first commit
This commit is contained in:
20
DH.Devices.Vision/DH.Devices.Vision.csproj
Normal file
20
DH.Devices.Vision/DH.Devices.Vision.csproj
Normal file
@ -0,0 +1,20 @@
|
||||
<Project Sdk="Microsoft.NET.Sdk">
|
||||
|
||||
<PropertyGroup>
|
||||
<TargetFramework>net8.0-windows</TargetFramework>
|
||||
<ImplicitUsings>enable</ImplicitUsings>
|
||||
<Nullable>enable</Nullable>
|
||||
<BaseOutputPath>..\</BaseOutputPath>
|
||||
<AppendTargetFrameworkToOutputPath>output</AppendTargetFrameworkToOutputPath>
|
||||
<UseWindowsForms>true</UseWindowsForms>
|
||||
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
|
||||
<Platforms>AnyCPU;x64</Platforms>
|
||||
</PropertyGroup>
|
||||
|
||||
<ItemGroup>
|
||||
<PackageReference Include="Newtonsoft.Json" Version="13.0.3" />
|
||||
<PackageReference Include="OpenCvSharp4" Version="4.5.3.20210817" />
|
||||
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.3.20210817" />
|
||||
</ItemGroup>
|
||||
|
||||
</Project>
|
295
DH.Devices.Vision/SimboObjectDetection.cs
Normal file
295
DH.Devices.Vision/SimboObjectDetection.cs
Normal file
@ -0,0 +1,295 @@
|
||||
//#define USE_MULTI_THREAD
|
||||
|
||||
using OpenCvSharp;
|
||||
using OpenCvSharp.Extensions;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Diagnostics;
|
||||
using System.Drawing;
|
||||
using System.Linq;
|
||||
using System.Runtime.ExceptionServices;
|
||||
using System.Threading;
|
||||
using System.Threading.Tasks;
|
||||
using System.Runtime.InteropServices;
|
||||
using Newtonsoft.Json;
|
||||
|
||||
|
||||
namespace DH.Devices.Vision
|
||||
{
|
||||
|
||||
//public class SegResult
|
||||
//{
|
||||
// public List<Result> SegmentResult;
|
||||
// public class Result
|
||||
// {
|
||||
|
||||
// public double fScore;
|
||||
// public int classId;
|
||||
// public string classname;
|
||||
|
||||
// public double area;
|
||||
// public List<int> rect;
|
||||
|
||||
|
||||
// }
|
||||
|
||||
//}
|
||||
|
||||
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// 实例分割 maskrcnn
|
||||
/// </summary>
|
||||
public class SimboObjectDetection : SimboVisionMLBase
|
||||
|
||||
{
|
||||
|
||||
|
||||
public override bool Load(MLInit mLInit)
|
||||
{
|
||||
bool res = false;
|
||||
try
|
||||
{
|
||||
|
||||
|
||||
Model = MLEngine.InitModel(mLInit.ModelFile,
|
||||
mLInit.InferenceDevice,
|
||||
mLInit.InputNodeName,
|
||||
1, 3,
|
||||
mLInit.InferenceWidth,
|
||||
mLInit.InferenceHeight,5);
|
||||
res = true;
|
||||
|
||||
#if USE_MULTI_THREAD
|
||||
|
||||
IsCreated = true;
|
||||
if (IsCreated)
|
||||
{
|
||||
if (_runHandleBefore == null)
|
||||
{
|
||||
_runHandleBefore = new AutoResetEvent(false);
|
||||
}
|
||||
|
||||
if (_runHandleAfter == null)
|
||||
{
|
||||
_runHandleAfter = new ManualResetEvent(false);
|
||||
}
|
||||
|
||||
if (_runTask == null)
|
||||
{
|
||||
_runTask = Task.Factory.StartNew(() =>
|
||||
{
|
||||
while (IsCreated)
|
||||
{
|
||||
_runHandleBefore.WaitOne();
|
||||
|
||||
if (IsCreated)
|
||||
{
|
||||
_result = RunInferenceFixed(_req);
|
||||
_runHandleAfter.Set();
|
||||
}
|
||||
}
|
||||
