of anchors
args[1] = [list(range(args[1] * 2))] * len(f)
if m is Segment:
args[3] = make_divisible(args[3] * gw, ch_mul)
elif m is Contract:
c2 = ch[f] * args[0] ** 2
elif m is Expand:
c2 = ch[f] // args[0] ** 2
else:
c2 = ch[f]
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace("__main__.", "") # module type
np = sum(x.numel() for x in m_.parameters()) # number params
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
LOGGER.info(f"{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}") # print
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
if i == 0:
ch = []
ch.append(c2)
return nn.Sequential(*layers), sorted(save)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--cfg", type=str, default="yolov5s.yaml", help="model.yaml")
parser.add_argument("--batch-size", type=int, default=1, help="total batch size for all GPUs")
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--profile", action="store_true", help="profile model speed")
parser.add_argument("--line-profile", action="store_true", help="profile model speed layer by layer")
parser.add_argument("--test", action="store_true", help="test all yolo*.yaml")
opt = parser.parse_args()
opt.cfg = check_yaml(opt.cfg) # check YAML
print_args(vars(opt))
device = select_device(opt.device)
# Create model
im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
model = Model(opt.cfg).to(device)
# Options
if opt.line_profile: # profile layer by layer
model(im, profile=True)
elif opt.profile: # profile forward-backward
results = profile(input=im, ops=[model], n=3)
elif opt.test: # test all models
for cfg in Path(ROOT / "models").rglob("yolo*.yaml"):
try:
_ = Model(cfg)
except Exception as e:
print(f"Error in {cfg}: {e}")
else: # report fused model summary
model.fuse()

View File

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

View File

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.67 # model depth multiple
width_multiple: 0.75 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

View File

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

View File

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

View File

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.33 # model depth multiple
width_multiple: 1.25 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

49
yolov5/requirements.txt Normal file
View File

@ -0,0 +1,49 @@
YOLOv5 requirements
# Usage: pip install -r requirements.txt
# Base ------------------------------------------------------------------------
gitpython>=3.1.30
matplotlib>=3.3
numpy>=1.23.5
opencv-python>=4.1.1
pillow>=10.3.0
psutil # system resources
PyYAML>=5.3.1
requests>=2.32.2
scipy>=1.4.1
thop>=0.1.1 # FLOPs computation
torch>=1.8.0 # see https://pytorch.org/get-started/locally (recommended)
torchvision>=0.9.0
tqdm>=4.66.3
ultralytics>=8.2.34 # https://ultralytics.com
# protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012
# Logging ---------------------------------------------------------------------
# tensorboard>=2.4.1
# clearml>=1.2.0
# comet
# Plotting --------------------------------------------------------------------
pandas>=1.1.4
seaborn>=0.11.0
# Export ----------------------------------------------------------------------
# coremltools>=6.0 # CoreML export
# onnx>=1.10.0 # ONNX export
# onnx-simplifier>=0.4.1 # ONNX simplifier
# nvidia-pyindex # TensorRT export
# nvidia-tensorrt # TensorRT export
# scikit-learn<=1.1.2 # CoreML quantization
# tensorflow>=2.4.0,<=2.13.1 # TF exports (-cpu, -aarch64, -macos)
# tensorflowjs>=3.9.0 # TF.js export
# openvino-dev>=2023.0 # OpenVINO export
# Deploy ----------------------------------------------------------------------
setuptools>=70.0.0 # Snyk vulnerability fix
# tritonclient[all]~=2.24.0
# Extras ----------------------------------------------------------------------
# ipython # interactive notebook
# mss # screenshots
# albumentations>=1.0.3
# pycocotools>=2.0.6 # COCO mAP

