//#define USE_MULTI_THREAD using OpenCvSharp; using OpenCvSharp.Extensions; using System; using System.Collections.Generic; using System.Diagnostics; using System.Drawing; using System.Linq; using System.Runtime.ExceptionServices; using System.Threading; using System.Threading.Tasks; using System.Runtime.InteropServices; using Newtonsoft.Json; using DH.Commons.Base; namespace DH.Devices.Vision { /// /// 实例分割 maskrcnn /// public class SimboInstanceSegmentation : SimboVisionMLBase { public override bool Load(MLInit mLInit) { bool res = false; try { Model = MLEngine.InitModel(mLInit.ModelFile, mLInit.InferenceDevice, mLInit.InputNodeName, 1, 3, mLInit.InferenceWidth, mLInit.InferenceHeight,5); res = true; #if USE_MULTI_THREAD IsCreated = true; if (IsCreated) { if (_runHandleBefore == null) { _runHandleBefore = new AutoResetEvent(false); } if (_runHandleAfter == null) { _runHandleAfter = new ManualResetEvent(false); } if (_runTask == null) { _runTask = Task.Factory.StartNew(() => { while (IsCreated) { _runHandleBefore.WaitOne(); if (IsCreated) { _result = RunInferenceFixed(_req); _runHandleAfter.Set(); } } }, TaskCreationOptions.LongRunning); } } #endif } catch (Exception ex) { throw ex; } return res; } #if USE_MULTI_THREAD MLRequest _req = null; MLResult _result = null; public bool IsCreated { get; set; } = false; Task _runTask = null; AutoResetEvent _runHandleBefore = new AutoResetEvent(false); ManualResetEvent _runHandleAfter = new ManualResetEvent(false); object _runLock = new object(); #endif [HandleProcessCorruptedStateExceptions] public override MLResult RunInference(MLRequest req) { #if USE_MULTI_THREAD MLResult mlResult = null; lock (_runLock) { _result = new MLResult(); _req = req; _runHandleAfter.Reset(); _runHandleBefore.Set(); _runHandleAfter.WaitOne(); mlResult = _result; } return mlResult; #else return RunInferenceFixed(req); #endif } private void ConvertJsonResult(string json, ref MLResult result) { // json = "{\"FastDetResult\":[{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654843,\"rect\":[175,99,110,594]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654589,\"rect\":[2608,19,104,661]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654285,\"rect\":[1275,19,104,662]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.620762,\"rect\":[1510,95,107,600]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.617812,\"rect\":[2844,93,106,602]}]}"; // Console.WriteLine("检测结果JSON:" + json); #pragma warning disable CS8600 // 将 null 字面量或可能为 null 的值转换为非 null 类型。 SegResult detResult = JsonConvert.DeserializeObject(json); #pragma warning restore CS8600 // 将 null 字面量或可能为 null 的值转换为非 null 类型。 if (detResult == null) { return; } int iNum = detResult.SegmentResult.Count; #pragma warning disable CS0219 // 变量已被赋值,但从未使用过它的值 int IokNum = 0; #pragma warning restore CS0219 // 变量已被赋值,但从未使用过它的值 for (int ix = 0; ix < iNum; ix++) { var det = detResult.SegmentResult[ix]; var rect = det.rect; DetectionResultDetail detectionResultDetail = new DetectionResultDetail(); detectionResultDetail.LabelNo = det.classId; //todo: 标签名相对应 detectionResultDetail.LabelDisplay = det.classname; detectionResultDetail.Rect = new Rectangle(rect[0], rect[1], rect[2], rect[3]); detectionResultDetail.Score = det.fScore; detectionResultDetail.LabelName = det.classname; detectionResultDetail.Area = det.area; detectionResultDetail.InferenceResult = ResultState.DetectNG; result.ResultDetails.Add(detectionResultDetail); } } [HandleProcessCorruptedStateExceptions] public MLResult RunInferenceFixed(MLRequest req) { MLResult mlResult = new MLResult(); Mat originMat = new Mat(); Mat detectMat = new Mat(); #pragma warning disable CS0168 // 声明了变量,但从未使用过 try { if (req.mImage == null) { mlResult.IsSuccess = false; mlResult.ResultMessage = "异常:mat为null,无法执行推理!"; return mlResult; } // resize detectMat = req.mImage;//1ms int iWidth = detectMat.Cols; int iHeight = detectMat.Rows; // 如果是单通道图像,转换为三通道 RGB 格式 if (detectMat.Channels() == 1) { // 将灰度图像转换为RGB格式(三通道) Cv2.CvtColor(detectMat, originMat, ColorConversionCodes.GRAY2BGR); } else if (detectMat.Channels() == 3) { // 如果已经是三通道(BGR),则直接转换为RGB Cv2.CvtColor(detectMat, originMat, ColorConversionCodes.BGR2RGB); } //输入数据转化为字节 var inputByte = new byte[originMat.Total() * 3];//这里必须乘以通道数,不然数组越界,也可以用w*h*c,差不多 Marshal.Copy(originMat.Data, inputByte, 0, inputByte.Length); byte[] labellist = new byte[40960]; //新建字节数组:label1_str label2_str byte[] outputByte = new byte[originMat.Total() * 3]; Stopwatch sw = new Stopwatch(); sw.Start(); unsafe { mlResult.IsSuccess = MLEngine.seg_ModelPredict(Model, inputByte, iWidth, iHeight, 3, req.in_lable_path, req.confThreshold, req.iouThreshold, req.confThreshold, req.segmentWidth, ref outputByte[0], ref labellist[0]); //mlResult.IsSuccess = true; } sw.Stop(); if (mlResult.IsSuccess) { mlResult.ResultMessage = $"深度学习推理成功,耗时:{sw.ElapsedMilliseconds} ms"; //将字节数组转换为字符串 mlResult.ResultMap = originMat.ToBitmap();//4ms string strGet = System.Text.Encoding.Default.GetString(labellist, 0, labellist.Length); Console.WriteLine("strGet:", strGet); ConvertJsonResult(strGet, ref mlResult); //解析json字符串 return mlResult; } else { mlResult.ResultMessage = $"异常:深度学习执行推理失败!"; return mlResult; } } catch (Exception ex) { mlResult.ResultMessage = $"深度学习执行推理异常"; return mlResult; } finally { originMat?.Dispose(); #pragma warning disable CS8600 // 将 null 字面量或可能为 null 的值转换为非 null 类型。 originMat = null; #pragma warning restore CS8600 // 将 null 字面量或可能为 null 的值转换为非 null 类型。 // GC.Collect(); } #pragma warning restore CS0168 // 声明了变量,但从未使用过 } } }