}, TaskCreationOptions.LongRunning);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
throw ex;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
|
||||
#if USE_MULTI_THREAD
|
||||
MLRequest _req = null;
|
||||
MLResult _result = null;
|
||||
|
||||
|
||||
public bool IsCreated { get; set; } = false;
|
||||
Task _runTask = null;
|
||||
AutoResetEvent _runHandleBefore = new AutoResetEvent(false);
|
||||
ManualResetEvent _runHandleAfter = new ManualResetEvent(false);
|
||||
object _runLock = new object();
|
||||
#endif
|
||||
|
||||
[HandleProcessCorruptedStateExceptions]
|
||||
public override MLResult RunInference(MLRequest req)
|
||||
{
|
||||
#if USE_MULTI_THREAD
|
||||
MLResult mlResult = null;
|
||||
lock (_runLock)
|
||||
{
|
||||
_result = new MLResult();
|
||||
|
||||
_req = req;
|
||||
|
||||
_runHandleAfter.Reset();
|
||||
_runHandleBefore.Set();
|
||||
_runHandleAfter.WaitOne();
|
||||
|
||||
mlResult = _result;
|
||||
}
|
||||
|
||||
return mlResult;
|
||||
#else
|
||||
return RunInferenceFixed(req);
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
private void ConvertJsonResult(string json, ref MLResult result)
|
||||
{
|
||||
// json = "{\"FastDetResult\":[{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654843,\"rect\":[175,99,110,594]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654589,\"rect\":[2608,19,104,661]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654285,\"rect\":[1275,19,104,662]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.620762,\"rect\":[1510,95,107,600]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.617812,\"rect\":[2844,93,106,602]}]}";
|
||||
//
|
||||
Console.WriteLine("检测结果JSON:" + json);
|
||||
SegResult detResult = JsonConvert.DeserializeObject<SegResult>(json);
|
||||
if (detResult == null)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
int iNum = detResult.SegmentResult.Count;
|
||||
int IokNum = 0;
|
||||
for (int ix = 0; ix < iNum; ix++)
|
||||
{
|
||||
var det = detResult.SegmentResult[ix];
|
||||
|
||||
var rect = det.rect;
|
||||
DetectionResultDetail detectionResultDetail = new DetectionResultDetail();
|
||||
detectionResultDetail.LabelNo = det.classId;
|
||||
//todo: 标签名相对应
|
||||
detectionResultDetail.LabelDisplay = det.classname;
|
||||
detectionResultDetail.Rect = new Rectangle(rect[0], rect[1], rect[2], rect[3]);
|
||||
detectionResultDetail.Score = det.fScore;
|
||||
detectionResultDetail.LabelName = det.classname;
|
||||
detectionResultDetail.Area = det.area;
|
||||
detectionResultDetail.InferenceResult = ResultState.DetectNG;
|
||||
|
||||
result.ResultDetails.Add(detectionResultDetail);
|
||||
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
[HandleProcessCorruptedStateExceptions]
|
||||
public MLResult RunInferenceFixed(MLRequest req)
|
||||
{
|
||||
MLResult mlResult = new MLResult();
|
||||
Mat originMat=new Mat() ;
|
||||
Mat tempMat;
|
||||
try
|
||||
{
|
||||
if (req.mImage == null)
|
||||
{
|
||||
mlResult.IsSuccess = false;
|
||||
mlResult.ResultMessage = "异常:mat为null,无法执行推理!";
|
||||
return mlResult;
|
||||
}
|
||||
|
||||
// resize
|
||||
tempMat = req.mImage;//1ms