986
yolov5/train.py Normal file
View File

@ -0,0 +1,986 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
Train a YOLOv5 model on a custom dataset. Models and datasets download automatically from the latest YOLOv5 release.
Usage - Single-GPU training:
$ python train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (recommended)
$ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch
Usage - Multi-GPU DDP training:
$ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3
Models: https://github.com/ultralytics/yolov5/tree/master/models
Datasets: https://github.com/ultralytics/yolov5/tree/master/data
Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
"""
import argparse
import math
import os
import random
import subprocess
import sys
import time
from copy import deepcopy
from datetime import datetime, timedelta
from pathlib import Path
try:
import comet_ml # must be imported before torch (if installed)
except ImportError:
comet_ml = None
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import yaml
from torch.optim import lr_scheduler
from tqdm import tqdm
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
import val as validate # for end-of-epoch mAP
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.autobatch import check_train_batch_size
from utils.callbacks import Callbacks
from utils.dataloaders import create_dataloader
from utils.downloads import attempt_download, is_url
from utils.general import (
LOGGER,
TQDM_BAR_FORMAT,
check_amp,
check_dataset,
check_file,
check_git_info,
check_git_status,
check_img_size,
check_requirements,
check_suffix,
check_yaml,
colorstr,
get_latest_run,
increment_path,
init_seeds,
intersect_dicts,
labels_to_class_weights,
labels_to_image_weights,
methods,
one_cycle,
print_args,
print_mutation,
strip_optimizer,
yaml_save,
)
from utils.loggers import LOGGERS, Loggers
from utils.loggers.comet.comet_utils import check_comet_resume
from utils.loss import ComputeLoss
from utils.metrics import fitness
from utils.plots import plot_evolve
from utils.torch_utils import (
EarlyStopping,
ModelEMA,
de_parallel,
select_device,
smart_DDP,
smart_optimizer,
smart_resume,
torch_distributed_zero_first,
)
LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv("RANK", -1))
WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
GIT_INFO = check_git_info()
def train(hyp, opt, device, callbacks):
"""
Train a YOLOv5 model on a custom dataset using specified hyperparameters, options, and device, managing datasets,
model architecture, loss computation, and optimizer steps.
Args:
hyp (str | dict): Path to the hyperparameters YAML file or a dictionary of hyperparameters.
opt (argparse.Namespace): Parsed command-line arguments containing training options.
device (torch.device): Device on which training occurs, e.g., 'cuda' or 'cpu'.
callbacks (Callbacks): Callback functions for various training events.
Returns:
None
Models and datasets download automatically from the latest YOLOv5 release.
Example:
Single-GPU training:
```bash
$ python train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (recommended)
$ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch
```
Multi-GPU DDP training:
```bash
$ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights
yolov5s.pt --img 640 --device 0,1,2,3
```
For more usage details, refer to:
- Models: https://github.com/ultralytics/yolov5/tree/master/models
- Datasets: https://github.com/ultralytics/yolov5/tree/master/data
- Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
"""
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = (
Path(opt.save_dir),
opt.epochs,
opt.batch_size,
opt.weights,
opt.single_cls,
opt.evolve,
opt.data,
opt.cfg,
opt.resume,
opt.noval,
opt.nosave,
opt.workers,
opt.freeze,
)
callbacks.run("on_pretrain_routine_start")
# Directories
w = save_dir / "weights" # weights dir
(w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
last, best = w / "last.pt", w / "best.pt"
# Hyperparameters
if isinstance(hyp, str):
with open(hyp, errors="ignore") as f:
hyp = yaml.safe_load(f) # load hyps dict
LOGGER.info(colorstr("hyperparameters: ") + ", ".join(f"{k}={v}" for k, v in hyp.items()))
opt.hyp = hyp.copy() # for saving hyps to checkpoints
# Save run settings
if not evolve:
yaml_save(save_dir / "hyp.yaml", hyp)
yaml_save(save_dir / "opt.yaml", vars(opt))
# Loggers
data_dict = None
if RANK in {-1, 0}:
include_loggers = list(LOGGERS)
if getattr(opt, "ndjson_console", False):
include_loggers.append("ndjson_console")
if getattr(opt, "ndjson_file", False):
include_loggers.append("ndjson_file")
loggers = Loggers(
save_dir=save_dir,
weights=weights,
opt=opt,
hyp=hyp,
logger=LOGGER,
include=tuple(include_loggers),
)
# Register actions
for k in methods(loggers):
callbacks.register_action(k, callback=getattr(loggers, k))
# Process custom dataset artifact link
data_dict = loggers.remote_dataset
if resume: # If resuming runs from remote artifact
weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
# Config
plots = not evolve and not opt.noplots # create plots
cuda = device.type != "cpu"
init_seeds(opt.seed + 1 + RANK, deterministic=True)
with torch_distributed_zero_first(LOCAL_RANK):
data_dict = data_dict or check_dataset(data) # check if None
train_path, val_path = data_dict["train"], data_dict["val"]
nc = 1 if single_cls else int(data_dict["nc"]) # number of classes
names = {0: "item"} if single_cls and len(data_dict["names"]) != 1 else data_dict["names"] # class names
is_coco = isinstance(val_path, str) and val_path.endswith("coco/val2017.txt") # COCO dataset
# Model
check_suffix(weights, ".pt") # check weights
pretrained = weights.endswith(".pt")
if pretrained:
with torch_distributed_zero_first(LOCAL_RANK):
weights = attempt_download(weights) # download if not found locally
ckpt = torch.load(weights, map_location="cpu") # load checkpoint to CPU to avoid CUDA memory leak
model = Model(cfg or ckpt["model"].yaml, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device) # create
exclude = ["anchor"] if (cfg or hyp.get("anchors")) and not resume else [] # exclude keys
csd = ckpt["model"].float().state_dict() # checkpoint state_dict as FP32
csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
model.load_state_dict(csd, strict=False) # load
LOGGER.info(f"Transferred {len(csd)}/{len(model.state_dict())} items from {weights}") # report
else:
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device) # create
amp = check_amp(model) # check AMP
# Freeze
freeze = [f"model.{x}." for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
for k, v in model.named_parameters():
v.requires_grad = True # train all layers
# v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
if any(x in k for x in freeze):
LOGGER.info(f"freezing {k}")
v.requires_grad = False
# Image size
gs = max(int(model.stride.max()), 32) # grid size (max stride)
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
# Batch size
if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
batch_size = check_train_batch_size(model, imgsz, amp)
loggers.on_params_update({"batch_size": batch_size})
# Optimizer
nbs = 64 # nominal batch size
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
hyp["weight_decay"] *= batch_size * accumulate / nbs # scale weight_decay
optimizer = smart_optimizer(model, opt.optimizer, hyp["lr0"], hyp["momentum"], hyp["weight_decay"])
# Scheduler
if opt.cos_lr:
lf = one_cycle(1, hyp["lrf"], epochs) # cosine 1->hyp['lrf']
else:
def lf(x):
"""Linear learning rate scheduler function with decay calculated by epoch proportion."""
return (1 - x / epochs) * (1.0 - hyp["lrf"]) + hyp["lrf"] # linear
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
# EMA
ema = ModelEMA(model) if RANK in {-1, 0} else None
# Resume
best_fitness, start_epoch = 0.0, 0
if pretrained:
if resume:
best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
del ckpt, csd
# DP mode
if cuda and RANK == -1 and torch.cuda.device_count() > 1:
LOGGER.warning(
"WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n"
"See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started."
)
model = torch.nn.DataParallel(model)
# SyncBatchNorm
if opt.sync_bn and cuda and RANK != -1:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
LOGGER.info("Using SyncBatchNorm()")
# Trainloader
train_loader, dataset = create_dataloader(
train_path,
imgsz,
batch_size // WORLD_SIZE,
gs,
single_cls,
hyp=hyp,
augment=True,
cache=None if opt.cache == "val" else opt.cache,
rect=opt.rect,
rank=LOCAL_RANK,
workers=workers,
image_weights=opt.image_weights,
quad=opt.quad,
prefix=colorstr("train: "),
shuffle=True,
seed=opt.seed,
)
labels = np.concatenate(dataset.labels, 0)
mlc = int(labels[:, 0].max()) # max label class
assert mlc < nc, f"Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}"
# Process 0
if RANK in {-1, 0}:
val_loader = create_dataloader(
val_path,
imgsz,
batch_size // WORLD_SIZE * 2,
gs,
single_cls,
hyp=hyp,
cache=None if noval else opt.cache,
rect=True,
rank=-1,
workers=workers * 2,
pad=0.5,
prefix=colorstr("val: "),
)[0]
if not resume:
if not opt.noautoanchor:
check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz) # run AutoAnchor
model.half().float() # pre-reduce anchor precision
callbacks.run("on_pretrain_routine_end", labels, names)
# DDP mode
if cuda and RANK != -1:
model = smart_DDP(model)
# Model attributes
nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
hyp["box"] *= 3 / nl # scale to layers
hyp["cls"] *= nc / 80 * 3 / nl # scale to classes and layers
hyp["obj"] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
hyp["label_smoothing"] = opt.label_smoothing
model.nc = nc # attach number of classes to model
model.hyp = hyp # attach hyperparameters to model
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
model.names = names
# Start training
t0 = time.time()
nb = len(train_loader) # number of batches
nw = max(round(hyp["warmup_epochs"] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
last_opt_step = -1
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
scheduler.last_epoch = start_epoch - 1 # do not move
scaler = torch.cuda.amp.GradScaler(enabled=amp)
stopper, stop = EarlyStopping(patience=opt.patience), False
compute_loss = ComputeLoss(model) # init loss class
callbacks.run("on_train_start")
LOGGER.info(
f"Image sizes {imgsz} train, {imgsz} val\n"
f"Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n"
f"Logging results to {colorstr('bold', save_dir)}\n"
f"Starting training for {epochs} epochs..."
)
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
callbacks.run("on_train_epoch_start")
model.train()
# Update image weights (optional, single-GPU only)
if opt.image_weights:
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
# Update mosaic border (optional)
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
mloss = torch.zeros(3, device=device) # mean losses
if RANK != -1:
train_loader.sampler.set_epoch(epoch)
pbar = enumerate(train_loader)
LOGGER.info(("\n" + "%11s" * 7) % ("Epoch", "GPU_mem", "box_loss", "obj_loss", "cls_loss", "Instances", "Size"))
if RANK in {-1, 0}:
pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
optimizer.zero_grad()
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
callbacks.run("on_train_batch_start")
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
# Warmup
if ni <= nw:
xi = [0, nw] # x interp
# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
for j, x in enumerate(optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x["lr"] = np.interp(ni, xi, [hyp["warmup_bias_lr"] if j == 0 else 0.0, x["initial_lr"] * lf(epoch)])
if "momentum" in x:
x["momentum"] = np.interp(ni, xi, [hyp["warmup_momentum"], hyp["momentum"]])
# Multi-scale
if opt.multi_scale:
sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs # size
sf = sz / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
# Forward
with torch.cuda.amp.autocast(amp):
pred = model(imgs) # forward
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
if RANK != -1:
loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
if opt.quad:
loss *= 4.0
# Backward
scaler.scale(loss).backward()
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
if ni - last_opt_step >= accumulate:
scaler.unscale_(optimizer) # unscale gradients
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
scaler.step(optimizer) # optimizer.step
scaler.update()
optimizer.zero_grad()
if ema:
ema.update(model)
last_opt_step = ni
# Log
if RANK in {-1, 0}:
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = f"{torch.cuda.memory_reserved() / 1e9 if torch.cuda.is_available() else 0:.3g}G" # (GB)
pbar.set_description(
("%11s" * 2 + "%11.4g" * 5)
% (f"{epoch}/{epochs - 1}", mem, *mloss, targets.shape[0], imgs.shape[-1])
)
callbacks.run("on_train_batch_end", model, ni, imgs, targets, paths, list(mloss))
if callbacks.stop_training:
return
# end batch ------------------------------------------------------------------------------------------------
# Scheduler
lr = [x["lr"] for x in optimizer.param_groups] # for loggers
scheduler.step()
if RANK in {-1, 0}:
# mAP
callbacks.run("on_train_epoch_end", epoch=epoch)
ema.update_attr(model, include=["yaml", "nc", "hyp", "names", "stride", "class_weights"])
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
if not noval or final_epoch: # Calculate mAP
results, maps, _ = validate.run(
data_dict,
batch_size=batch_size // WORLD_SIZE * 2,
imgsz=imgsz,
half=amp,
model=ema.ema,
single_cls=single_cls,
dataloader=val_loader,
save_dir=save_dir,
plots=False,
callbacks=callbacks,
compute_loss=compute_loss,
)
# Update best mAP
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
stop = stopper(epoch=epoch, fitness=fi) # early stop check
if fi > best_fitness:
best_fitness = fi
log_vals = list(mloss) + list(results) + lr
callbacks.run("on_fit_epoch_end", log_vals, epoch, best_fitness, fi)
# Save model
if (not nosave) or (final_epoch and not evolve): # if save
ckpt = {
"epoch": epoch,
"best_fitness": best_fitness,
"model": deepcopy(de_parallel(model)).half(),
"ema": deepcopy(ema.ema).half(),
"updates": ema.updates,
"optimizer": optimizer.state_dict(),
"opt": vars(opt),
"git": GIT_INFO, # {remote, branch, commit} if a git repo
"date": datetime.now().isoformat(),
}
# Save last, best and delete
torch.save(ckpt, last)
if best_fitness == fi:
torch.save(ckpt, best)
if opt.save_period > 0 and epoch % opt.save_period == 0:
torch.save(ckpt, w / f"epoch{epoch}.pt")
del ckpt
callbacks.run("on_model_save", last, epoch, final_epoch, best_fitness, fi)
# EarlyStopping
if RANK != -1: # if DDP training
broadcast_list = [stop if RANK == 0 else None]
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
if RANK != 0:
stop = broadcast_list[0]
if stop:
break # must break all DDP ranks
# end epoch ----------------------------------------------------------------------------------------------------
# end training -----------------------------------------------------------------------------------------------------
if RANK in {-1, 0}:
LOGGER.info(f"\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.")
for f in last, best:
if f.exists():
strip_optimizer(f) # strip optimizers
if f is best:
LOGGER.info(f"\nValidating {f}...")
results, _, _ = validate.run(
data_dict,
batch_size=batch_size // WORLD_SIZE * 2,
imgsz=imgsz,
model=attempt_load(f, device).half(),
iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65
single_cls=single_cls,
dataloader=val_loader,
save_dir=save_dir,
save_json=is_coco,
verbose=True,
plots=plots,
callbacks=callbacks,
compute_loss=compute_loss,
) # val best model with plots
if is_coco:
callbacks.run("on_fit_epoch_end", list(mloss) + list(results) + lr, epoch, best_fitness, fi)
callbacks.run("on_train_end", last, best, epoch, results)
torch.cuda.empty_cache()
return results
def parse_opt(known=False):
"""
Parse command-line arguments for YOLOv5 training, validation, and testing.
Args:
known (bool, optional): If True, parses known arguments, ignoring the unknown. Defaults to False.
Returns:
(argparse.Namespace): Parsed command-line arguments containing options for YOLOv5 execution.
Example:
```python
from ultralytics.yolo import parse_opt
opt = parse_opt()
print(opt)
```
Links:
- Models: https://github.com/ultralytics/yolov5/tree/master/models
- Datasets: https://github.com/ultralytics/yolov5/tree/master/data
- Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
"""
parser = argparse.ArgumentParser()
parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="initial weights path")
parser.add_argument("--cfg", type=str, default="", help="model.yaml path")
parser.add_argument("--data", type=str, default=ROOT / "data/5t5.yaml", help="dataset.yaml path")
parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path")
parser.add_argument("--epochs", type=int, default=100, help="total training epochs")
parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch")
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)")
parser.add_argument("--rect", action="store_true", help="rectangular training")
parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training")
parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
parser.add_argument("--noval", action="store_true", help="only validate final epoch")
parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")
parser.add_argument("--noplots", action="store_true", help="save no plot files")
parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations")
parser.add_argument(
"--evolve_population", type=str, default=ROOT / "data/hyps", help="location for loading population"
)
parser.add_argument("--resume_evolve", type=str, default=None, help="resume evolve from last generation")
parser.add_argument("--bucket", type=str, default="", help="gsutil bucket")
parser.add_argument("--cache", type=str, nargs="?", const="ram", help="image --cache ram/disk")
parser.add_argument("--image-weights", action="store_true", help="use weighted image selection for training")
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%")
parser.add_argument("--single-cls", action="store_true", help="train multi-class data as single-class")
parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer")
parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode")
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
parser.add_argument("--project", default=ROOT / "runs/train", help="save to project/name")
parser.add_argument("--name", default="exp", help="save to project/name")
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
parser.add_argument("--quad", action="store_true", help="quad dataloader")
parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler")
parser.add_argument("--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon")
parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)")
parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2")
parser.add_argument("--save-period", type=int, default=-1, help="Save checkpoint every x epochs (disabled if < 1)")
parser.add_argument("--seed", type=int, default=0, help="Global training seed")
parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")
# Logger arguments
parser.add_argument("--entity", default=None, help="Entity")
parser.add_argument("--upload_dataset", nargs="?", const=True, default=False, help='Upload data, "val" option')
parser.add_argument("--bbox_interval", type=int, default=-1, help="Set bounding-box image logging interval")
parser.add_argument("--artifact_alias", type=str, default="latest", help="Version of dataset artifact to use")
# NDJSON logging
parser.add_argument("--ndjson-console", action="store_true", help="Log ndjson to console")
parser.add_argument("--ndjson-file", action="store_true", help="Log ndjson to file")
return parser.parse_known_args()[0] if known else parser.parse_args()
def main(opt, callbacks=Callbacks()):
"""
Runs the main entry point for training or hyperparameter evolution with specified options and optional callbacks.
Args:
opt (argparse.Namespace): The command-line arguments parsed for YOLOv5 training and evolution.
callbacks (ultralytics.utils.callbacks.Callbacks, optional): Callback functions for various training stages.
Defaults to Callbacks().
Returns:
None
Note:
For detailed usage, refer to:
https://github.com/ultralytics/yolov5/tree/master/models
"""
if RANK in {-1, 0}:
print_args(vars(opt))
check_git_status()
check_requirements(ROOT / "requirements.txt")
# Resume (from specified or most recent last.pt)
if opt.resume and not check_comet_resume(opt) and not opt.evolve:
last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
opt_yaml = last.parent.parent / "opt.yaml" # train options yaml
opt_data = opt.data # original dataset
if opt_yaml.is_file():
with open(opt_yaml, errors="ignore") as f:
d = yaml.safe_load(f)
else:
d = torch.load(last, map_location="cpu")["opt"]
opt = argparse.Namespace(**d) # replace
opt.cfg, opt.weights, opt.resume = "", str(last), True # reinstate
if is_url(opt_data):
opt.data = check_file(opt_data) # avoid HUB resume auth timeout
else:
opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = (
check_file(opt.data),
check_yaml(opt.cfg),
check_yaml(opt.hyp),
str(opt.weights),
str(opt.project),
) # checks
assert len(opt.cfg) or len(opt.weights), "either --cfg or --weights must be specified"
if opt.evolve:
if opt.project == str(ROOT / "runs/train"): # if default project name, rename to runs/evolve
opt.project = str(ROOT / "runs/evolve")
opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
if opt.name == "cfg":
opt.name = Path(opt.cfg).stem # use model.yaml as name
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
# DDP mode
device = select_device(opt.device, batch_size=opt.batch_size)
if LOCAL_RANK != -1:
msg = "is not compatible with YOLOv5 Multi-GPU DDP training"
assert not opt.image_weights, f"--image-weights {msg}"
assert not opt.evolve, f"--evolve {msg}"
assert opt.batch_size != -1, f"AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size"
assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE"
assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command"
torch.cuda.set_device(LOCAL_RANK)
device = torch.device("cuda", LOCAL_RANK)
dist.init_process_group(
backend="nccl" if dist.is_nccl_available() else "gloo", timeout=timedelta(seconds=10800)
)
# Train
if not opt.evolve:
train(opt.hyp, opt, device, callbacks)
# Evolve hyperparameters (optional)
else:
# Hyperparameter evolution metadata (including this hyperparameter True-False, lower_limit, upper_limit)
meta = {
"lr0": (False, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
"lrf": (False, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
"momentum": (False, 0.6, 0.98), # SGD momentum/Adam beta1
"weight_decay": (False, 0.0, 0.001), # optimizer weight decay
"warmup_epochs": (False, 0.0, 5.0), # warmup epochs (fractions ok)
"warmup_momentum": (False, 0.0, 0.95), # warmup initial momentum
"warmup_bias_lr": (False, 0.0, 0.2), # warmup initial bias lr
"box": (False, 0.02, 0.2), # box loss gain
"cls": (False, 0.2, 4.0), # cls loss gain
"cls_pw": (False, 0.5, 2.0), # cls BCELoss positive_weight
"obj": (False, 0.2, 4.0), # obj loss gain (scale with pixels)
"obj_pw": (False, 0.5, 2.0), # obj BCELoss positive_weight
"iou_t": (False, 0.1, 0.7), # IoU training threshold
"anchor_t": (False, 2.0, 8.0), # anchor-multiple threshold
"anchors": (False, 2.0, 10.0), # anchors per output grid (0 to ignore)
"fl_gamma": (False, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
"hsv_h": (True, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
"hsv_s": (True, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
"hsv_v": (True, 0.0, 0.9), # image HSV-Value augmentation (fraction)
"degrees": (True, 0.0, 45.0), # image rotation (+/- deg)
"translate": (True, 0.0, 0.9), # image translation (+/- fraction)
"scale": (True, 0.0, 0.9), # image scale (+/- gain)
"shear": (True, 0.0, 10.0), # image shear (+/- deg)
"perspective": (True, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
"flipud": (True, 0.0, 1.0), # image flip up-down (probability)
"fliplr": (True, 0.0, 1.0), # image flip left-right (probability)
"mosaic": (True, 0.0, 1.0), # image mosaic (probability)
"mixup": (True, 0.0, 1.0), # image mixup (probability)
"copy_paste": (True, 0.0, 1.0), # segment copy-paste (probability)
}
# GA configs
pop_size = 50
mutation_rate_min = 0.01
mutation_rate_max = 0.5
crossover_rate_min = 0.5
crossover_rate_max = 1
min_elite_size = 2
max_elite_size = 5
tournament_size_min = 2
tournament_size_max = 10
with open(opt.hyp, errors="ignore") as f:
hyp = yaml.safe_load(f) # load hyps dict
if "anchors" not in hyp: # anchors commented in hyp.yaml
hyp["anchors"] = 3
if opt.noautoanchor:
del hyp["anchors"], meta["anchors"]
opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
evolve_yaml, evolve_csv = save_dir / "hyp_evolve.yaml", save_dir / "evolve.csv"
if opt.bucket:
# download evolve.csv if exists
subprocess.run(
[
"gsutil",
"cp",
f"gs://{opt.bucket}/evolve.csv",
str(evolve_csv),
]
)
# Delete the items in meta dictionary whose first value is False
del_ = [item for item, value_ in meta.items() if value_[0] is False]
hyp_GA = hyp.copy() # Make a copy of hyp dictionary
for item in del_:
del meta[item] # Remove the item from meta dictionary
del hyp_GA[item] # Remove the item from hyp_GA dictionary
# Set lower_limit and upper_limit arrays to hold the search space boundaries
lower_limit = np.array([meta[k][1] for k in hyp_GA.keys()])
upper_limit = np.array([meta[k][2] for k in hyp_GA.keys()])
# Create gene_ranges list to hold the range of values for each gene in the population
gene_ranges = [(lower_limit[i], upper_limit[i]) for i in range(len(upper_limit))]
# Initialize the population with initial_values or random values
initial_values = []
# If resuming evolution from a previous checkpoint
if opt.resume_evolve is not None:
assert os.path.isfile(ROOT / opt.resume_evolve), "evolve population path is wrong!"
with open(ROOT / opt.resume_evolve, errors="ignore") as f:
evolve_population = yaml.safe_load(f)
for value in evolve_population.values():
value = np.array([value[k] for k in hyp_GA.keys()])
initial_values.append(list(value))
# If not resuming from a previous checkpoint, generate initial values from .yaml files in opt.evolve_population
else:
yaml_files = [f for f in os.listdir(opt.evolve_population) if f.endswith(".yaml")]
for file_name in yaml_files:
with open(os.path.join(opt.evolve_population, file_name)) as yaml_file:
value = yaml.safe_load(yaml_file)
value = np.array([value[k] for k in hyp_GA.keys()])
initial_values.append(list(value))
# Generate random values within the search space for the rest of the population
if initial_values is None:
population = [generate_individual(gene_ranges, len(hyp_GA)) for _ in range(pop_size)]
elif pop_size > 1:
population = [generate_individual(gene_ranges, len(hyp_GA)) for _ in range(pop_size - len(initial_values))]
for initial_value in initial_values:
population = [initial_value] + population
# Run the genetic algorithm for a fixed number of generations
list_keys = list(hyp_GA.keys())
for generation in range(opt.evolve):
if generation >= 1:
save_dict = {}
for i in range(len(population)):
little_dict = {list_keys[j]: float(population[i][j]) for j in range(len(population[i]))}
save_dict[f"gen{str(generation)}number{str(i)}"] = little_dict
with open(save_dir / "evolve_population.yaml", "w") as outfile:
yaml.dump(save_dict, outfile, default_flow_style=False)
# Adaptive elite size
elite_size = min_elite_size + int((max_elite_size - min_elite_size) * (generation / opt.evolve))
# Evaluate the fitness of each individual in the population
fitness_scores = []
for individual in population:
for key, value in zip(hyp_GA.keys(), individual):
hyp_GA[key] = value
hyp.update(hyp_GA)
results = train(hyp.copy(), opt, device, callbacks)
callbacks = Callbacks()
# Write mutation results
keys = (
"metrics/precision",
"metrics/recall",
"metrics/mAP_0.5",
"metrics/mAP_0.5:0.95",
"val/box_loss",
"val/obj_loss",
"val/cls_loss",
)
print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)
fitness_scores.append(results[2])
# Select the fittest individuals for reproduction using adaptive tournament selection
selected_indices = []
for _ in range(pop_size - elite_size):
# Adaptive tournament size
tournament_size = max(
max(2, tournament_size_min),
int(min(tournament_size_max, pop_size) - (generation / (opt.evolve / 10))),
)
# Perform tournament selection to choose the best individual
tournament_indices = random.sample(range(pop_size), tournament_size)
tournament_fitness = [fitness_scores[j] for j in tournament_indices]
winner_index = tournament_indices[tournament_fitness.index(max(tournament_fitness))]
selected_indices.append(winner_index)
# Add the elite individuals to the selected indices
elite_indices = [i for i in range(pop_size) if fitness_scores[i] in sorted(fitness_scores)[-elite_size:]]
selected_indices.extend(elite_indices)
# Create the next generation through crossover and mutation
next_generation = []
for _ in range(pop_size):
parent1_index = selected_indices[random.randint(0, pop_size - 1)]
parent2_index = selected_indices[random.randint(0, pop_size - 1)]
# Adaptive crossover rate
crossover_rate = max(
crossover_rate_min, min(crossover_rate_max, crossover_rate_max - (generation / opt.evolve))
)
if random.uniform(0, 1) < crossover_rate:
crossover_point = random.randint(1, len(hyp_GA) - 1)
child = population[parent1_index][:crossover_point] + population[parent2_index][crossover_point:]
else:
child = population[parent1_index]
# Adaptive mutation rate
mutation_rate = max(
mutation_rate_min, min(mutation_rate_max, mutation_rate_max - (generation / opt.evolve))
)
for j in range(len(hyp_GA)):
if random.uniform(0, 1) < mutation_rate:
child[j] += random.uniform(-0.1, 0.1)
child[j] = min(max(child[j], gene_ranges[j][0]), gene_ranges[j][1])
next_generation.append(child)
# Replace the old population with the new generation
population = next_generation
# Print the best solution found
best_index = fitness_scores.index(max(fitness_scores))
best_individual = population[best_index]
print("Best solution found:", best_individual)
# Plot results
plot_evolve(evolve_csv)
LOGGER.info(
f"Hyperparameter evolution finished {opt.evolve} generations\n"
f"Results saved to {colorstr('bold', save_dir)}\n"
f"Usage example: $ python train.py --hyp {evolve_yaml}"
)
def generate_individual(input_ranges, individual_length):
"""
Generate an individual with random hyperparameters within specified ranges.
Args:
input_ranges (list[tuple[float, float]]): List of tuples where each tuple contains the lower and upper bounds
for the corresponding gene (hyperparameter).
individual_length (int): The number of genes (hyperparameters) in the individual.
Returns:
list[float]: A list representing a generated individual with random gene values within the specified ranges.
Example:
```python
input_ranges = [(0.01, 0.1), (0.1, 1.0), (0.9, 2.0)]
individual_length = 3
individual = generate_individual(input_ranges, individual_length)
print(individual) # Output: [0.035, 0.678, 1.456] (example output)
```
Note:
The individual returned will have a length equal to `individual_length`, with each gene value being a floating-point
number within its specified range in `input_ranges`.
"""
individual = []
for i in range(individual_length):
lower_bound, upper_bound = input_ranges[i]
individual.append(random.uniform(lower_bound, upper_bound))
return individual
def run(**kwargs):
"""
Execute YOLOv5 training with specified options, allowing optional overrides through keyword arguments.
Args:
weights (str, optional): Path to initial weights. Defaults to ROOT / 'yolov5s.pt'.
cfg (str, optional): Path to model YAML configuration. Defaults to an empty string.
data (str, optional): Path to dataset YAML configuration. Defaults to ROOT / 'data/coco128.yaml'.
hyp (str, optional): Path to hyperparameters YAML configuration. Defaults to ROOT / 'data/hyps/hyp.scratch-low.yaml'.
epochs (int, optional): Total number of training epochs. Defaults to 100.
batch_size (int, optional): Total batch size for all GPUs. Use -1 for automatic batch size determination. Defaults to 16.
imgsz (int, optional): Image size (pixels) for training and validation. Defaults to 640.
rect (bool, optional): Use rectangular training. Defaults to False.
resume (bool | str, optional): Resume most recent training with an optional path. Defaults to False.
nosave (bool, optional): Only save the final checkpoint. Defaults to False.
noval (bool, optional): Only validate at the final epoch. Defaults to False.
noautoanchor (bool, optional): Disable AutoAnchor. Defaults to False.
noplots (bool, optional): Do not save plot files. Defaults to False.
evolve (int, optional): Evolve hyperparameters for a specified number of generations. Use 300 if provided without a
value.
evolve_population (str, optional): Directory for loading population during evolution. Defaults to ROOT / 'data/ hyps'.
resume_evolve (str, optional): Resume hyperparameter evolution from the last generation. Defaults to None.
bucket (str, optional): gsutil bucket for saving checkpoints. Defaults to an empty string.
cache (str, optional): Cache image data in 'ram' or 'disk'. Defaults to None.
image_weights (bool, optional): Use weighted image selection for training. Defaults to False.
device (str, optional): CUDA device identifier, e.g., '0', '0,1,2,3', or 'cpu'. Defaults to an empty string.
multi_scale (bool, optional): Use multi-scale training, varying image size by ±50%. Defaults to False.
single_cls (bool, optional): Train with multi-class data as single-class. Defaults to False.
optimizer (str, optional): Optimizer type, choices are ['SGD', 'Adam', 'AdamW']. Defaults to 'SGD'.
sync_bn (bool, optional): Use synchronized BatchNorm, only available in DDP mode. Defaults to False.
workers (int, optional): Maximum dataloader workers per rank in DDP mode. Defaults to 8.
project (str, optional): Directory for saving training runs. Defaults to ROOT / 'runs/train'.
name (str, optional): Name for saving the training run. Defaults to 'exp'.
exist_ok (bool, optional): Allow existing project/name without incrementing. Defaults to False.
quad (bool, optional): Use quad dataloader. Defaults to False.
cos_lr (bool, optional): Use cosine learning rate scheduler. Defaults to False.
label_smoothing (float, optional): Label smoothing epsilon value. Defaults to 0.0.
patience (int, optional): Patience for early stopping, measured in epochs without improvement. Defaults to 100.
freeze (list, optional): Layers to freeze, e.g., backbone=10, first 3 layers = [0, 1, 2]. Defaults to [0].
save_period (int, optional): Frequency in epochs to save checkpoints. Disabled if < 1. Defaults to -1.
seed (int, optional): Global training random seed. Defaults to 0.
local_rank (int, optional): Automatic DDP Multi-GPU argument. Do not modify. Defaults to -1.
Returns:
None: The function initiates YOLOv5 training or hyperparameter evolution based on the provided options.
Examples:
```python
import train
train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
```
Notes:
- Models: https://github.com/ultralytics/yolov5/tree/master/models
- Datasets: https://github.com/ultralytics/yolov5/tree/master/data
- Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
"""
opt = parse_opt(True)
for k, v in kwargs.items():
setattr(opt, k, v)
main(opt)
return opt
if __name__ == "__main__":
opt = parse_opt()
main(opt)