|
||||
|
||||
|
||||
|
||||
int iWidth = tempMat.Cols;
|
||||
int iHeight = tempMat.Rows;
|
||||
|
||||
// 如果是单通道图像,转换为三通道 RGB 格式
|
||||
if (tempMat.Channels() == 1)
|
||||
{
|
||||
// 将灰度图像转换为RGB格式(三通道)
|
||||
|
||||
Cv2.CvtColor( tempMat,originMat, ColorConversionCodes.GRAY2BGR);
|
||||
|
||||
}
|
||||
else if (tempMat.Channels() == 3)
|
||||
{
|
||||
// 如果已经是三通道(BGR),则直接转换为RGB
|
||||
|
||||
Cv2.CvtColor( tempMat,originMat, ColorConversionCodes.BGR2RGB);
|
||||
|
||||
}
|
||||
|
||||
//输入数据转化为字节
|
||||
var inputByte = new byte[originMat.Total() * 3];//这里必须乘以通道数,不然数组越界,也可以用w*h*c,差不多
|
||||
Marshal.Copy(originMat.Data, inputByte, 0, inputByte.Length);
|
||||
|
||||
byte[] labellist = new byte[40960]; //新建字节数组:label1_str label2_str
|
||||
|
||||
byte[] outputByte = new byte[originMat.Total() * 3];
|
||||
|
||||
Stopwatch sw = new Stopwatch();
|
||||
sw.Start();
|
||||
unsafe
|
||||
{
|
||||
mlResult.IsSuccess = MLEngine.det_ModelPredict(Model,
|
||||
inputByte,
|
||||
iWidth, iHeight, 3,
|
||||
req.out_node_name,
|
||||
req.in_lable_path,
|
||||
req.confThreshold, req.iouThreshold,
|
||||
ref outputByte[0],
|
||||
ref labellist[0]);
|
||||
//mlResult.IsSuccess = true;
|
||||
}
|
||||
sw.Stop();
|
||||
|
||||
if (mlResult.IsSuccess)
|
||||
{
|
||||
mlResult.ResultMessage = $"深度学习推理成功,耗时:{sw.ElapsedMilliseconds} ms";
|
||||
|
||||
//Mat maskWeighted = new Mat(iHeight, iWidth, MatType.CV_8UC3, outputByte);
|
||||
|
||||
//mlResult.ResultMap = BitmapConverter.ToBitmap(maskWeighted);//4ms
|
||||
//将字节数组转换为字符串
|
||||
mlResult.ResultMap = originMat.ToBitmap();//4ms
|
||||
string strGet = System.Text.Encoding.Default.GetString(labellist, 0, labellist.Length);
|
||||
|
||||
Console.WriteLine("strGet:", strGet);
|
||||
|
||||
ConvertJsonResult(strGet, ref mlResult);
|
||||
|
||||
//maskWeighted?.Dispose();
|
||||
//maskWeighted = null;
|
||||
|
||||
// 解析json字符串
|
||||
return mlResult;
|
||||
}
|
||||
else
|
||||
{
|
||||
mlResult.ResultMessage = $"异常:深度学习执行推理失败!";
|
||||
return mlResult;
|
||||
}
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
mlResult.ResultMessage = $"深度学习执行推理异常";
|
||||
return mlResult;
|
||||
}
|
||||
finally
|
||||
{
|
||||
req.mImage?.Dispose();
|
||||
req.mImage = null;
|
||||
|
||||
originMat = null;
|
||||
|
||||
|
||||
// GC.Collect();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
191
DH.Devices.Vision/SimboVisionMLBase.cs
Normal file
191
DH.Devices.Vision/SimboVisionMLBase.cs
Normal file
@ -0,0 +1,191 @@
|
||||
|
||||
using OpenCvSharp;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Drawing;
|
||||
using System.Runtime.InteropServices;
|
||||
|
||||
namespace DH.Devices.Vision
|
||||
{
|
||||
public abstract class SimboVisionMLBase
|
||||
{
|
||||
public Mat ColorLut { get; set; }
|
||||
public byte[] ColorMap { get; set; }
|
||||
|
||||
public MLModelType ModelType { get; set; }
|
||||
|
||||
public IntPtr Model { get; set; }
|
||||
|
||||
public abstract bool Load(MLInit mLInit);
|
||||
|
||||
public abstract MLResult RunInference(MLRequest req);
|
||||
|
||||
public void Dispose()
|
||||
{
|
||||
try
|
||||
{
|
||||
MLGPUEngine.FreePredictor(Model);
|
||||
}
|
||||
catch (Exception e) { }
|
||||
// MLEngine.FreePredictor(Model);
|
||||
}
|
||||
public void Dispose2()
|
||||
{
|
||||
try
|
||||
{
|
||||
MLEngine.FreePredictor(Model);
|
||||
}
|
||||
catch (Exception e) { }
|
||||
// MLEngine.FreePredictor(Model);
|
||||
}
|
||||
public SimboVisionMLBase()
|
||||
{
|
||||
// ColorMap = OpenCVHelper.GetColorMap(256);//使用3个通道
|
||||
// ColorLut = new Mat(1, 256, MatType.CV_8UC3, ColorMap);
|
||||
}
|
||||
}
|
||||
public class SegResult
|
||||
{
|
||||
public List<Result> SegmentResult;
|
||||
public class Result
|
||||
{
|
||||
|
||||
public double fScore;
|
||||
public int classId;
|
||||
public string classname;
|
||||
|
||||
public double area;
|
||||
public List<int> rect;
|
||||
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
public static class MLGPUEngine
|
||||
{
|
||||
|
||||
// private const string sPath = @"D:\XHM\XHM\M018_NET7.0speed - 副本 - 副本\src\x64\Debug\HYolo.dll";
|
||||
|
||||
|
||||
|
||||
[DllImport("HYolo.dll", EntryPoint = "InitModel")]
|
||||
//public static extern IntPtr InitModel(string model_path, int batch_size, float score_thre, int device_id, int number_of_warmup_runs);
|
||||
public static extern IntPtr InitModel(string model_path, int batch_size, float score_thre, int device_id, int number_of_warmup_runs,int request_infer);
|
||||
|
||||
|
||||
|
||||
|
||||
[DllImport("HYolo.dll", EntryPoint = "PreHot")]
|
||||
|
||||
public static extern bool PreHot(IntPtr model, byte[] img, int W, int H, int C);
|
||||
|
||||
|
||||
|
||||
[DllImport("HYolo.dll", EntryPoint = "Inference")]
|
||||
public static extern bool Inference(IntPtr model, byte[] img, int W, int H, int C,
|
||||
|
||||
string labelText, ref byte Mask_output, ref byte label);
|
||||
|
||||
|
||||
[DllImport("HYolo.dll", EntryPoint = "Inference2")]
|
||||
public static extern bool Inference2(IntPtr model, byte[] img, int W, int H, int C,
|
||||
|
||||
string labelText, ref byte label);
|
||||
|
||||
|
||||
[DllImport("HYolo.dll", EntryPoint = "FreePredictor")]
|
||||
public static extern void FreePredictor(IntPtr model);
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
public static class MLEngine
|
||||
{
|
||||
|
||||
//private const string sPath = @"D:\\C#\磁环项目\\OpenVinoYolo\\openvino_Yolov5_v7_v2.0\\openvino_Yolov5_v7\\Program\ConsoleProject\\x64\\Release\\QuickSegmentDynamic.dll";
|
||||
|
||||
|
||||
[DllImport("QuickSegmentDynamic.dll", EntryPoint = "InitModel")]
|
||||
public static extern IntPtr InitModel(string model_filename, string inferenceDevice, string input_node_name, int bacth, int inferenceChannels, int InferenceWidth, int InferenceHeight,int request_infer);
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// 分割
|
||||
/// </summary>
|
||||
/// <param name="model"></param>
|
||||
/// <param name="img"></param>
|
||||
/// <param name="W"></param>
|
||||
/// <param name="H"></param>
|
||||
/// <param name="C"></param>
|
||||
/// <param name="labelText"></param>
|
||||
/// <param name="conf_threshold"></param>
|
||||