604
yolov5/tutorial.ipynb Normal file
View File

@ -0,0 +1,604 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "YOLOv5 Tutorial",
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "t6MPjfT5NrKQ"
},
"source": [
"<div align=\"center\">\n",
"\n",
" <a href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
" <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png\"></a>\n",
"\n",
"[中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [العربية](https://docs.ultralytics.com/ar/)\n",
"\n",
" <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a>\n",
" <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
" <a href=\"https://www.kaggle.com/models/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
"\n",
"This <a href=\"https://github.com/ultralytics/yolov5\">YOLOv5</a> 🚀 notebook by <a href=\"https://ultralytics.com\">Ultralytics</a> presents simple train, validate and predict examples to help start your AI adventure.<br>We hope that the resources in this notebook will help you get the most out of YOLOv5. Please browse the YOLOv5 <a href=\"https://docs.ultralytics.com/yolov5\">Docs</a> for details, raise an issue on <a href=\"https://github.com/ultralytics/yolov5\">GitHub</a> for support, and join our <a href=\"https://ultralytics.com/discord\">Discord</a> community for questions and discussions!\n",
"\n",
"</div>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7mGmQbAO5pQb"
},
"source": [
"# Setup\n",
"\n",
"Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU."
]
},
{
"cell_type": "code",
"metadata": {
"id": "wbvMlHd_QwMG",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "e8225db4-e61d-4640-8b1f-8bfce3331cea"
},
"source": [
"!git clone https://github.com/ultralytics/yolov5 # clone\n",
"%cd yolov5\n",
"%pip install -qr requirements.txt comet_ml # install\n",
"\n",
"import torch\n",
"import utils\n",
"display = utils.notebook_init() # checks"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"YOLOv5 🚀 v7.0-136-g71244ae Python-3.9.16 torch-2.0.0+cu118 CUDA:0 (Tesla T4, 15102MiB)\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Setup complete ✅ (2 CPUs, 12.7 GB RAM, 23.3/166.8 GB disk)\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4JnkELT0cIJg"
},
"source": [
"# 1. Detect\n",
"\n",
"`detect.py` runs YOLOv5 inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/detect`. Example inference sources are:\n",
"\n",
"```shell\n",
"python detect.py --source 0 # webcam\n",
" img.jpg # image\n",
" vid.mp4 # video\n",
" screen # screenshot\n",
" path/ # directory\n",
" 'path/*.jpg' # glob\n",
" 'https://youtu.be/LNwODJXcvt4' # YouTube\n",
" 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream\n",
"```"
]
},
{
"cell_type": "code",
"metadata": {
"id": "zR9ZbuQCH7FX",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "284ef04b-1596-412f-88f6-948828dd2b49"
},
"source": [
"!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n",
"# display.Image(filename='runs/detect/exp/zidane.jpg', width=600)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1\n",
"YOLOv5 🚀 v7.0-136-g71244ae Python-3.9.16 torch-2.0.0+cu118 CUDA:0 (Tesla T4, 15102MiB)\n",
"\n",
"Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt to yolov5s.pt...\n",
"100% 14.1M/14.1M [00:00<00:00, 24.5MB/s]\n",
"\n",
"Fusing layers... \n",
"YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 41.5ms\n",
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, 60.0ms\n",
"Speed: 0.5ms pre-process, 50.8ms inference, 37.7ms NMS per image at shape (1, 3, 640, 640)\n",
"Results saved to \u001b[1mruns/detect/exp\u001b[0m\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "hkAzDWJ7cWTr"
},
"source": [
"&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n",
"<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/127574988-6a558aa1-d268-44b9-bf6b-62d4c605cc72.jpg\" width=\"600\">"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0eq1SMWl6Sfn"
},
"source": [
"# 2. Validate\n",
"Validate a model's accuracy on the [COCO](https://cocodataset.org/#home) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag."
]
},
{
"cell_type": "code",
"metadata": {
"id": "WQPtK1QYVaD_",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "cf7d52f0-281c-4c96-a488-79f5908f8426"
},
"source": [
"# Download COCO val\n",
"torch.hub.download_url_to_file('https://github.com/ultralytics/assets/releases/download/v0.0.0/coco2017val.zip', 'tmp.zip') # download (780M - 5000 images)\n",
"!unzip -q tmp.zip -d ../datasets && rm tmp.zip # unzip"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"100%|██████████| 780M/780M [00:12<00:00, 66.6MB/s]\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "X58w8JLpMnjH",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "3e234e05-ee8b-4ad1-b1a4-f6a55d5e4f3d"
},
"source": [
"# Validate YOLOv5s on COCO val\n",
"!python val.py --weights yolov5s.pt --data coco.yaml --img 640 --half"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5s.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False\n",
"YOLOv5 🚀 v7.0-136-g71244ae Python-3.9.16 torch-2.0.0+cu118 CUDA:0 (Tesla T4, 15102MiB)\n",
"\n",
"Fusing layers... \n",
"YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco/val2017... 4952 images, 48 backgrounds, 0 corrupt: 100% 5000/5000 [00:02<00:00, 2024.59it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 157/157 [01:25<00:00, 1.84it/s]\n",
" all 5000 36335 0.671 0.519 0.566 0.371\n",
"Speed: 0.1ms pre-process, 3.1ms inference, 2.3ms NMS per image at shape (32, 3, 640, 640)\n",
"\n",
"Evaluating pycocotools mAP... saving runs/val/exp/yolov5s_predictions.json...\n",
"loading annotations into memory...\n",
"Done (t=0.43s)\n",
"creating index...\n",
"index created!\n",
"Loading and preparing results...\n",
"DONE (t=5.32s)\n",
"creating index...\n",
"index created!\n",
"Running per image evaluation...\n",
"Evaluate annotation type *bbox*\n",
"DONE (t=78.89s).\n",
"Accumulating evaluation results...\n",
"DONE (t=14.51s).\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.374\n",
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.572\n",
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.402\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.211\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.423\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.489\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.311\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.516\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.566\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.378\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.625\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.722\n",
"Results saved to \u001b[1mruns/val/exp\u001b[0m\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZY2VXXXu74w5"
},
"source": [
"# 3. Train\n",
"\n",
"<p align=\"\"><a href=\"https://ultralytics.com/hub\"><img width=\"1000\" src=\"https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png\"/></a></p>\n",
"Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
"<br><br>\n",
"\n",
"Train a YOLOv5s model on the [COCO128](https://www.kaggle.com/datasets/ultralytics/coco128) dataset with `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`.\n",
"\n",
"- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
"automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
"- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
"- **Training Results** are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc.\n",
"<br>\n",
"\n",
"A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n",
"\n",
"## Label a dataset on Roboflow (optional)\n",
"\n",
"[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package."
]
},
{
"cell_type": "code",
"source": [
"#@title Select YOLOv5 🚀 logger {run: 'auto'}\n",
"logger = 'Comet' #@param ['Comet', 'ClearML', 'TensorBoard']\n",
"\n",
"if logger == 'Comet':\n",
" %pip install -q comet_ml\n",
" import comet_ml; comet_ml.init()\n",
"elif logger == 'ClearML':\n",
" %pip install -q clearml\n",
" import clearml; clearml.browser_login()\n",
"elif logger == 'TensorBoard':\n",
" %load_ext tensorboard\n",
" %tensorboard --logdir runs/train"
],
"metadata": {
"id": "i3oKtE4g-aNn"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "1NcFxRcFdJ_O",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "bbeeea2b-04fc-4185-aa64-258690495b5a"
},
"source": [
"# Train YOLOv5s on COCO128 for 3 epochs\n",
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"2023-04-09 14:11:38.063605: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
"2023-04-09 14:11:39.026661: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
"YOLOv5 🚀 v7.0-136-g71244ae Python-3.9.16 torch-2.0.0+cu118 CUDA:0 (Tesla T4, 15102MiB)\n",
"\n",
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
"\u001b[34m\u001b[1mClearML: \u001b[0mrun 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML\n",
"\u001b[34m\u001b[1mComet: \u001b[0mrun 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet\n",
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
"\n",
"Dataset not found ⚠️, missing paths ['/content/datasets/coco128/images/train2017']\n",
"Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128.zip to coco128.zip...\n",
"100% 6.66M/6.66M [00:00<00:00, 75.6MB/s]\n",
"Dataset download success ✅ (0.6s), saved to \u001b[1m/content/datasets\u001b[0m\n",
"\n",
" from n params module arguments \n",
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
" 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
" 2 -1 1 18816 models.common.C3 [64, 64, 1] \n",
" 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n",
" 4 -1 2 115712 models.common.C3 [128, 128, 2] \n",
" 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n",
" 6 -1 3 625152 models.common.C3 [256, 256, 3] \n",
" 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n",
" 8 -1 1 1182720 models.common.C3 [512, 512, 1] \n",
" 9 -1 1 656896 models.common.SPPF [512, 512, 5] \n",
" 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n",
" 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
" 12 [-1, 6] 1 0 models.common.Concat [1] \n",
" 13 -1 1 361984 models.common.C3 [512, 256, 1, False] \n",
" 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n",
" 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
" 16 [-1, 4] 1 0 models.common.Concat [1] \n",
" 17 -1 1 90880 models.common.C3 [256, 128, 1, False] \n",
" 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n",
" 19 [-1, 14] 1 0 models.common.Concat [1] \n",
" 20 -1 1 296448 models.common.C3 [256, 256, 1, False] \n",
" 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n",
" 22 [-1, 10] 1 0 models.common.Concat [1] \n",
" 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
" 24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
"Model summary: 214 layers, 7235389 parameters, 7235389 gradients, 16.6 GFLOPs\n",
"\n",
"Transferred 349/349 items from yolov5s.pt\n",
"\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n",
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias\n",
"\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco128/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00, 1709.36it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128/labels/train2017.cache\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 264.35it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco128/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 107.05it/s]\n",
"\n",
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
"Plotting labels to runs/train/exp/labels.jpg... \n",
"Image sizes 640 train, 640 val\n",
"Using 2 dataloader workers\n",
"Logging results to \u001b[1mruns/train/exp\u001b[0m\n",
"Starting training for 3 epochs...\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 0/2 3.91G 0.04618 0.07209 0.01703 232 640: 100% 8/8 [00:09<00:00, 1.17s/it]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 4/4 [00:01<00:00, 2.01it/s]\n",
" all 128 929 0.667 0.602 0.68 0.45\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 1/2 4.76G 0.04622 0.06891 0.01817 201 640: 100% 8/8 [00:02<00:00, 3.78it/s]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 4/4 [00:01<00:00, 2.16it/s]\n",
" all 128 929 0.709 0.645 0.722 0.478\n",
"\n",
" Epoch GPU_mem box_loss obj_loss cls_loss Instances Size\n",
" 2/2 4.76G 0.0436 0.0647 0.01698 227 640: 100% 8/8 [00:01<00:00, 4.19it/s]\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 4/4 [00:01<00:00, 2.95it/s]\n",
" all 128 929 0.761 0.647 0.735 0.49\n",
"\n",
"3 epochs completed in 0.006 hours.\n",
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.8MB\n",
"Optimizer stripped from runs/train/exp/weights/best.pt, 14.8MB\n",
"\n",
"Validating runs/train/exp/weights/best.pt...\n",
"Fusing layers... \n",
"Model summary: 157 layers, 7225885 parameters, 0 gradients, 16.4 GFLOPs\n",
" Class Images Instances P R mAP50 mAP50-95: 100% 4/4 [00:06<00:00, 1.56s/it]\n",
" all 128 929 0.759 0.646 0.734 0.49\n",
" person 128 254 0.857 0.706 0.805 0.525\n",
" bicycle 128 6 0.773 0.577 0.725 0.414\n",
" car 128 46 0.664 0.435 0.551 0.24\n",
" motorcycle 128 5 0.587 0.8 0.837 0.635\n",
" airplane 128 6 1 0.989 0.995 0.715\n",
" bus 128 7 0.635 0.714 0.753 0.651\n",
" train 128 3 0.686 0.333 0.72 0.504\n",
" truck 128 12 0.604 0.333 0.472 0.259\n",
" boat 128 6 0.938 0.333 0.449 0.177\n",
" traffic light 128 14 0.778 0.255 0.401 0.217\n",
" stop sign 128 2 0.826 1 0.995 0.895\n",
" bench 128 9 0.711 0.556 0.661 0.313\n",
" bird 128 16 0.962 1 0.995 0.642\n",
" cat 128 4 0.868 1 0.995 0.754\n",
" dog 128 9 1 0.652 0.899 0.651\n",
" horse 128 2 0.853 1 0.995 0.622\n",
" elephant 128 17 0.909 0.882 0.934 0.698\n",
" bear 128 1 0.696 1 0.995 0.995\n",
" zebra 128 4 0.855 1 0.995 0.905\n",
" giraffe 128 9 0.788 0.828 0.912 0.701\n",
" backpack 128 6 0.835 0.5 0.738 0.311\n",
" umbrella 128 18 0.785 0.814 0.859 0.48\n",
" handbag 128 19 0.759 0.263 0.366 0.205\n",
" tie 128 7 0.983 0.714 0.77 0.492\n",
" suitcase 128 4 0.656 1 0.945 0.631\n",
" frisbee 128 5 0.721 0.8 0.759 0.724\n",
" skis 128 1 0.737 1 0.995 0.3\n",
" snowboard 128 7 0.829 0.696 0.83 0.537\n",
" sports ball 128 6 0.637 0.667 0.602 0.311\n",
" kite 128 10 0.636 0.6 0.599 0.226\n",
" baseball bat 128 4 0.501 0.25 0.468 0.205\n",
" baseball glove 128 7 0.483 0.429 0.465 0.292\n",
" skateboard 128 5 0.932 0.6 0.687 0.493\n",
" tennis racket 128 7 0.77 0.429 0.547 0.332\n",
" bottle 128 18 0.577 0.379 0.554 0.276\n",
" wine glass 128 16 0.704 0.875 0.89 0.51\n",
" cup 128 36 0.841 0.667 0.837 0.533\n",
" fork 128 6 0.992 0.333 0.45 0.315\n",
" knife 128 16 0.768 0.688 0.695 0.403\n",
" spoon 128 22 0.838 0.47 0.639 0.384\n",
" bowl 128 28 0.764 0.58 0.716 0.513\n",
" banana 128 1 0.902 1 0.995 0.301\n",
" sandwich 128 2 1 0 0.359 0.326\n",
" orange 128 4 0.722 0.75 0.912 0.581\n",
" broccoli 128 11 0.547 0.364 0.432 0.317\n",
" carrot 128 24 0.619 0.625 0.724 0.495\n",
" hot dog 128 2 0.409 1 0.828 0.762\n",
" pizza 128 5 0.833 0.995 0.962 0.727\n",
" donut 128 14 0.631 1 0.96 0.839\n",
" cake 128 4 0.87 1 0.995 0.83\n",
" chair 128 35 0.583 0.6 0.608 0.317\n",
" couch 128 6 0.907 0.667 0.815 0.544\n",
" potted plant 128 14 0.739 0.786 0.823 0.48\n",
" bed 128 3 0.985 0.333 0.83 0.441\n",
" dining table 128 13 0.821 0.357 0.578 0.342\n",
" toilet 128 2 1 0.988 0.995 0.846\n",
" tv 128 2 0.57 1 0.995 0.796\n",
" laptop 128 3 1 0 0.593 0.312\n",
" mouse 128 2 1 0 0.089 0.0445\n",
" remote 128 8 1 0.624 0.634 0.538\n",
" cell phone 128 8 0.622 0.417 0.421 0.187\n",
" microwave 128 3 0.711 1 0.995 0.766\n",
" oven 128 5 0.329 0.4 0.43 0.282\n",
" sink 128 6 0.437 0.333 0.338 0.265\n",
" refrigerator 128 5 0.567 0.8 0.799 0.536\n",
" book 128 29 0.597 0.257 0.349 0.154\n",
" clock 128 9 0.765 0.889 0.932 0.736\n",
" vase 128 2 0.33 1 0.995 0.895\n",
" scissors 128 1 1 0 0.497 0.0498\n",
" teddy bear 128 21 0.856 0.569 0.841 0.547\n",
" toothbrush 128 5 0.8 1 0.928 0.574\n",
"Results saved to \u001b[1mruns/train/exp\u001b[0m\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "15glLzbQx5u0"
},
"source": [
"# 4. Visualize"
]
},
{
"cell_type": "markdown",
"source": [
"## Comet Logging and Visualization 🌟 NEW\n",
"\n",
"[Comet](https://www.comet.com/site/lp/yolov5-with-comet/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!\n",
"\n",
"Getting started is easy:\n",
"```shell\n",
"pip install comet_ml # 1. install\n",
"export COMET_API_KEY=<Your API Key> # 2. paste API key\n",
"python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt # 3. train\n",
"```\n",
"To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n",
"\n",
"<a href=\"https://bit.ly/yolov5-readme-comet2\">\n",
"<img alt=\"Comet Dashboard\" src=\"https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png\" width=\"1280\"/></a>"
],
"metadata": {
"id": "nWOsI5wJR1o3"
}
},
{
"cell_type": "markdown",
"source": [
"## ClearML Logging and Automation 🌟 NEW\n",
"\n",
"[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n",
"\n",
"- `pip install clearml`\n",
"- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n",
"\n",
"You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n",
"\n",
"You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration) for details!\n",
"\n",
"<a href=\"https://cutt.ly/yolov5-notebook-clearml\">\n",
"<img alt=\"ClearML Experiment Management UI\" src=\"https://github.com/thepycoder/clearml_screenshots/raw/main/scalars.jpg\" width=\"1280\"/></a>"
],
"metadata": {
"id": "Lay2WsTjNJzP"
}
},
{
"cell_type": "markdown",
"metadata": {
"id": "-WPvRbS5Swl6"
},
"source": [
"## Local Logging\n",
"\n",
"Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n",
"\n",
"This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices.\n",
"\n",
"<img alt=\"Local logging results\" src=\"https://user-images.githubusercontent.com/26833433/183222430-e1abd1b7-782c-4cde-b04d-ad52926bf818.jpg\" width=\"1280\"/>\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Zelyeqbyt3GD"
},
"source": [
"# Environments\n",
"\n",
"YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
"\n",
"- **Notebooks** with free GPU: <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a> <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/models/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
"- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)\n",
"- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)\n",
"- **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6Qu7Iesl0p54"
},
"source": [
"# Status\n",
"\n",
"![YOLOv5 CI](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg)\n",
"\n",
"If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IEijrePND_2I"
},
"source": [
"# Appendix\n",
"\n",
"Additional content below."
]
},
{
"cell_type": "code",
"metadata": {
"id": "GMusP4OAxFu6"
},
"source": [
"# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n",
"import torch\n",
"\n",
"model = torch.hub.load('ultralytics/yolov5', 'yolov5s', force_reload=True, trust_repo=True) # or yolov5n - yolov5x6 or custom\n",
"im = 'https://ultralytics.com/images/zidane.jpg' # file, Path, PIL.Image, OpenCV, nparray, list\n",
"results = model(im) # inference\n",
"results.print() # or .show(), .save(), .crop(), .pandas(), etc."
],
"execution_count": null,
"outputs": []
}
]
}