/// <param name="IOU_THRESHOLD"></param>
|
||||
/// <param name="fScoreThre"></param>
|
||||
/// <param name="segmentWidth"></param>
|
||||
/// <param name="Mask_output"></param>
|
||||
/// <param name="label"></param>
|
||||
/// <returns></returns>
|
||||
[DllImport("QuickSegmentDynamic.dll", EntryPoint = "seg_ModelPredict")]
|
||||
|
||||
public static extern bool seg_ModelPredict(IntPtr model, byte[] img, int W, int H, int C,
|
||||
string labelText, float conf_threshold, float IOU_THRESHOLD, float fScoreThre, int segmentWidth,
|
||||
ref byte Mask_output, ref byte label);
|
||||
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// 目标检测
|
||||
/// </summary>
|
||||
/// <param name="model"></param>
|
||||
/// <param name="img"></param>
|
||||
/// <param name="W"></param>
|
||||
/// <param name="H"></param>
|
||||
/// <param name="C"></param>
|
||||
/// <param name="nodes"></param>
|
||||
/// <param name="labelText"></param>
|
||||
/// <param name="conf_threshold"></param>
|
||||
/// <param name="IOU_THRESHOLD"></param>
|
||||
/// <param name="Mask_output"></param>
|
||||
/// <param name="label"></param>
|
||||
[DllImport("QuickSegmentDynamic.dll", EntryPoint = "det_ModelPredict")]
|
||||
public static extern bool det_ModelPredict(IntPtr model, byte[] img, int W, int H, int C,
|
||||
string nodes,// ++++++++++++++++++++++++++++++++++++
|
||||
string labelText, float conf_threshold, float IOU_THRESHOLD,
|
||||
ref byte Mask_output, ref byte label);
|
||||
|
||||
|
||||
[DllImport("QuickSegmentDynamic.dll", EntryPoint = "FreePredictor")]
|
||||
public static extern void FreePredictor(IntPtr model);
|
||||
|
||||
|
||||
}
|
||||
public static class MLEngine1
|
||||
{
|
||||
/**********************************************************************/
|
||||
/***************** 1.推理DLL导入实现 ****************/
|
||||
/**********************************************************************/
|
||||
//private const string sPath = @"D:\M018_NET7.0\src\Debug\model_infer.dll";
|
||||
// 加载推理相关方法
|
||||
[DllImport("model_infer.dll", EntryPoint = "InitModel")] // 模型统一初始化方法: 需要yml、pdmodel、pdiparams
|
||||
//[DllImport(sPath, EntryPoint = "InitModel")] // 模型统一初始化方法: 需要yml、pdmodel、pdiparams
|
||||
public static extern IntPtr InitModel(string model_type, string model_filename, string params_filename, string cfg_file, bool use_gpu, int gpu_id, ref byte paddlex_model_type);
|
||||
|
||||
[DllImport("model_infer.dll", EntryPoint = "Det_ModelPredict")] // PaddleDetection模型推理方法
|
||||
public static extern bool Det_ModelPredict(IntPtr model, byte[] img, int W, int H, int C, IntPtr output, int[] BoxesNum, ref byte label);
|
||||
|
||||
[DllImport("model_infer.dll", EntryPoint = "Seg_ModelPredict")] // PaddleSeg模型推理方法
|
||||
public static extern bool Seg_ModelPredict(IntPtr model, byte[] img, int W, int H, int C, ref byte output);
|
||||
|
||||
[DllImport("model_infer.dll", EntryPoint = "Cls_ModelPredict")] // PaddleClas模型推理方法
|
||||
public static extern bool Cls_ModelPredict(IntPtr model, byte[] img, int W, int H, int C, ref float score, ref byte category, ref int category_id);
|
||||
|
||||
[DllImport("model_infer.dll", EntryPoint = "Mask_ModelPredict")] // Paddlex的MaskRCNN模型推理方法
|
||||
public static extern bool Mask_ModelPredict(IntPtr model, byte[] img, int W, int H, int C, IntPtr output, ref byte Mask_output, int[] BoxesNum, ref byte label);
|
||||
//public static extern bool Mask_ModelPredict(IntPtr model, IntPtr img, int W, int H, int C, IntPtr output, ref byte Mask_output, int[] BoxesNum, ref byte label);
|
||||
[DllImport("model_infer.dll", EntryPoint = "DestructModel")] // 分割、检测、识别模型销毁方法
|
||||
public static extern void DestructModel(IntPtr model);
|
||||
|
||||
}
|
||||
|
||||
}
|
299
DH.Devices.Vision/VisionEngine.cs
Normal file
299
DH.Devices.Vision/VisionEngine.cs
Normal file
@ -0,0 +1,299 @@
|
||||
using OpenCvSharp;
|
||||
using System.ComponentModel;
|
||||
using System.Drawing;
|
||||
using static OpenCvSharp.AgastFeatureDetector;
|
||||
using System.Text.RegularExpressions;
|
||||
using System.Text;
|
||||
|
||||
namespace DH.Devices.Vision
|
||||
{
|
||||
public enum MLModelType
|
||||
{
|
||||
[Description("图像分类")]
|
||||
ImageClassification = 1,
|
||||
[Description("目标检测")]
|
||||
ObjectDetection = 2,
|
||||
//[Description("图像分割")]
|
||||
//ImageSegmentation = 3
|
||||
[Description("语义分割")]
|
||||
SemanticSegmentation = 3,
|
||||
[Description("实例分割")]
|
||||
InstanceSegmentation = 4,
|
||||
[Description("目标检测GPU")]
|
||||
ObjectGPUDetection = 5
|
||||
}
|
||||
public class MLRequest
|
||||
{
|
||||
public int ImageChannels = 3;
|
||||
public Mat mImage;
|
||||
public int ResizeWidth;
|
||||
public int ResizeHeight;
|
||||
|
||||
public float confThreshold;
|
||||
|
||||
public float iouThreshold;
|
||||
|
||||
//public int ImageResizeCount;
|
||||
public bool IsCLDetection;
|
||||
public int ProCount;
|
||||
public string in_node_name;
|
||||
|
||||
public string out_node_name;
|
||||
|
||||
public string in_lable_path;
|
||||
|
||||
public int ResizeImageSize;
|
||||
public int segmentWidth;
|
||||
public int ImageWidth;
|
||||
|
||||
// public List<labelStringBase> OkClassTxtList;
|
||||
|
||||
|
||||
// public List<ModelLabel> LabelNames;
|
||||
|
||||
public float Score;
|
||||
|
||||
}
|
||||
public enum ResultState
|
||||
{
|
||||
|
||||
[Description("检测NG")]
|
||||
DetectNG = -3,
|
||||
|
||||
//[Description("检测不足TBD")]
|
||||
// ShortageTBD = -2,
|
||||
[Description("检测结果TBD")]
|
||||
ResultTBD = -1,
|
||||
[Description("OK")]
|
||||
OK = 1,
|
||||
// [Description("NG")]
|
||||
// NG = 2,
|
||||
//统计结果
|
||||
[Description("A类NG")]
|
||||
A_NG = 25,
|
||||
[Description("B类NG")]
|
||||
B_NG = 26,
|
||||
[Description("C类NG")]
|
||||
C_NG = 27,
|
||||
}
|
||||
/// <summary>
|
||||
/// 深度学习 识别结果明细 面向业务:detect 面向深度学习:Recongnition、Inference
|
||||
/// </summary>
|
||||
public class DetectionResultDetail
|
||||
{
|
||||
public string LabelBGR { get; set; }//识别到对象的标签BGR
|
||||
|
||||
|
||||
public int LabelNo { get; set; } // 识别到对象的标签索引
|
||||
|
||||
public string LabelName { get; set; }//识别到对象的标签名称
|
||||
|
||||
public double Score { get; set; }//识别目标结果的可能性、得分
|
||||
|
||||
public string LabelDisplay { get; set; }//识别到对象的 显示信息