97
yolov5/utils/__init__.py Normal file
View File

@ -0,0 +1,97 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""utils/initialization."""
import contextlib
import platform
import threading
def emojis(str=""):
"""Returns an emoji-safe version of a string, stripped of emojis on Windows platforms."""
return str.encode().decode("ascii", "ignore") if platform.system() == "Windows" else str
class TryExcept(contextlib.ContextDecorator):
"""A context manager and decorator for error handling that prints an optional message with emojis on exception."""
def __init__(self, msg=""):
"""Initializes TryExcept with an optional message, used as a decorator or context manager for error handling."""
self.msg = msg
def __enter__(self):
"""Enter the runtime context related to this object for error handling with an optional message."""
pass
def __exit__(self, exc_type, value, traceback):
"""Context manager exit method that prints an error message with emojis if an exception occurred, always returns
True.
"""
if value:
print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}"))
return True
def threaded(func):
"""Decorator @threaded to run a function in a separate thread, returning the thread instance."""
def wrapper(*args, **kwargs):
"""Runs the decorated function in a separate daemon thread and returns the thread instance."""
thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
thread.start()
return thread
return wrapper
def join_threads(verbose=False):
"""
Joins all daemon threads, optionally printing their names if verbose is True.
Example: atexit.register(lambda: join_threads())
"""
main_thread = threading.current_thread()
for t in threading.enumerate():
if t is not main_thread:
if verbose:
print(f"Joining thread {t.name}")
t.join()
def notebook_init(verbose=True):
"""Initializes notebook environment by checking requirements, cleaning up, and displaying system info."""
print("Checking setup...")
import os
import shutil
from ultralytics.utils.checks import check_requirements
from utils.general import check_font, is_colab
from utils.torch_utils import select_device # imports
check_font()
import psutil
if check_requirements("wandb", install=False):
os.system("pip uninstall -y wandb") # eliminate unexpected account creation prompt with infinite hang
if is_colab():
shutil.rmtree("/content/sample_data", ignore_errors=True) # remove colab /sample_data directory
# System info
display = None
if verbose:
gb = 1 << 30 # bytes to GiB (1024 ** 3)
ram = psutil.virtual_memory().total
total, used, free = shutil.disk_usage("/")
with contextlib.suppress(Exception): # clear display if ipython is installed
from IPython import display
display.clear_output()
s = f"({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)"
else:
s = ""
select_device(newline=False)
print(emojis(f"Setup complete ✅ {s}"))
return display

134
yolov5/utils/activations.py Normal file
View File

@ -0,0 +1,134 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Activation functions."""
import torch
import torch.nn as nn
import torch.nn.functional as F
class SiLU(nn.Module):
"""Applies the Sigmoid-weighted Linear Unit (SiLU) activation function, also known as Swish."""
@staticmethod
def forward(x):
"""
Applies the Sigmoid-weighted Linear Unit (SiLU) activation function.
https://arxiv.org/pdf/1606.08415.pdf.
"""
return x * torch.sigmoid(x)
class Hardswish(nn.Module):
"""Applies the Hardswish activation function, which is efficient for mobile and embedded devices."""
@staticmethod
def forward(x):
"""
Applies the Hardswish activation function, compatible with TorchScript, CoreML, and ONNX.
Equivalent to x * F.hardsigmoid(x)
"""
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX
class Mish(nn.Module):
"""Mish activation https://github.com/digantamisra98/Mish."""
@staticmethod
def forward(x):
"""Applies the Mish activation function, a smooth alternative to ReLU."""
return x * F.softplus(x).tanh()
class MemoryEfficientMish(nn.Module):
"""Efficiently applies the Mish activation function using custom autograd for reduced memory usage."""
class F(torch.autograd.Function):
"""Implements a custom autograd function for memory-efficient Mish activation."""
@staticmethod
def forward(ctx, x):
"""Applies the Mish activation function, a smooth ReLU alternative, to the input tensor `x`."""
ctx.save_for_backward(x)
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
@staticmethod
def backward(ctx, grad_output):
"""Computes the gradient of the Mish activation function with respect to input `x`."""
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
fx = F.softplus(x).tanh()
return grad_output * (fx + x * sx * (1 - fx * fx))
def forward(self, x):
"""Applies the Mish activation function to the input tensor `x`."""
return self.F.apply(x)
class FReLU(nn.Module):
"""FReLU activation https://arxiv.org/abs/2007.11824."""
def __init__(self, c1, k=3): # ch_in, kernel
"""Initializes FReLU activation with channel `c1` and kernel size `k`."""
super().__init__()
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
self.bn = nn.BatchNorm2d(c1)
def forward(self, x):
"""
Applies FReLU activation with max operation between input and BN-convolved input.
https://arxiv.org/abs/2007.11824
"""
return torch.max(x, self.bn(self.conv(x)))
class AconC(nn.Module):
"""
ACON activation (activate or not) function.
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
See "Activate or Not: Learning Customized Activation" https://arxiv.org/pdf/2009.04759.pdf.
"""
def __init__(self, c1):
"""Initializes AconC with learnable parameters p1, p2, and beta for channel-wise activation control."""
super().__init__()
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
def forward(self, x):
"""Applies AconC activation function with learnable parameters for channel-wise control on input tensor x."""
dpx = (self.p1 - self.p2) * x
return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
class MetaAconC(nn.Module):
"""
ACON activation (activate or not) function.
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
See "Activate or Not: Learning Customized Activation" https://arxiv.org/pdf/2009.04759.pdf.
"""
def __init__(self, c1, k=1, s=1, r=16):
"""Initializes MetaAconC with params: channel_in (c1), kernel size (k=1), stride (s=1), reduction (r=16)."""
super().__init__()
c2 = max(r, c1 // r)
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
# self.bn1 = nn.BatchNorm2d(c2)
# self.bn2 = nn.BatchNorm2d(c1)
def forward(self, x):
"""Applies a forward pass transforming input `x` using learnable parameters and sigmoid activation."""
y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
# batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
# beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
dpx = (self.p1 - self.p2) * x
return dpx * torch.sigmoid(beta * dpx) + self.p2 * x

View File

@ -0,0 +1,440 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Image augmentation functions."""
import math
import random
import cv2
import numpy as np
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box, xywhn2xyxy
from utils.metrics import bbox_ioa
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation
class Albumentations:
"""Provides optional data augmentation for YOLOv5 using Albumentations library if installed."""
def __init__(self, size=640):
"""Initializes Albumentations class for optional data augmentation in YOLOv5 with specified input size."""
self.transform = None
prefix = colorstr("albumentations: ")
try:
import albumentations as A
check_version(A.__version__, "1.0.3", hard=True) # version requirement
T = [
A.RandomResizedCrop(height=size, width=size, scale=(0.8, 1.0), ratio=(0.9, 1.11), p=0.0),
A.Blur(p=0.01),
A.MedianBlur(p=0.01),
A.ToGray(p=0.01),
A.CLAHE(p=0.01),
A.RandomBrightnessContrast(p=0.0),
A.RandomGamma(p=0.0),
A.ImageCompression(quality_lower=75, p=0.0),
] # transforms
self.transform = A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"]))
LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p))
except ImportError: # package not installed, skip
pass
except Exception as e:
LOGGER.info(f"{prefix}{e}")
def __call__(self, im, labels, p=1.0):
"""Applies transformations to an image and labels with probability `p`, returning updated image and labels."""
if self.transform and random.random() < p:
new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
im, labels = new["image"], np.array([[c, *b] for c, b in zip(new["class_labels"], new["bboxes"])])
return im, labels
def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False):
"""
Applies ImageNet normalization to RGB images in BCHW format, modifying them in-place if specified.
Example: y = (x - mean) / std
"""
return TF.normalize(x, mean, std, inplace=inplace)
def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD):
"""Reverses ImageNet normalization for BCHW format RGB images by applying `x = x * std + mean`."""
for i in range(3):
x[:, i] = x[:, i] * std[i] + mean[i]
return x
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
"""Applies HSV color-space augmentation to an image with random gains for hue, saturation, and value."""
if hgain or sgain or vgain:
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
dtype = im.dtype # uint8
x = np.arange(0, 256, dtype=r.dtype)
lut_hue = ((x * r[0]) % 180).astype(dtype)
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
def hist_equalize(im, clahe=True, bgr=False):
"""Equalizes image histogram, with optional CLAHE, for BGR or RGB image with shape (n,m,3) and range 0-255."""
yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
if clahe:
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
yuv[:, :, 0] = c.apply(yuv[:, :, 0])
else:
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
def replicate(im, labels):
"""
Replicates half of the smallest object labels in an image for data augmentation.
Returns augmented image and labels.
"""
h, w = im.shape[:2]
boxes = labels[:, 1:].astype(int)
x1, y1, x2, y2 = boxes.T
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
for i in s.argsort()[: round(s.size * 0.5)]: # smallest indices
x1b, y1b, x2b, y2b = boxes[i]
bh, bw = y2b - y1b, x2b - x1b
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax]
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
return im, labels
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
"""Resizes and pads image to new_shape with stride-multiple constraints, returns resized image, ratio, padding."""
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im, ratio, (dw, dh)
def random_perspective(
im, targets=(), segments=(), degrees=10, translate=0.1, scale=0.1, shear=10, perspective=0.0, border=(0, 0)
):
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
# targets = [cls, xyxy]
"""Applies random perspective transformation to an image, modifying the image and corresponding labels."""
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
width = im.shape[1] + border[1] * 2
# Center
C = np.eye(3)
C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
# Perspective
P = np.eye(3)
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
# Rotation and Scale
R = np.eye(3)
a = random.uniform(-degrees, degrees)
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
s = random.uniform(1 - scale, 1 + scale)
# s = 2 ** random.uniform(-scale, scale)
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
# Shear
S = np.eye(3)
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
# Translation
T = np.eye(3)
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
# Combined rotation matrix
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
if perspective:
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
else: # affine
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
if n := len(targets):
use_segments = any(x.any() for x in segments) and len(segments) == n
new = np.zeros((n, 4))
if use_segments: # warp segments
segments = resample_segments(segments) # upsample
for i, segment in enumerate(segments):
xy = np.ones((len(segment), 3))
xy[:, :2] = segment
xy = xy @ M.T # transform
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
# clip
new[i] = segment2box(xy, width, height)
else: # warp boxes
xy = np.ones((n * 4, 3))
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
xy = xy @ M.T # transform
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
# clip
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
# filter candidates
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
targets = targets[i]
targets[:, 1:5] = new[i]
return im, targets
def copy_paste(im, labels, segments, p=0.5):
"""
Applies Copy-Paste augmentation by flipping and merging segments and labels on an image.
Details at https://arxiv.org/abs/2012.07177.
"""
n = len(segments)
if p and n:
h, w, c = im.shape # height, width, channels
im_new = np.zeros(im.shape, np.uint8)
for j in random.sample(range(n), k=round(p * n)):
l, s = labels[j], segments[j]
box = w - l[3], l[2], w - l[1], l[4]
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
labels = np.concatenate((labels, [[l[0], *box]]), 0)
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED)
result = cv2.flip(im, 1) # augment segments (flip left-right)
i = cv2.flip(im_new, 1).astype(bool)
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
return im, labels, segments
def cutout(im, labels, p=0.5):
"""
Applies cutout augmentation to an image with optional label adjustment, using random masks of varying sizes.
Details at https://arxiv.org/abs/1708.04552.
"""
if random.random() < p:
h, w = im.shape[:2]
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
for s in scales:
mask_h = random.randint(1, int(h * s)) # create random masks
mask_w = random.randint(1, int(w * s))
# box
xmin = max(0, random.randint(0, w) - mask_w // 2)
ymin = max(0, random.randint(0, h) - mask_h // 2)
xmax = min(w, xmin + mask_w)
ymax = min(h, ymin + mask_h)
# apply random color mask
im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
# return unobscured labels
if len(labels) and s > 0.03:
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
ioa = bbox_ioa(box, xywhn2xyxy(labels[:, 1:5], w, h)) # intersection over area
labels = labels[ioa < 0.60] # remove >60% obscured labels
return labels
def mixup(im, labels, im2, labels2):
"""
Applies MixUp augmentation by blending images and labels.
See https://arxiv.org/pdf/1710.09412.pdf for details.
"""
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
im = (im * r + im2 * (1 - r)).astype(np.uint8)
labels = np.concatenate((labels, labels2), 0)
return im, labels
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):
"""
Filters bounding box candidates by minimum width-height threshold `wh_thr` (pixels), aspect ratio threshold
`ar_thr`, and area ratio threshold `area_thr`.
box1(4,n) is before augmentation, box2(4,n) is after augmentation.
"""
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
def classify_albumentations(
augment=True,
size=224,
scale=(0.08, 1.0),
ratio=(0.75, 1.0 / 0.75), # 0.75, 1.33
hflip=0.5,
vflip=0.0,
jitter=0.4,
mean=IMAGENET_MEAN,
std=IMAGENET_STD,
auto_aug=False,
):
# YOLOv5 classification Albumentations (optional, only used if package is installed)
"""Sets up and returns Albumentations transforms for YOLOv5 classification tasks depending on augmentation
settings.
"""
prefix = colorstr("albumentations: ")
try:
import albumentations as A
from albumentations.pytorch import ToTensorV2
check_version(A.__version__, "1.0.3", hard=True) # version requirement
if augment: # Resize and crop
T = [A.RandomResizedCrop(height=size, width=size, scale=scale, ratio=ratio)]
if auto_aug:
# TODO: implement AugMix, AutoAug & RandAug in albumentation
LOGGER.info(f"{prefix}auto augmentations are currently not supported")
else:
if hflip > 0:
T += [A.HorizontalFlip(p=hflip)]
if vflip > 0:
T += [A.VerticalFlip(p=vflip)]
if jitter > 0:
color_jitter = (float(jitter),) * 3 # repeat value for brightness, contrast, saturation, 0 hue
T += [A.ColorJitter(*color_jitter, 0)]
else: # Use fixed crop for eval set (reproducibility)
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor
LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p))
return A.Compose(T)
except ImportError: # package not installed, skip
LOGGER.warning(f"{prefix}⚠️ not found, install with `pip install albumentations` (recommended)")
except Exception as e:
LOGGER.info(f"{prefix}{e}")
def classify_transforms(size=224):
"""Applies a series of transformations including center crop, ToTensor, and normalization for classification."""
assert isinstance(size, int), f"ERROR: classify_transforms size {size} must be integer, not (list, tuple)"
# T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
class LetterBox:
"""Resizes and pads images to specified dimensions while maintaining aspect ratio for YOLOv5 preprocessing."""
def __init__(self, size=(640, 640), auto=False, stride=32):
"""Initializes a LetterBox object for YOLOv5 image preprocessing with optional auto sizing and stride
adjustment.
"""
super().__init__()
self.h, self.w = (size, size) if isinstance(size, int) else size
self.auto = auto # pass max size integer, automatically solve for short side using stride
self.stride = stride # used with auto
def __call__(self, im):
"""
Resizes and pads input image `im` (HWC format) to specified dimensions, maintaining aspect ratio.
im = np.array HWC
"""
imh, imw = im.shape[:2]
r = min(self.h / imh, self.w / imw) # ratio of new/old
h, w = round(imh * r), round(imw * r) # resized image
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype)
im_out[top : top + h, left : left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
return im_out
class CenterCrop:
"""Applies center crop to an image, resizing it to the specified size while maintaining aspect ratio."""
def __init__(self, size=640):
"""Initializes CenterCrop for image preprocessing, accepting single int or tuple for size, defaults to 640."""
super().__init__()
self.h, self.w = (size, size) if isinstance(size, int) else size
def __call__(self, im):
"""
Applies center crop to the input image and resizes it to a specified size, maintaining aspect ratio.
im = np.array HWC
"""
imh, imw = im.shape[:2]
m = min(imh, imw) # min dimension
top, left = (imh - m) // 2, (imw - m) // 2
return cv2.resize(im[top : top + m, left : left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)
class ToTensor:
"""Converts BGR np.array image from HWC to RGB CHW format, normalizes to [0, 1], and supports FP16 if half=True."""
def __init__(self, half=False):
"""Initializes ToTensor for YOLOv5 image preprocessing, with optional half precision (half=True for FP16)."""
super().__init__()
self.half = half
def __call__(self, im):
"""
Converts BGR np.array image from HWC to RGB CHW format, and normalizes to [0, 1], with support for FP16 if
`half=True`.
im = np.array HWC in BGR order
"""
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous
im = torch.from_numpy(im) # to torch
im = im.half() if self.half else im.float() # uint8 to fp16/32
im /= 255.0 # 0-255 to 0.0-1.0
return im

175
yolov5/utils/autoanchor.py Normal file
View File

@ -0,0 +1,175 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""AutoAnchor utils."""
import random
import numpy as np
import torch
import yaml
from tqdm import tqdm
from utils import TryExcept
from utils.general import LOGGER, TQDM_BAR_FORMAT, colorstr
PREFIX = colorstr("AutoAnchor: ")
def check_anchor_order(m):
"""Checks and corrects anchor order against stride in YOLOv5 Detect() module if necessary."""
a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer
da = a[-1] - a[0] # delta a
ds = m.stride[-1] - m.stride[0] # delta s
if da and (da.sign() != ds.sign()): # same order
LOGGER.info(f"{PREFIX}Reversing anchor order")
m.anchors[:] = m.anchors.flip(0)
@TryExcept(f"{PREFIX}ERROR")
def check_anchors(dataset, model, thr=4.0, imgsz=640):
"""Evaluates anchor fit to dataset and adjusts if necessary, supporting customizable threshold and image size."""
m = model.module.model[-1] if hasattr(model, "module") else model.model[-1] # Detect()
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
def metric(k): # compute metric
"""Computes ratio metric, anchors above threshold, and best possible recall for YOLOv5 anchor evaluation."""
r = wh[:, None] / k[None]
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
best = x.max(1)[0] # best_x
aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold
bpr = (best > 1 / thr).float().mean() # best possible recall
return bpr, aat
stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides
anchors = m.anchors.clone() * stride # current anchors
bpr, aat = metric(anchors.cpu().view(-1, 2))
s = f"\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). "
if bpr > 0.98: # threshold to recompute
LOGGER.info(f"{s}Current anchors are a good fit to dataset ✅")
else:
LOGGER.info(f"{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...")
na = m.anchors.numel() // 2 # number of anchors
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
new_bpr = metric(anchors)[0]
if new_bpr > bpr: # replace anchors
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
m.anchors[:] = anchors.clone().view_as(m.anchors)
check_anchor_order(m) # must be in pixel-space (not grid-space)
m.anchors /= stride
s = f"{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)"
else:
s = f"{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)"
LOGGER.info(s)
def kmean_anchors(dataset="./data/coco128.yaml", n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
"""
Creates kmeans-evolved anchors from training dataset.
Arguments:
dataset: path to data.yaml, or a loaded dataset
n: number of anchors
img_size: image size used for training
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
gen: generations to evolve anchors using genetic algorithm
verbose: print all results
Return:
k: kmeans evolved anchors
Usage:
from utils.autoanchor import *; _ = kmean_anchors()
"""
from scipy.cluster.vq import kmeans
npr = np.random
thr = 1 / thr
def metric(k, wh): # compute metrics
"""Computes ratio metric, anchors above threshold, and best possible recall for YOLOv5 anchor evaluation."""
r = wh[:, None] / k[None]
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
# x = wh_iou(wh, torch.tensor(k)) # iou metric
return x, x.max(1)[0] # x, best_x
def anchor_fitness(k): # mutation fitness
"""Evaluates fitness of YOLOv5 anchors by computing recall and ratio metrics for an anchor evolution process."""
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
return (best * (best > thr).float()).mean() # fitness
def print_results(k, verbose=True):
"""Sorts and logs kmeans-evolved anchor metrics and best possible recall values for YOLOv5 anchor evaluation."""
k = k[np.argsort(k.prod(1))] # sort small to large
x, best = metric(k, wh0)
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
s = (
f"{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n"
f"{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, "
f"past_thr={x[x > thr].mean():.3f}-mean: "
)
for x in k:
s += "%i,%i, " % (round(x[0]), round(x[1]))
if verbose:
LOGGER.info(s[:-2])
return k
if isinstance(dataset, str): # *.yaml file
with open(dataset, errors="ignore") as f:
data_dict = yaml.safe_load(f) # model dict
from utils.dataloaders import LoadImagesAndLabels
dataset = LoadImagesAndLabels(data_dict["train"], augment=True, rect=True)
# Get label wh
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
# Filter
i = (wh0 < 3.0).any(1).sum()
if i:
LOGGER.info(f"{PREFIX}WARNING ⚠️ Extremely small objects found: {i} of {len(wh0)} labels are <3 pixels in size")
wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32) # filter > 2 pixels
# wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
# Kmeans init
try:
LOGGER.info(f"{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...")
assert n <= len(wh) # apply overdetermined constraint
s = wh.std(0) # sigmas for whitening
k = kmeans(wh / s, n, iter=30)[0] * s # points
assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar
except Exception:
LOGGER.warning(f"{PREFIX}WARNING ⚠️ switching strategies from kmeans to random init")
k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init
wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
k = print_results(k, verbose=False)
# Plot
# k, d = [None] * 20, [None] * 20
# for i in tqdm(range(1, 21)):
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
# ax = ax.ravel()
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
# fig.savefig('wh.png', dpi=200)
# Evolve
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
pbar = tqdm(range(gen), bar_format=TQDM_BAR_FORMAT) # progress bar
for _ in pbar:
v = np.ones(sh)
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
kg = (k.copy() * v).clip(min=2.0)
fg = anchor_fitness(kg)
if fg > f:
f, k = fg, kg.copy()
pbar.desc = f"{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}"
if verbose:
print_results(k, verbose)
return print_results(k).astype(np.float32)

70
yolov5/utils/autobatch.py Normal file
View File

@ -0,0 +1,70 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Auto-batch utils."""
from copy import deepcopy
import numpy as np
import torch
from utils.general import LOGGER, colorstr
from utils.torch_utils import profile
def check_train_batch_size(model, imgsz=640, amp=True):
"""Checks and computes optimal training batch size for YOLOv5 model, given image size and AMP setting."""
with torch.cuda.amp.autocast(amp):
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
def autobatch(model, imgsz=640, fraction=0.8, batch_size=16):
"""Estimates optimal YOLOv5 batch size using `fraction` of CUDA memory."""
# Usage:
# import torch
# from utils.autobatch import autobatch
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
# print(autobatch(model))
# Check device
prefix = colorstr("AutoBatch: ")
LOGGER.info(f"{prefix}Computing optimal batch size for --imgsz {imgsz}")
device = next(model.parameters()).device # get model device
if device.type == "cpu":
LOGGER.info(f"{prefix}CUDA not detected, using default CPU batch-size {batch_size}")
return batch_size
if torch.backends.cudnn.benchmark:
LOGGER.info(f"{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}")
return batch_size
# Inspect CUDA memory
gb = 1 << 30 # bytes to GiB (1024 ** 3)
d = str(device).upper() # 'CUDA:0'
properties = torch.cuda.get_device_properties(device) # device properties
t = properties.total_memory / gb # GiB total
r = torch.cuda.memory_reserved(device) / gb # GiB reserved
a = torch.cuda.memory_allocated(device) / gb # GiB allocated
f = t - (r + a) # GiB free
LOGGER.info(f"{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free")
# Profile batch sizes
batch_sizes = [1, 2, 4, 8, 16]
try:
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
results = profile(img, model, n=3, device=device)
except Exception as e:
LOGGER.warning(f"{prefix}{e}")
# Fit a solution
y = [x[2] for x in results if x] # memory [2]
p = np.polyfit(batch_sizes[: len(y)], y, deg=1) # first degree polynomial fit
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
if None in results: # some sizes failed
i = results.index(None) # first fail index
if b >= batch_sizes[i]: # y intercept above failure point
b = batch_sizes[max(i - 1, 0)] # select prior safe point
if b < 1 or b > 1024: # b outside of safe range
b = batch_size
LOGGER.warning(f"{prefix}WARNING ⚠️ CUDA anomaly detected, recommend restart environment and retry command.")
fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted
LOGGER.info(f"{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅")
return b

View File

@ -0,0 +1 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

26
yolov5/utils/aws/mime.sh Normal file
View File

@ -0,0 +1,26 @@
# AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
# This script will run on every instance restart, not only on first start
# --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
Content-Type: multipart/mixed; boundary="//"
MIME-Version: 1.0
--//
Content-Type: text/cloud-config; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename="cloud-config.txt"
#cloud-config
cloud_final_modules:
- [scripts-user, always]
--//
Content-Type: text/x-shellscript; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename="userdata.txt"
#!/bin/bash
# --- paste contents of userdata.sh here ---
--//

View File

@ -0,0 +1,42 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Resume all interrupted trainings in yolov5/ dir including DDP trainings
# Usage: $ python utils/aws/resume.py
import os
import sys
from pathlib import Path
import torch
import yaml
FILE = Path(__file__).resolve()
ROOT = FILE.parents[2] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
port = 0 # --master_port
path = Path("").resolve()
for last in path.rglob("*/**/last.pt"):
ckpt = torch.load(last)
if ckpt["optimizer"] is None:
continue
# Load opt.yaml
with open(last.parent.parent / "opt.yaml", errors="ignore") as f:
opt = yaml.safe_load(f)
# Get device count
d = opt["device"].split(",") # devices
nd = len(d) # number of devices
ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
if ddp: # multi-GPU
port += 1
cmd = f"python -m torch.distributed.run --nproc_per_node {nd} --master_port {port} train.py --resume {last}"
else: # single-GPU
cmd = f"python train.py --resume {last}"
cmd += " > /dev/null 2>&1 &" # redirect output to dev/null and run in daemon thread
print(cmd)
os.system(cmd)

View File

@ -0,0 +1,27 @@
#!/bin/bash
# AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
# This script will run only once on first instance start (for a re-start script see mime.sh)
# /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
# Use >300 GB SSD
cd home/ubuntu
if [ ! -d yolov5 ]; then
echo "Running first-time script." # install dependencies, download COCO, pull Docker
git clone https://github.com/ultralytics/yolov5 -b master && sudo chmod -R 777 yolov5
cd yolov5
bash data/scripts/get_coco.sh && echo "COCO done." &
sudo docker pull ultralytics/yolov5:latest && echo "Docker done." &
python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
wait && echo "All tasks done." # finish background tasks
else
echo "Running re-start script." # resume interrupted runs
i=0
list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
while IFS= read -r id; do
((i++))
echo "restarting container $i: $id"
sudo docker start $id
# sudo docker exec -it $id python train.py --resume # single-GPU
sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
done <<<"$list"
fi

72
yolov5/utils/callbacks.py Normal file
View File

@ -0,0 +1,72 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Callback utils."""
import threading
class Callbacks:
"""Handles all registered callbacks for YOLOv5 Hooks."""
def __init__(self):
"""Initializes a Callbacks object to manage registered YOLOv5 training event hooks."""
self._callbacks = {
"on_pretrain_routine_start": [],
"on_pretrain_routine_end": [],
"on_train_start": [],
"on_train_epoch_start": [],
"on_train_batch_start": [],
"optimizer_step": [],
"on_before_zero_grad": [],
"on_train_batch_end": [],
"on_train_epoch_end": [],
"on_val_start": [],
"on_val_batch_start": [],
"on_val_image_end": [],
"on_val_batch_end": [],
"on_val_end": [],
"on_fit_epoch_end": [], # fit = train + val
"on_model_save": [],
"on_train_end": [],
"on_params_update": [],
"teardown": [],
}
self.stop_training = False # set True to interrupt training
def register_action(self, hook, name="", callback=None):
"""
Register a new action to a callback hook.
Args:
hook: The callback hook name to register the action to
name: The name of the action for later reference
callback: The callback to fire
"""
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
assert callable(callback), f"callback '{callback}' is not callable"
self._callbacks[hook].append({"name": name, "callback": callback})
def get_registered_actions(self, hook=None):
"""
Returns all the registered actions by callback hook.
Args:
hook: The name of the hook to check, defaults to all
"""
return self._callbacks[hook] if hook else self._callbacks
def run(self, hook, *args, thread=False, **kwargs):
"""
Loop through the registered actions and fire all callbacks on main thread.
Args:
hook: The name of the hook to check, defaults to all
args: Arguments to receive from YOLOv5
thread: (boolean) Run callbacks in daemon thread
kwargs: Keyword Arguments to receive from YOLOv5
"""
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
for logger in self._callbacks[hook]:
if thread:
threading.Thread(target=logger["callback"], args=args, kwargs=kwargs, daemon=True).start()
else:
logger["callback"](*args, **kwargs)