|
||||
|
||||
public double Area { get; set; }//识别目标的区域面积
|
||||
|
||||
public Rectangle Rect { get; set; }//识别目标的外接矩形
|
||||
|
||||
public RotatedRect MinRect { get; set; }//识别目标的最小外接矩形(带角度)
|
||||
|
||||
public ResultState InferenceResult { get; set; }//只是模型推理 label的结果
|
||||
|
||||
public double DistanceToImageCenter { get; set; } //计算矩形框到图像中心的距离
|
||||
|
||||
|
||||
|
||||
public ResultState FinalResult { get; set; }//模型推理+其他视觉、逻辑判断后 label结果
|
||||
}
|
||||
public class MLResult
|
||||
{
|
||||
public bool IsSuccess = false;
|
||||
public string ResultMessage;
|
||||
public Bitmap ResultMap;
|
||||
public List<DetectionResultDetail> ResultDetails = new List<DetectionResultDetail>();
|
||||
}
|
||||
public class MLInit
|
||||
{
|
||||
public string ModelFile;
|
||||
public string InferenceDevice;
|
||||
|
||||
|
||||
public int InferenceWidth;
|
||||
public int InferenceHeight;
|
||||
|
||||
public string InputNodeName;
|
||||
|
||||
|
||||
public int SizeModel;
|
||||
|
||||
public bool bReverse;//尺寸测量正反面
|
||||
//目标检测Gpu
|
||||
public bool IsGPU;
|
||||
public int GPUId;
|
||||
public float Score_thre;
|
||||
public MLInit(string modelFile, bool isGPU, int gpuId, float score_thre)
|
||||
{
|
||||
ModelFile = modelFile;
|
||||
IsGPU = isGPU;
|
||||
GPUId = gpuId;
|
||||
Score_thre = score_thre;
|
||||
}
|
||||
|
||||
public MLInit(string modelFile, string inputNodeName, string inferenceDevice, int inferenceWidth, int inferenceHeight)
|
||||
{
|
||||
ModelFile = modelFile;
|
||||
InferenceDevice = inferenceDevice;
|
||||
|
||||
InferenceWidth = inferenceWidth;
|
||||
InferenceHeight = inferenceHeight;
|
||||
InputNodeName = inputNodeName;
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
public class DetectStationResult
|
||||
{
|
||||
public string Pid { get; set; }
|
||||
|
||||
public string TempPid { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// 检测工位名称
|
||||
/// </summary>
|
||||
public string DetectName { get; set; }
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// 深度学习 检测结果
|
||||
/// </summary>
|
||||
public List<DetectionResultDetail> DetectDetails = new List<DetectionResultDetail>();
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// 工位检测结果
|
||||
/// </summary>
|
||||
public ResultState ResultState { get; set; } = ResultState.ResultTBD;
|
||||
|
||||
|
||||
public double FinalResultfScore { get; set; } = 0.0;
|
||||
|
||||
|
||||
public string ResultLabel { get; set; } = "";// 多个ng时,根据label优先级,设定当前检测项的label
|
||||
|
||||
public string ResultLabelCategoryId { get; set; } = "";// 多个ng时,根据label优先级,设定当前检测项的label
|
||||
|
||||
public int PreTreatState { get; set; }
|
||||
public bool IsPreTreatDone { get; set; } = true;
|
||||
|
||||
public bool IsAfterTreatDone { get; set; } = true;
|
||||
|
||||
public bool IsMLDetectDone { get; set; } = true;
|
||||
|
||||
/// <summary>
|
||||
/// 预处理阶段已经NG
|
||||
/// </summary>
|
||||
public bool IsPreTreatNG { get; set; } = false;
|
||||
|
||||
/// <summary>
|
||||
/// 目标检测NG
|
||||
/// </summary>
|
||||
public bool IsObjectDetectNG { get; set; } = false;
|
||||
|
||||