1378
yolov5/utils/dataloaders.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,73 @@
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
# Builds ultralytics/yolov5:latest image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
# Image is CUDA-optimized for YOLOv5 single/multi-GPU training and inference
# Start FROM PyTorch image https://hub.docker.com/r/pytorch/pytorch
FROM pytorch/pytorch:2.0.0-cuda11.7-cudnn8-runtime
# Downloads to user config dir
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
# Install linux packages
ENV DEBIAN_FRONTEND noninteractive
RUN apt update
RUN TZ=Etc/UTC apt install -y tzdata
RUN apt install --no-install-recommends -y gcc git zip curl htop libgl1 libglib2.0-0 libpython3-dev gnupg
# RUN alias python=python3
# Security updates
# https://security.snyk.io/vuln/SNYK-UBUNTU1804-OPENSSL-3314796
RUN apt upgrade --no-install-recommends -y openssl
# Create working directory
RUN rm -rf /usr/src/app && mkdir -p /usr/src/app
WORKDIR /usr/src/app
# Copy contents
COPY . /usr/src/app
# Install pip packages
COPY requirements.txt .
RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache -r requirements.txt albumentations comet gsutil notebook \
coremltools onnx onnx-simplifier onnxruntime 'openvino-dev>=2023.0'
# tensorflow tensorflowjs \
# Set environment variables
ENV OMP_NUM_THREADS=1
# Cleanup
ENV DEBIAN_FRONTEND teletype
# Usage Examples -------------------------------------------------------------------------------------------------------
# Build and Push
# t=ultralytics/yolov5:latest && sudo docker build -f utils/docker/Dockerfile -t $t . && sudo docker push $t
# Pull and Run
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
# Pull and Run with local directory access
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
# Kill all
# sudo docker kill $(sudo docker ps -q)
# Kill all image-based
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
# DockerHub tag update
# t=ultralytics/yolov5:latest tnew=ultralytics/yolov5:v6.2 && sudo docker pull $t && sudo docker tag $t $tnew && sudo docker push $tnew
# Clean up
# sudo docker system prune -a --volumes
# Update Ubuntu drivers
# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
# DDP test
# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
# GCP VM from Image
# docker.io/ultralytics/yolov5:latest

View File

@ -0,0 +1,40 @@
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
# Builds ultralytics/yolov5:latest-arm64 image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
# Image is aarch64-compatible for Apple M1 and other ARM architectures i.e. Jetson Nano and Raspberry Pi
# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
FROM arm64v8/ubuntu:22.10
# Downloads to user config dir
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
# Install linux packages
ENV DEBIAN_FRONTEND noninteractive
RUN apt update
RUN TZ=Etc/UTC apt install -y tzdata
RUN apt install --no-install-recommends -y python3-pip git zip curl htop gcc libgl1 libglib2.0-0 libpython3-dev
# RUN alias python=python3
# Install pip packages
COPY requirements.txt .
RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache -r requirements.txt albumentations gsutil notebook \
coremltools onnx onnxruntime
# tensorflow-aarch64 tensorflowjs \
# Create working directory
RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app
# Copy contents
COPY . /usr/src/app
ENV DEBIAN_FRONTEND teletype
# Usage Examples -------------------------------------------------------------------------------------------------------
# Build and Push
# t=ultralytics/yolov5:latest-arm64 && sudo docker build --platform linux/arm64 -f utils/docker/Dockerfile-arm64 -t $t . && sudo docker push $t
# Pull and Run
# t=ultralytics/yolov5:latest-arm64 && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t

View File

@ -0,0 +1,42 @@
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
# Builds ultralytics/yolov5:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
# Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLOv5 deployments
# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
FROM ubuntu:23.10
# Downloads to user config dir
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
# Install linux packages
# g++ required to build 'tflite_support' and 'lap' packages, libusb-1.0-0 required for 'tflite_support' package
RUN apt update \
&& apt install --no-install-recommends -y python3-pip git zip curl htop libgl1 libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0
# RUN alias python=python3
# Remove python3.11/EXTERNALLY-MANAGED or use 'pip install --break-system-packages' avoid 'externally-managed-environment' Ubuntu nightly error
RUN rm -rf /usr/lib/python3.11/EXTERNALLY-MANAGED
# Install pip packages
COPY requirements.txt .
RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache -r requirements.txt albumentations gsutil notebook \
coremltools onnx onnx-simplifier onnxruntime 'openvino-dev>=2023.0' \
# tensorflow tensorflowjs \
--extra-index-url https://download.pytorch.org/whl/cpu
# Create working directory
RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app
# Copy contents
COPY . /usr/src/app
# Usage Examples -------------------------------------------------------------------------------------------------------
# Build and Push
# t=ultralytics/yolov5:latest-cpu && sudo docker build -f utils/docker/Dockerfile-cpu -t $t . && sudo docker push $t
# Pull and Run
# t=ultralytics/yolov5:latest-cpu && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t

136
yolov5/utils/downloads.py Normal file
View File

@ -0,0 +1,136 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Download utils."""
import logging
import subprocess
import urllib
from pathlib import Path
import requests
import torch
def is_url(url, check=True):
"""Determines if a string is a URL and optionally checks its existence online, returning a boolean."""
try:
url = str(url)
result = urllib.parse.urlparse(url)
assert all([result.scheme, result.netloc]) # check if is url
return (urllib.request.urlopen(url).getcode() == 200) if check else True # check if exists online
except (AssertionError, urllib.request.HTTPError):
return False
def gsutil_getsize(url=""):
"""
Returns the size in bytes of a file at a Google Cloud Storage URL using `gsutil du`.
Returns 0 if the command fails or output is empty.
"""
output = subprocess.check_output(["gsutil", "du", url], shell=True, encoding="utf-8")
return int(output.split()[0]) if output else 0
def url_getsize(url="https://ultralytics.com/images/bus.jpg"):
"""Returns the size in bytes of a downloadable file at a given URL; defaults to -1 if not found."""
response = requests.head(url, allow_redirects=True)
return int(response.headers.get("content-length", -1))
def curl_download(url, filename, *, silent: bool = False) -> bool:
"""Download a file from a url to a filename using curl."""
silent_option = "sS" if silent else "" # silent
proc = subprocess.run(
[
"curl",
"-#",
f"-{silent_option}L",
url,
"--output",
filename,
"--retry",
"9",
"-C",
"-",
]
)
return proc.returncode == 0
def safe_download(file, url, url2=None, min_bytes=1e0, error_msg=""):
"""
Downloads a file from a URL (or alternate URL) to a specified path if file is above a minimum size.
Removes incomplete downloads.
"""
from utils.general import LOGGER
file = Path(file)
assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
try: # url1
LOGGER.info(f"Downloading {url} to {file}...")
torch.hub.download_url_to_file(url, str(file), progress=LOGGER.level <= logging.INFO)
assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
except Exception as e: # url2
if file.exists():
file.unlink() # remove partial downloads
LOGGER.info(f"ERROR: {e}\nRe-attempting {url2 or url} to {file}...")
# curl download, retry and resume on fail
curl_download(url2 or url, file)
finally:
if not file.exists() or file.stat().st_size < min_bytes: # check
if file.exists():
file.unlink() # remove partial downloads
LOGGER.info(f"ERROR: {assert_msg}\n{error_msg}")
LOGGER.info("")
def attempt_download(file, repo="ultralytics/yolov5", release="v7.0"):
"""Downloads a file from GitHub release assets or via direct URL if not found locally, supporting backup
versions.
"""
from utils.general import LOGGER
def github_assets(repository, version="latest"):
"""Fetches GitHub repository release tag and asset names using the GitHub API."""
if version != "latest":
version = f"tags/{version}" # i.e. tags/v7.0
response = requests.get(f"https://api.github.com/repos/{repository}/releases/{version}").json() # github api
return response["tag_name"], [x["name"] for x in response["assets"]] # tag, assets
file = Path(str(file).strip().replace("'", ""))
if not file.exists():
# URL specified
name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
if str(file).startswith(("http:/", "https:/")): # download
url = str(file).replace(":/", "://") # Pathlib turns :// -> :/
file = name.split("?")[0] # parse authentication https://url.com/file.txt?auth...
if Path(file).is_file():
LOGGER.info(f"Found {url} locally at {file}") # file already exists
else:
safe_download(file=file, url=url, min_bytes=1e5)
return file
# GitHub assets
assets = [f"yolov5{size}{suffix}.pt" for size in "nsmlx" for suffix in ("", "6", "-cls", "-seg")] # default
try:
tag, assets = github_assets(repo, release)
except Exception:
try:
tag, assets = github_assets(repo) # latest release
except Exception:
try:
tag = subprocess.check_output("git tag", shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
except Exception:
tag = release
if name in assets:
file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
safe_download(
file,
url=f"https://github.com/{repo}/releases/download/{tag}/{name}",
min_bytes=1e5,
error_msg=f"{file} missing, try downloading from https://github.com/{repo}/releases/{tag}",
)
return str(file)

View File

@ -0,0 +1,70 @@
# Flask REST API
[REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/).
## Requirements
[Flask](https://palletsprojects.com/projects/flask/) is required. Install with:
```shell
$ pip install Flask
```
## Run
After Flask installation run:
```shell
$ python3 restapi.py --port 5000
```
Then use [curl](https://curl.se/) to perform a request:
```shell
$ curl -X POST -F image=@zidane.jpg 'http://localhost:5000/v1/object-detection/yolov5s'
```
The model inference results are returned as a JSON response:
```json
[
{
"class": 0,
"confidence": 0.8900438547,
"height": 0.9318675399,
"name": "person",
"width": 0.3264600933,
"xcenter": 0.7438579798,
"ycenter": 0.5207948685
},
{
"class": 0,
"confidence": 0.8440024257,
"height": 0.7155083418,
"name": "person",
"width": 0.6546785235,
"xcenter": 0.427829951,
"ycenter": 0.6334488392
},
{
"class": 27,
"confidence": 0.3771208823,
"height": 0.3902671337,
"name": "tie",
"width": 0.0696444362,
"xcenter": 0.3675483763,
"ycenter": 0.7991207838
},
{
"class": 27,
"confidence": 0.3527112305,
"height": 0.1540903747,
"name": "tie",
"width": 0.0336618312,
"xcenter": 0.7814827561,
"ycenter": 0.5065554976
}
]
```
An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given in `example_request.py`

View File

View File

@ -0,0 +1,17 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Perform test request."""
import pprint
import requests
DETECTION_URL = "http://localhost:5000/v1/object-detection/yolov5s"
IMAGE = "zidane.jpg"
# Read image
with open(IMAGE, "rb") as f:
image_data = f.read()
response = requests.post(DETECTION_URL, files={"image": image_data}).json()
pprint.pprint(response)

View File

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Run a Flask REST API exposing one or more YOLOv5s models."""
import argparse
import io
import torch
from flask import Flask, request
from PIL import Image
app = Flask(__name__)
models = {}
DETECTION_URL = "/v1/object-detection/<model>"
@app.route(DETECTION_URL, methods=["POST"])
def predict(model):
"""Predict and return object detections in JSON format given an image and model name via a Flask REST API POST
request.
"""
if request.method != "POST":
return
if request.files.get("image"):
# Method 1
# with request.files["image"] as f:
# im = Image.open(io.BytesIO(f.read()))
# Method 2
im_file = request.files["image"]
im_bytes = im_file.read()
im = Image.open(io.BytesIO(im_bytes))
if model in models:
results = models[model](im, size=640) # reduce size=320 for faster inference
return results.pandas().xyxy[0].to_json(orient="records")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model")
parser.add_argument("--port", default=5000, type=int, help="port number")
parser.add_argument("--model", nargs="+", default=["yolov5s"], help="model(s) to run, i.e. --model yolov5n yolov5s")
opt = parser.parse_args()
for m in opt.model:
models[m] = torch.hub.load("ultralytics/yolov5", m, force_reload=True, skip_validation=True)
app.run(host="0.0.0.0", port=opt.port) # debug=True causes Restarting with stat

1293
yolov5/utils/general.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,25 @@
FROM gcr.io/google-appengine/python
# Create a virtualenv for dependencies. This isolates these packages from
# system-level packages.
# Use -p python3 or -p python3.7 to select python version. Default is version 2.
RUN virtualenv /env -p python3
# Setting these environment variables are the same as running
# source /env/bin/activate.
ENV VIRTUAL_ENV /env
ENV PATH /env/bin:$PATH
RUN apt-get update && apt-get install -y python-opencv
# Copy the application's requirements.txt and run pip to install all
# dependencies into the virtualenv.
ADD requirements.txt /app/requirements.txt
RUN pip install -r /app/requirements.txt
# Add the application source code.
ADD . /app
# Run a WSGI server to serve the application. gunicorn must be declared as
# a dependency in requirements.txt.
CMD gunicorn -b :$PORT main:app

View File

@ -0,0 +1,6 @@
# add these requirements in your app on top of the existing ones
pip==23.3
Flask==2.3.2
gunicorn==22.0.0
werkzeug>=3.0.1 # not directly required, pinned by Snyk to avoid a vulnerability
zipp>=3.19.1 # not directly required, pinned by Snyk to avoid a vulnerability

View File

@ -0,0 +1,16 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
runtime: custom
env: flex
service: yolov5app
liveness_check:
initial_delay_sec: 600
manual_scaling:
instances: 1
resources:
cpu: 1
memory_gb: 4
disk_size_gb: 20

View File

@ -0,0 +1,476 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Logging utils."""
import json
import os
import warnings
from pathlib import Path
import pkg_resources as pkg
import torch
from utils.general import LOGGER, colorstr, cv2
from utils.loggers.clearml.clearml_utils import ClearmlLogger
from utils.loggers.wandb.wandb_utils import WandbLogger
from utils.plots import plot_images, plot_labels, plot_results
from utils.torch_utils import de_parallel
LOGGERS = ("csv", "tb", "wandb", "clearml", "comet") # *.csv, TensorBoard, Weights & Biases, ClearML
RANK = int(os.getenv("RANK", -1))
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
def SummaryWriter(*args):
"""Fall back to SummaryWriter returning None if TensorBoard is not installed."""
return None # None = SummaryWriter(str)
try:
import wandb
assert hasattr(wandb, "__version__") # verify package import not local dir
if pkg.parse_version(wandb.__version__) >= pkg.parse_version("0.12.2") and RANK in {0, -1}:
try:
wandb_login_success = wandb.login(timeout=30)
except wandb.errors.UsageError: # known non-TTY terminal issue
wandb_login_success = False
if not wandb_login_success:
wandb = None
except (ImportError, AssertionError):
wandb = None
try:
import clearml
assert hasattr(clearml, "__version__") # verify package import not local dir
except (ImportError, AssertionError):
clearml = None
try:
if RANK in {0, -1}:
import comet_ml
assert hasattr(comet_ml, "__version__") # verify package import not local dir
from utils.loggers.comet import CometLogger
else:
comet_ml = None
except (ImportError, AssertionError):
comet_ml = None
def _json_default(value):
"""
Format `value` for JSON serialization (e.g. unwrap tensors).
Fall back to strings.
"""
if isinstance(value, torch.Tensor):
try:
value = value.item()
except ValueError: # "only one element tensors can be converted to Python scalars"
pass
return value if isinstance(value, float) else str(value)
class Loggers:
"""Initializes and manages various logging utilities for tracking YOLOv5 training and validation metrics."""
def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
"""Initializes loggers for YOLOv5 training and validation metrics, paths, and options."""
self.save_dir = save_dir
self.weights = weights
self.opt = opt
self.hyp = hyp
self.plots = not opt.noplots # plot results
self.logger = logger # for printing results to console
self.include = include
self.keys = [
"train/box_loss",
"train/obj_loss",
"train/cls_loss", # train loss
"metrics/precision",
"metrics/recall",
"metrics/mAP_0.5",
"metrics/mAP_0.5:0.95", # metrics
"val/box_loss",
"val/obj_loss",
"val/cls_loss", # val loss
"x/lr0",
"x/lr1",
"x/lr2",
] # params
self.best_keys = ["best/epoch", "best/precision", "best/recall", "best/mAP_0.5", "best/mAP_0.5:0.95"]
for k in LOGGERS:
setattr(self, k, None) # init empty logger dictionary
self.csv = True # always log to csv
self.ndjson_console = "ndjson_console" in self.include # log ndjson to console
self.ndjson_file = "ndjson_file" in self.include # log ndjson to file
# Messages
if not comet_ml:
prefix = colorstr("Comet: ")
s = f"{prefix}run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet"
self.logger.info(s)
# TensorBoard
s = self.save_dir
if "tb" in self.include and not self.opt.evolve:
prefix = colorstr("TensorBoard: ")
self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
self.tb = SummaryWriter(str(s))
# W&B
if wandb and "wandb" in self.include:
self.opt.hyp = self.hyp # add hyperparameters
self.wandb = WandbLogger(self.opt)
else:
self.wandb = None
# ClearML
if clearml and "clearml" in self.include:
try:
self.clearml = ClearmlLogger(self.opt, self.hyp)
except Exception:
self.clearml = None
prefix = colorstr("ClearML: ")
LOGGER.warning(
f"{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging."
f" See https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration#readme"
)
else:
self.clearml = None
# Comet
if comet_ml and "comet" in self.include:
if isinstance(self.opt.resume, str) and self.opt.resume.startswith("comet://"):
run_id = self.opt.resume.split("/")[-1]
self.comet_logger = CometLogger(self.opt, self.hyp, run_id=run_id)
else:
self.comet_logger = CometLogger(self.opt, self.hyp)
else:
self.comet_logger = None
@property
def remote_dataset(self):
"""Fetches dataset dictionary from remote logging services like ClearML, Weights & Biases, or Comet ML."""
data_dict = None
if self.clearml:
data_dict = self.clearml.data_dict
if self.wandb:
data_dict = self.wandb.data_dict
if self.comet_logger:
data_dict = self.comet_logger.data_dict
return data_dict
def on_train_start(self):
"""Initializes the training process for Comet ML logger if it's configured."""
if self.comet_logger:
self.comet_logger.on_train_start()
def on_pretrain_routine_start(self):
"""Invokes pre-training routine start hook for Comet ML logger if available."""
if self.comet_logger:
self.comet_logger.on_pretrain_routine_start()
def on_pretrain_routine_end(self, labels, names):
"""Callback that runs at the end of pre-training routine, logging label plots if enabled."""
if self.plots:
plot_labels(labels, names, self.save_dir)
paths = self.save_dir.glob("*labels*.jpg") # training labels
if self.wandb:
self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
if self.comet_logger:
self.comet_logger.on_pretrain_routine_end(paths)
if self.clearml:
for path in paths:
self.clearml.log_plot(title=path.stem, plot_path=path)
def on_train_batch_end(self, model, ni, imgs, targets, paths, vals):
"""Logs training batch end events, plots images, and updates external loggers with batch-end data."""
log_dict = dict(zip(self.keys[:3], vals))
# Callback runs on train batch end
# ni: number integrated batches (since train start)
if self.plots:
if ni < 3:
f = self.save_dir / f"train_batch{ni}.jpg" # filename
plot_images(imgs, targets, paths, f)
if ni == 0 and self.tb and not self.opt.sync_bn:
log_tensorboard_graph(self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz))
if ni == 10 and (self.wandb or self.clearml):
files = sorted(self.save_dir.glob("train*.jpg"))
if self.wandb:
self.wandb.log({"Mosaics": [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
if self.clearml:
self.clearml.log_debug_samples(files, title="Mosaics")
if self.comet_logger:
self.comet_logger.on_train_batch_end(log_dict, step=ni)
def on_train_epoch_end(self, epoch):
"""Callback that updates the current epoch in Weights & Biases at the end of a training epoch."""
if self.wandb:
self.wandb.current_epoch = epoch + 1
if self.comet_logger:
self.comet_logger.on_train_epoch_end(epoch)
def on_val_start(self):
"""Callback that signals the start of a validation phase to the Comet logger."""
if self.comet_logger:
self.comet_logger.on_val_start()
def on_val_image_end(self, pred, predn, path, names, im):
"""Callback that logs a validation image and its predictions to WandB or ClearML."""
if self.wandb:
self.wandb.val_one_image(pred, predn, path, names, im)
if self.clearml:
self.clearml.log_image_with_boxes(path, pred, names, im)
def on_val_batch_end(self, batch_i, im, targets, paths, shapes, out):
"""Logs validation batch results to Comet ML during training at the end of each validation batch."""
if self.comet_logger:
self.comet_logger.on_val_batch_end(batch_i, im, targets, paths, shapes, out)
def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
"""Logs validation results to WandB or ClearML at the end of the validation process."""
if self.wandb or self.clearml:
files = sorted(self.save_dir.glob("val*.jpg"))
if self.wandb:
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
if self.clearml:
self.clearml.log_debug_samples(files, title="Validation")
if self.comet_logger:
self.comet_logger.on_val_end(nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
"""Callback that logs metrics and saves them to CSV or NDJSON at the end of each fit (train+val) epoch."""
x = dict(zip(self.keys, vals))
if self.csv:
file = self.save_dir / "results.csv"
n = len(x) + 1 # number of cols
s = "" if file.exists() else (("%20s," * n % tuple(["epoch"] + self.keys)).rstrip(",") + "\n") # add header
with open(file, "a") as f:
f.write(s + ("%20.5g," * n % tuple([epoch] + vals)).rstrip(",") + "\n")
if self.ndjson_console or self.ndjson_file:
json_data = json.dumps(dict(epoch=epoch, **x), default=_json_default)
if self.ndjson_console:
print(json_data)
if self.ndjson_file:
file = self.save_dir / "results.ndjson"
with open(file, "a") as f:
print(json_data, file=f)
if self.tb:
for k, v in x.items():
self.tb.add_scalar(k, v, epoch)
elif self.clearml: # log to ClearML if TensorBoard not used
self.clearml.log_scalars(x, epoch)
if self.wandb:
if best_fitness == fi:
best_results = [epoch] + vals[3:7]
for i, name in enumerate(self.best_keys):
self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary
self.wandb.log(x)
self.wandb.end_epoch()
if self.clearml:
self.clearml.current_epoch_logged_images = set() # reset epoch image limit
self.clearml.current_epoch += 1
if self.comet_logger:
self.comet_logger.on_fit_epoch_end(x, epoch=epoch)
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
"""Callback that handles model saving events, logging to Weights & Biases or ClearML if enabled."""
if (epoch + 1) % self.opt.save_period == 0 and not final_epoch and self.opt.save_period != -1:
if self.wandb:
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
if self.clearml:
self.clearml.task.update_output_model(
model_path=str(last), model_name="Latest Model", auto_delete_file=False
)
if self.comet_logger:
self.comet_logger.on_model_save(last, epoch, final_epoch, best_fitness, fi)
def on_train_end(self, last, best, epoch, results):
"""Callback that runs at the end of training to save plots and log results."""
if self.plots:
plot_results(file=self.save_dir / "results.csv") # save results.png
files = ["results.png", "confusion_matrix.png", *(f"{x}_curve.png" for x in ("F1", "PR", "P", "R"))]
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")
if self.tb and not self.clearml: # These images are already captured by ClearML by now, we don't want doubles
for f in files:
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats="HWC")
if self.wandb:
self.wandb.log(dict(zip(self.keys[3:10], results)))
self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
# Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
if not self.opt.evolve:
wandb.log_artifact(
str(best if best.exists() else last),
type="model",
name=f"run_{self.wandb.wandb_run.id}_model",
aliases=["latest", "best", "stripped"],
)
self.wandb.finish_run()
if self.clearml and not self.opt.evolve:
self.clearml.log_summary(dict(zip(self.keys[3:10], results)))
[self.clearml.log_plot(title=f.stem, plot_path=f) for f in files]
self.clearml.log_model(
str(best if best.exists() else last), "Best Model" if best.exists() else "Last Model", epoch
)
if self.comet_logger:
final_results = dict(zip(self.keys[3:10], results))
self.comet_logger.on_train_end(files, self.save_dir, last, best, epoch, final_results)
def on_params_update(self, params: dict):
"""Updates experiment hyperparameters or configurations in WandB, Comet, or ClearML."""
if self.wandb:
self.wandb.wandb_run.config.update(params, allow_val_change=True)
if self.comet_logger:
self.comet_logger.on_params_update(params)
if self.clearml:
self.clearml.task.connect(params)
class GenericLogger:
"""
YOLOv5 General purpose logger for non-task specific logging
Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...).
Arguments:
opt: Run arguments
console_logger: Console logger
include: loggers to include
"""
def __init__(self, opt, console_logger, include=("tb", "wandb", "clearml")):
"""Initializes a generic logger with optional TensorBoard, W&B, and ClearML support."""
self.save_dir = Path(opt.save_dir)
self.include = include
self.console_logger = console_logger
self.csv = self.save_dir / "results.csv" # CSV logger
if "tb" in self.include:
prefix = colorstr("TensorBoard: ")
self.console_logger.info(
f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/"
)
self.tb = SummaryWriter(str(self.save_dir))
if wandb and "wandb" in self.include:
self.wandb = wandb.init(
project=web_project_name(str(opt.project)), name=None if opt.name == "exp" else opt.name, config=opt
)
else:
self.wandb = None
if clearml and "clearml" in self.include:
try:
# Hyp is not available in classification mode
hyp = {} if "hyp" not in opt else opt.hyp
self.clearml = ClearmlLogger(opt, hyp)
except Exception:
self.clearml = None
prefix = colorstr("ClearML: ")
LOGGER.warning(
f"{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging."
f" See https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration"
)
else:
self.clearml = None
def log_metrics(self, metrics, epoch):
"""Logs metrics to CSV, TensorBoard, W&B, and ClearML; `metrics` is a dict, `epoch` is an int."""
if self.csv:
keys, vals = list(metrics.keys()), list(metrics.values())
n = len(metrics) + 1 # number of cols
s = "" if self.csv.exists() else (("%23s," * n % tuple(["epoch"] + keys)).rstrip(",") + "\n") # header
with open(self.csv, "a") as f:
f.write(s + ("%23.5g," * n % tuple([epoch] + vals)).rstrip(",") + "\n")
if self.tb:
for k, v in metrics.items():
self.tb.add_scalar(k, v, epoch)
if self.wandb:
self.wandb.log(metrics, step=epoch)
if self.clearml:
self.clearml.log_scalars(metrics, epoch)
def log_images(self, files, name="Images", epoch=0):
"""Logs images to all loggers with optional naming and epoch specification."""
files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])] # to Path
files = [f for f in files if f.exists()] # filter by exists
if self.tb:
for f in files:
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats="HWC")
if self.wandb:
self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch)
if self.clearml:
if name == "Results":
[self.clearml.log_plot(f.stem, f) for f in files]
else:
self.clearml.log_debug_samples(files, title=name)
def log_graph(self, model, imgsz=(640, 640)):
"""Logs model graph to all configured loggers with specified input image size."""
if self.tb:
log_tensorboard_graph(self.tb, model, imgsz)
def log_model(self, model_path, epoch=0, metadata=None):
"""Logs the model to all configured loggers with optional epoch and metadata."""
if metadata is None:
metadata = {}
# Log model to all loggers
if self.wandb:
art = wandb.Artifact(name=f"run_{wandb.run.id}_model", type="model", metadata=metadata)
art.add_file(str(model_path))
wandb.log_artifact(art)
if self.clearml:
self.clearml.log_model(model_path=model_path, model_name=model_path.stem)
def update_params(self, params):
"""Updates logged parameters in WandB and/or ClearML if enabled."""
if self.wandb:
wandb.run.config.update(params, allow_val_change=True)
if self.clearml:
self.clearml.task.connect(params)
def log_tensorboard_graph(tb, model, imgsz=(640, 640)):
"""Logs the model graph to TensorBoard with specified image size and model."""
try:
p = next(model.parameters()) # for device, type
imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz # expand
im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p) # input image (WARNING: must be zeros, not empty)
with warnings.catch_warnings():
warnings.simplefilter("ignore") # suppress jit trace warning
tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), [])
except Exception as e:
LOGGER.warning(f"WARNING ⚠️ TensorBoard graph visualization failure {e}")
def web_project_name(project):
"""Converts a local project name to a standardized web project name with optional suffixes."""
if not project.startswith("runs/train"):
return project
suffix = "-Classify" if project.endswith("-cls") else "-Segment" if project.endswith("-seg") else ""
return f"YOLOv5{suffix}"

View File

@ -0,0 +1,222 @@
# ClearML Integration
<img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_dark.png#gh-light-mode-only" alt="Clear|ML"><img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_light.png#gh-dark-mode-only" alt="Clear|ML">
## About ClearML
[ClearML](https://clear.ml/) is an [open-source](https://github.com/clearml/clearml) toolbox designed to save you time ⏱️.
🔨 Track every YOLOv5 training run in the <b>experiment manager</b>
🔧 Version and easily access your custom training data with the integrated ClearML <b>Data Versioning Tool</b>
🔦 <b>Remotely train and monitor</b> your YOLOv5 training runs using ClearML Agent
🔬 Get the very best mAP using ClearML <b>Hyperparameter Optimization</b>
🔭 Turn your newly trained <b>YOLOv5 model into an API</b> with just a few commands using ClearML Serving
And so much more. It's up to you how many of these tools you want to use, you can stick to the experiment manager, or chain them all together into an impressive pipeline!
![ClearML scalars dashboard](https://raw.githubusercontent.com/thepycoder/clearml_screenshots/main/experiment_manager_with_compare.gif)
## 🦾 Setting Things Up
To keep track of your experiments and/or data, ClearML needs to communicate to a server. You have 2 options to get one:
Either sign up for free to the [ClearML Hosted Service](https://clear.ml/) or you can set up your own server, see [here](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server). Even the server is open-source, so even if you're dealing with sensitive data, you should be good to go!
1. Install the `clearml` python package:
```bash
pip install clearml
```
2. Connect the ClearML SDK to the server by [creating credentials](https://app.clear.ml/settings/workspace-configuration) (go right top to Settings -> Workspace -> Create new credentials), then execute the command below and follow the instructions:
```bash
clearml-init
```
That's it! You're done 😎
## 🚀 Training YOLOv5 With ClearML
To enable ClearML experiment tracking, simply install the ClearML pip package.
```bash
pip install clearml>=1.2.0
```
This will enable integration with the YOLOv5 training script. Every training run from now on, will be captured and stored by the ClearML experiment manager.
If you want to change the `project_name` or `task_name`, use the `--project` and `--name` arguments of the `train.py` script, by default the project will be called `YOLOv5` and the task `Training`. PLEASE NOTE: ClearML uses `/` as a delimiter for subprojects, so be careful when using `/` in your project name!
```bash
python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache
```
or with custom project and task name:
```bash
python train.py --project my_project --name my_training --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache
```
This will capture:
- Source code + uncommitted changes
- Installed packages
- (Hyper)parameters
- Model files (use `--save-period n` to save a checkpoint every n epochs)
- Console output
- Scalars (mAP_0.5, mAP_0.5:0.95, precision, recall, losses, learning rates, ...)
- General info such as machine details, runtime, creation date etc.
- All produced plots such as label correlogram and confusion matrix
- Images with bounding boxes per epoch
- Mosaic per epoch
- Validation images per epoch
- ...
That's a lot right? 🤯 Now, we can visualize all of this information in the ClearML UI to get an overview of our training progress. Add custom columns to the table view (such as e.g. mAP_0.5) so you can easily sort on the best performing model. Or select multiple experiments and directly compare them!
There even more we can do with all of this information, like hyperparameter optimization and remote execution, so keep reading if you want to see how that works!
## 🔗 Dataset Version Management
Versioning your data separately from your code is generally a good idea and makes it easy to acquire the latest version too. This repository supports supplying a dataset version ID, and it will make sure to get the data if it's not there yet. Next to that, this workflow also saves the used dataset ID as part of the task parameters, so you will always know for sure which data was used in which experiment!
![ClearML Dataset Interface](https://raw.githubusercontent.com/thepycoder/clearml_screenshots/main/clearml_data.gif)
### Prepare Your Dataset
The YOLOv5 repository supports a number of different datasets by using yaml files containing their information. By default datasets are downloaded to the `../datasets` folder in relation to the repository root folder. So if you downloaded the `coco128` dataset using the link in the yaml or with the scripts provided by yolov5, you get this folder structure:
```
..
|_ yolov5
|_ datasets
|_ coco128
|_ images
|_ labels
|_ LICENSE
|_ README.txt
```
But this can be any dataset you wish. Feel free to use your own, as long as you keep to this folder structure.
Next, ⚠️**copy the corresponding yaml file to the root of the dataset folder**⚠️. This yaml files contains the information ClearML will need to properly use the dataset. You can make this yourself too, of course, just follow the structure of the example yamls.
Basically we need the following keys: `path`, `train`, `test`, `val`, `nc`, `names`.
```
..
|_ yolov5
|_ datasets
|_ coco128
|_ images
|_ labels
|_ coco128.yaml # <---- HERE!
|_ LICENSE
|_ README.txt
```
### Upload Your Dataset
To get this dataset into ClearML as a versioned dataset, go to the dataset root folder and run the following command:
```bash
cd coco128
clearml-data sync --project YOLOv5 --name coco128 --folder .
```
The command `clearml-data sync` is actually a shorthand command. You could also run these commands one after the other:
```bash
# Optionally add --parent <parent_dataset_id> if you want to base
# this version on another dataset version, so no duplicate files are uploaded!
clearml-data create --name coco128 --project YOLOv5
clearml-data add --files .
clearml-data close
```
### Run Training Using A ClearML Dataset
Now that you have a ClearML dataset, you can very simply use it to train custom YOLOv5 🚀 models!
```bash
python train.py --img 640 --batch 16 --epochs 3 --data clearml://<your_dataset_id> --weights yolov5s.pt --cache
```
## 👀 Hyperparameter Optimization
Now that we have our experiments and data versioned, it's time to take a look at what we can build on top!
Using the code information, installed packages and environment details, the experiment itself is now **completely reproducible**. In fact, ClearML allows you to clone an experiment and even change its parameters. We can then just rerun it with these new parameters automatically, this is basically what HPO does!
To **run hyperparameter optimization locally**, we've included a pre-made script for you. Just make sure a training task has been run at least once, so it is in the ClearML experiment manager, we will essentially clone it and change its hyperparameters.
You'll need to fill in the ID of this `template task` in the script found at `utils/loggers/clearml/hpo.py` and then just run it :) You can change `task.execute_locally()` to `task.execute()` to put it in a ClearML queue and have a remote agent work on it instead.
```bash
# To use optuna, install it first, otherwise you can change the optimizer to just be RandomSearch
pip install optuna
python utils/loggers/clearml/hpo.py
```
![HPO](https://raw.githubusercontent.com/thepycoder/clearml_screenshots/main/hpo.png)
## 🤯 Remote Execution (advanced)
Running HPO locally is really handy, but what if we want to run our experiments on a remote machine instead? Maybe you have access to a very powerful GPU machine on-site, or you have some budget to use cloud GPUs. This is where the ClearML Agent comes into play. Check out what the agent can do here:
- [YouTube video](https://www.youtube.com/watch?v=MX3BrXnaULs&feature=youtu.be)
- [Documentation](https://clear.ml/docs/latest/docs/clearml_agent)
In short: every experiment tracked by the experiment manager contains enough information to reproduce it on a different machine (installed packages, uncommitted changes etc.). So a ClearML agent does just that: it listens to a queue for incoming tasks and when it finds one, it recreates the environment and runs it while still reporting scalars, plots etc. to the experiment manager.
You can turn any machine (a cloud VM, a local GPU machine, your own laptop ... ) into a ClearML agent by simply running:
```bash
clearml-agent daemon --queue <queues_to_listen_to> [--docker]
```
### Cloning, Editing And Enqueuing
With our agent running, we can give it some work. Remember from the HPO section that we can clone a task and edit the hyperparameters? We can do that from the interface too!
🪄 Clone the experiment by right-clicking it
🎯 Edit the hyperparameters to what you wish them to be
⏳ Enqueue the task to any of the queues by right-clicking it
![Enqueue a task from the UI](https://raw.githubusercontent.com/thepycoder/clearml_screenshots/main/enqueue.gif)
### Executing A Task Remotely
Now you can clone a task like we explained above, or simply mark your current script by adding `task.execute_remotely()` and on execution it will be put into a queue, for the agent to start working on!
To run the YOLOv5 training script remotely, all you have to do is add this line to the training.py script after the clearml logger has been instantiated:
```python
# ...
# Loggers
data_dict = None
if RANK in {-1, 0}:
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
if loggers.clearml:
loggers.clearml.task.execute_remotely(queue="my_queue") # <------ ADD THIS LINE
# Data_dict is either None is user did not choose for ClearML dataset or is filled in by ClearML
data_dict = loggers.clearml.data_dict
# ...
```
When running the training script after this change, python will run the script up until that line, after which it will package the code and send it to the queue instead!
### Autoscaling workers
ClearML comes with autoscalers too! This tool will automatically spin up new remote machines in the cloud of your choice (AWS, GCP, Azure) and turn them into ClearML agents for you whenever there are experiments detected in the queue. Once the tasks are processed, the autoscaler will automatically shut down the remote machines, and you stop paying!
Check out the autoscalers getting started video below.
[![Watch the video](https://img.youtube.com/vi/j4XVMAaUt3E/0.jpg)](https://youtu.be/j4XVMAaUt3E)