public DateTime EndTime { get; set; }
|
||||
|
||||
public int StationDetectElapsed { get; set; }
|
||||
public static string NormalizeAndClean(string input)
|
||||
{
|
||||
if (input == null) return null;
|
||||
|
||||
// Step 1: 标准化字符编码为 Form C (规范组合)
|
||||
string normalizedString = input.Normalize(NormalizationForm.FormC);
|
||||
|
||||
// Step 2: 移除所有空白字符,包括制表符和换行符
|
||||
string withoutWhitespace = Regex.Replace(normalizedString, @"\s+", "");
|
||||
|
||||
// Step 3: 移除控制字符 (Unicode 控制字符,范围 \u0000 - \u001F 和 \u007F)
|
||||
string withoutControlChars = Regex.Replace(withoutWhitespace, @"[\u0000-\u001F\u007F]+", "");
|
||||
|
||||
// Step 4: 移除特殊的不可见字符(如零宽度空格等)
|
||||
string cleanedString = Regex.Replace(withoutControlChars, @"[\u200B\u200C\u200D\uFEFF]+", "");
|
||||
|
||||
return cleanedString;
|
||||
}
|
||||
|
||||
}
|
||||
public class RelatedCamera
|
||||
{
|
||||
|
||||
[Category("关联相机")]
|
||||
[DisplayName("关联相机")]
|
||||
[Description("关联相机描述")]
|
||||
|
||||
//[TypeConverter(typeof(CollectionCountConvert))]
|
||||
public string CameraSourceId { get; set; } = "";
|
||||
|
||||
|
||||
|
||||
}
|
||||
public class VisionEngine
|
||||
{
|
||||
[ReadOnly(true)]
|
||||
public string Id { get; set; } = Guid.NewGuid().ToString();
|
||||
|
||||
|
||||
[Category("检测配置")]
|
||||
[DisplayName("检测配置名称")]
|
||||
[Description("检测配置名称")]
|
||||
public string Name { get; set; }
|
||||
|
||||
[Category("关联相机")]
|
||||
[DisplayName("关联相机")]
|
||||
[Description("关联相机描述")]
|
||||
|
||||
|
||||
public string CameraSourceId { get; set; } = "";
|
||||
|
||||
|
||||
[Category("关联相机集合")]
|
||||
[DisplayName("关联相机集合")]
|
||||
[Description("关联相机描述")]
|
||||
//[TypeConverter(typeof(DeviceIdSelectorConverter<CameraBase>))]
|
||||
|
||||
public List<RelatedCamera> CameraCollects { get; set; } = new List<RelatedCamera>();
|
||||
|
||||
|
||||
[Category("启用配置")]
|
||||
[DisplayName("是否启用GPU检测")]
|
||||
[Description("是否启用GPU检测")]
|
||||
public bool IsEnableGPU { get; set; } = false;
|
||||
|
||||
[Category("2.中检测(深度学习)")]
|
||||
[DisplayName("中检测-模型类型")]
|
||||
[Description("模型类型:ImageClassification-图片分类;ObjectDetection:目标检测;Segmentation-图像分割")]
|
||||
//[TypeConverter(typeof(EnumDescriptionConverter<MLModelType>))]
|
||||
public MLModelType ModelType { get; set; } = MLModelType.ObjectDetection;
|
||||
|
||||
//[Category("2.中检测(深度学习)")]
|
||||
//[DisplayName("中检测-GPU索引")]
|
||||
//[Description("GPU索引")]
|
||||
//public int GPUIndex { get; set; } = 0;
|
||||
|
||||
[Category("2.中检测(深度学习)")]
|
||||
[DisplayName("中检测-模型文件路径")]
|
||||
[Description("中处理 深度学习模型文件路径,路径中不可含有中文字符,一般情况可以只配置中检测模型,当需要先用预检测过滤一次时,请先配置好与预检测相关配置")]
|
||||
|
||||
public string ModelPath { get; set; }
|
||||
|
||||
public VisionEngine(string name, MLModelType modelType, string modelPath, bool isEnableGPU,string sCameraSourceId)
|
||||
{
|
||||
ModelPath = modelPath ?? string.Empty;
|
||||
Name = name;
|
||||
ModelType = modelType;
|
||||
IsEnableGPU = isEnableGPU;
|
||||
Id = Guid.NewGuid().ToString();
|
||||
CameraSourceId = sCameraSourceId;
|
||||
|
||||
}
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user