View File

@ -0,0 +1 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

View File

@ -0,0 +1,228 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Main Logger class for ClearML experiment tracking."""
import glob
import re
from pathlib import Path
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
import yaml
from ultralytics.utils.plotting import Annotator, colors
try:
import clearml
from clearml import Dataset, Task
assert hasattr(clearml, "__version__") # verify package import not local dir
except (ImportError, AssertionError):
clearml = None
def construct_dataset(clearml_info_string):
"""Load in a clearml dataset and fill the internal data_dict with its contents."""
dataset_id = clearml_info_string.replace("clearml://", "")
dataset = Dataset.get(dataset_id=dataset_id)
dataset_root_path = Path(dataset.get_local_copy())
# We'll search for the yaml file definition in the dataset
yaml_filenames = list(glob.glob(str(dataset_root_path / "*.yaml")) + glob.glob(str(dataset_root_path / "*.yml")))
if len(yaml_filenames) > 1:
raise ValueError(
"More than one yaml file was found in the dataset root, cannot determine which one contains "
"the dataset definition this way."
)
elif not yaml_filenames:
raise ValueError(
"No yaml definition found in dataset root path, check that there is a correct yaml file "
"inside the dataset root path."
)
with open(yaml_filenames[0]) as f:
dataset_definition = yaml.safe_load(f)
assert set(dataset_definition.keys()).issuperset({"train", "test", "val", "nc", "names"}), (
"The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')"
)
data_dict = {
"train": (
str((dataset_root_path / dataset_definition["train"]).resolve()) if dataset_definition["train"] else None
)
}
data_dict["test"] = (
str((dataset_root_path / dataset_definition["test"]).resolve()) if dataset_definition["test"] else None
)
data_dict["val"] = (
str((dataset_root_path / dataset_definition["val"]).resolve()) if dataset_definition["val"] else None
)
data_dict["nc"] = dataset_definition["nc"]
data_dict["names"] = dataset_definition["names"]
return data_dict
class ClearmlLogger:
"""
Log training runs, datasets, models, and predictions to ClearML.
This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default, this information
includes hyperparameters, system configuration and metrics, model metrics, code information and basic data metrics
and analyses.
By providing additional command line arguments to train.py, datasets, models and predictions can also be logged.
"""
def __init__(self, opt, hyp):
"""
- Initialize ClearML Task, this object will capture the experiment
- Upload dataset version to ClearML Data if opt.upload_dataset is True.
Arguments:
opt (namespace) -- Commandline arguments for this run
hyp (dict) -- Hyperparameters for this run
"""
self.current_epoch = 0
# Keep tracked of amount of logged images to enforce a limit
self.current_epoch_logged_images = set()
# Maximum number of images to log to clearML per epoch
self.max_imgs_to_log_per_epoch = 16
# Get the interval of epochs when bounding box images should be logged
# Only for detection task though!
if "bbox_interval" in opt:
self.bbox_interval = opt.bbox_interval
self.clearml = clearml
self.task = None
self.data_dict = None
if self.clearml:
self.task = Task.init(
project_name="YOLOv5" if str(opt.project).startswith("runs/") else opt.project,
task_name=opt.name if opt.name != "exp" else "Training",
tags=["YOLOv5"],
output_uri=True,
reuse_last_task_id=opt.exist_ok,
auto_connect_frameworks={"pytorch": False, "matplotlib": False},
# We disconnect pytorch auto-detection, because we added manual model save points in the code
)
# ClearML's hooks will already grab all general parameters
# Only the hyperparameters coming from the yaml config file
# will have to be added manually!
self.task.connect(hyp, name="Hyperparameters")
self.task.connect(opt, name="Args")
# Make sure the code is easily remotely runnable by setting the docker image to use by the remote agent
self.task.set_base_docker(
"ultralytics/yolov5:latest",
docker_arguments='--ipc=host -e="CLEARML_AGENT_SKIP_PYTHON_ENV_INSTALL=1"',
docker_setup_bash_script="pip install clearml",
)
# Get ClearML Dataset Version if requested
if opt.data.startswith("clearml://"):
# data_dict should have the following keys:
# names, nc (number of classes), test, train, val (all three relative paths to ../datasets)
self.data_dict = construct_dataset(opt.data)
# Set data to data_dict because wandb will crash without this information and opt is the best way
# to give it to them
opt.data = self.data_dict
def log_scalars(self, metrics, epoch):
"""
Log scalars/metrics to ClearML.
Arguments:
metrics (dict) Metrics in dict format: {"metrics/mAP": 0.8, ...}
epoch (int) iteration number for the current set of metrics
"""
for k, v in metrics.items():
title, series = k.split("/")
self.task.get_logger().report_scalar(title, series, v, epoch)
def log_model(self, model_path, model_name, epoch=0):
"""
Log model weights to ClearML.
Arguments:
model_path (PosixPath or str) Path to the model weights
model_name (str) Name of the model visible in ClearML
epoch (int) Iteration / epoch of the model weights
"""
self.task.update_output_model(
model_path=str(model_path), name=model_name, iteration=epoch, auto_delete_file=False
)
def log_summary(self, metrics):
"""
Log final metrics to a summary table.
Arguments:
metrics (dict) Metrics in dict format: {"metrics/mAP": 0.8, ...}
"""
for k, v in metrics.items():
self.task.get_logger().report_single_value(k, v)
def log_plot(self, title, plot_path):
"""
Log image as plot in the plot section of ClearML.
Arguments:
title (str) Title of the plot
plot_path (PosixPath or str) Path to the saved image file
"""
img = mpimg.imread(plot_path)
fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect="auto", xticks=[], yticks=[]) # no ticks
ax.imshow(img)
self.task.get_logger().report_matplotlib_figure(title, "", figure=fig, report_interactive=False)
def log_debug_samples(self, files, title="Debug Samples"):
"""
Log files (images) as debug samples in the ClearML task.
Arguments:
files (List(PosixPath)) a list of file paths in PosixPath format
title (str) A title that groups together images with the same values
"""
for f in files:
if f.exists():
it = re.search(r"_batch(\d+)", f.name)
iteration = int(it.groups()[0]) if it else 0
self.task.get_logger().report_image(
title=title, series=f.name.replace(f"_batch{iteration}", ""), local_path=str(f), iteration=iteration
)
def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_threshold=0.25):
"""
Draw the bounding boxes on a single image and report the result as a ClearML debug sample.
Arguments:
image_path (PosixPath) the path the original image file
boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
class_names (dict): dict containing mapping of class int to class name
image (Tensor): A torch tensor containing the actual image data
"""
if (
len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch
and self.current_epoch >= 0
and (self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images)
):
im = np.ascontiguousarray(np.moveaxis(image.mul(255).clamp(0, 255).byte().cpu().numpy(), 0, 2))
annotator = Annotator(im=im, pil=True)
for i, (conf, class_nr, box) in enumerate(zip(boxes[:, 4], boxes[:, 5], boxes[:, :4])):
color = colors(i)
class_name = class_names[int(class_nr)]
confidence_percentage = round(float(conf) * 100, 2)
label = f"{class_name}: {confidence_percentage}%"
if conf > conf_threshold:
annotator.rectangle(box.cpu().numpy(), outline=color)
annotator.box_label(box.cpu().numpy(), label=label, color=color)
annotated_image = annotator.result()
self.task.get_logger().report_image(
title="Bounding Boxes", series=image_path.name, iteration=self.current_epoch, image=annotated_image
)
self.current_epoch_logged_images.add(image_path)

View File

@ -0,0 +1,90 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from clearml import Task
# Connecting ClearML with the current process,
# from here on everything is logged automatically
from clearml.automation import HyperParameterOptimizer, UniformParameterRange
from clearml.automation.optuna import OptimizerOptuna
task = Task.init(
project_name="Hyper-Parameter Optimization",
task_name="YOLOv5",
task_type=Task.TaskTypes.optimizer,
reuse_last_task_id=False,
)
# Example use case:
optimizer = HyperParameterOptimizer(
# This is the experiment we want to optimize
base_task_id="<your_template_task_id>",
# here we define the hyper-parameters to optimize
# Notice: The parameter name should exactly match what you see in the UI: <section_name>/<parameter>
# For Example, here we see in the base experiment a section Named: "General"
# under it a parameter named "batch_size", this becomes "General/batch_size"
# If you have `argparse` for example, then arguments will appear under the "Args" section,
# and you should instead pass "Args/batch_size"
hyper_parameters=[
UniformParameterRange("Hyperparameters/lr0", min_value=1e-5, max_value=1e-1),
UniformParameterRange("Hyperparameters/lrf", min_value=0.01, max_value=1.0),
UniformParameterRange("Hyperparameters/momentum", min_value=0.6, max_value=0.98),
UniformParameterRange("Hyperparameters/weight_decay", min_value=0.0, max_value=0.001),
UniformParameterRange("Hyperparameters/warmup_epochs", min_value=0.0, max_value=5.0),
UniformParameterRange("Hyperparameters/warmup_momentum", min_value=0.0, max_value=0.95),
UniformParameterRange("Hyperparameters/warmup_bias_lr", min_value=0.0, max_value=0.2),
UniformParameterRange("Hyperparameters/box", min_value=0.02, max_value=0.2),
UniformParameterRange("Hyperparameters/cls", min_value=0.2, max_value=4.0),
UniformParameterRange("Hyperparameters/cls_pw", min_value=0.5, max_value=2.0),
UniformParameterRange("Hyperparameters/obj", min_value=0.2, max_value=4.0),
UniformParameterRange("Hyperparameters/obj_pw", min_value=0.5, max_value=2.0),
UniformParameterRange("Hyperparameters/iou_t", min_value=0.1, max_value=0.7),
UniformParameterRange("Hyperparameters/anchor_t", min_value=2.0, max_value=8.0),
UniformParameterRange("Hyperparameters/fl_gamma", min_value=0.0, max_value=4.0),
UniformParameterRange("Hyperparameters/hsv_h", min_value=0.0, max_value=0.1),
UniformParameterRange("Hyperparameters/hsv_s", min_value=0.0, max_value=0.9),
UniformParameterRange("Hyperparameters/hsv_v", min_value=0.0, max_value=0.9),
UniformParameterRange("Hyperparameters/degrees", min_value=0.0, max_value=45.0),
UniformParameterRange("Hyperparameters/translate", min_value=0.0, max_value=0.9),
UniformParameterRange("Hyperparameters/scale", min_value=0.0, max_value=0.9),
UniformParameterRange("Hyperparameters/shear", min_value=0.0, max_value=10.0),
UniformParameterRange("Hyperparameters/perspective", min_value=0.0, max_value=0.001),
UniformParameterRange("Hyperparameters/flipud", min_value=0.0, max_value=1.0),
UniformParameterRange("Hyperparameters/fliplr", min_value=0.0, max_value=1.0),
UniformParameterRange("Hyperparameters/mosaic", min_value=0.0, max_value=1.0),
UniformParameterRange("Hyperparameters/mixup", min_value=0.0, max_value=1.0),
UniformParameterRange("Hyperparameters/copy_paste", min_value=0.0, max_value=1.0),
],
# this is the objective metric we want to maximize/minimize
objective_metric_title="metrics",
objective_metric_series="mAP_0.5",
# now we decide if we want to maximize it or minimize it (accuracy we maximize)
objective_metric_sign="max",
# let us limit the number of concurrent experiments,
# this in turn will make sure we don't bombard the scheduler with experiments.
# if we have an auto-scaler connected, this, by proxy, will limit the number of machine
max_number_of_concurrent_tasks=1,
# this is the optimizer class (actually doing the optimization)
# Currently, we can choose from GridSearch, RandomSearch or OptimizerBOHB (Bayesian optimization Hyper-Band)
optimizer_class=OptimizerOptuna,
# If specified only the top K performing Tasks will be kept, the others will be automatically archived
save_top_k_tasks_only=5, # 5,
compute_time_limit=None,
total_max_jobs=20,
min_iteration_per_job=None,
max_iteration_per_job=None,
)
# report every 10 seconds, this is way too often, but we are testing here
optimizer.set_report_period(10 / 60)
# You can also use the line below instead to run all the optimizer tasks locally, without using queues or agent
# an_optimizer.start_locally(job_complete_callback=job_complete_callback)
# set the time limit for the optimization process (2 hours)
optimizer.set_time_limit(in_minutes=120.0)
# Start the optimization process in the local environment
optimizer.start_locally()
# wait until process is done (notice we are controlling the optimization process in the background)
optimizer.wait()
# make sure background optimization stopped
optimizer.stop()
print("We are done, good bye")

Some files were not shown because too many files have changed in this diff Show More