上传视觉检测模块
This commit is contained in:
@ -11,6 +11,9 @@
|
||||
<Platforms>AnyCPU;x64</Platforms>
|
||||
</PropertyGroup>
|
||||
|
||||
|
||||
|
||||
|
||||
<ItemGroup>
|
||||
<PackageReference Include="Newtonsoft.Json" Version="13.0.3" />
|
||||
<PackageReference Include="OpenCvSharp4" Version="4.10.0.20241108" />
|
||||
|
666
DH.Devices.Vision/DetectionConfig.cs
Normal file
666
DH.Devices.Vision/DetectionConfig.cs
Normal file
@ -0,0 +1,666 @@
|
||||
using OpenCvSharp;
|
||||
using System.ComponentModel;
|
||||
using System.Drawing;
|
||||
using static OpenCvSharp.AgastFeatureDetector;
|
||||
using System.Text.RegularExpressions;
|
||||
using System.Text;
|
||||
using System.Drawing.Design;
|
||||
|
||||
namespace DH.Devices.Vision
|
||||
{
|
||||
public enum MLModelType
|
||||
{
|
||||
[Description("图像分类")]
|
||||
ImageClassification = 1,
|
||||
[Description("目标检测")]
|
||||
ObjectDetection = 2,
|
||||
//[Description("图像分割")]
|
||||
//ImageSegmentation = 3
|
||||
[Description("语义分割")]
|
||||
SemanticSegmentation = 3,
|
||||
[Description("实例分割")]
|
||||
InstanceSegmentation = 4,
|
||||
[Description("目标检测GPU")]
|
||||
ObjectGPUDetection = 5
|
||||
}
|
||||
public class ModelLabel
|
||||
{
|
||||
public string LabelId { get; set; }
|
||||
|
||||
|
||||
[Category("模型标签")]
|
||||
[DisplayName("模型标签索引")]
|
||||
[Description("模型识别的标签索引")]
|
||||
public int LabelIndex { get; set; }
|
||||
|
||||
|
||||
[Category("模型标签")]
|
||||
[DisplayName("模型标签")]
|
||||
[Description("模型识别的标签名称")]
|
||||
public string LabelName { get; set; }
|
||||
|
||||
|
||||
|
||||
|
||||
//[Category("模型配置")]
|
||||
//[DisplayName("模型参数配置")]
|
||||
//[Description("模型参数配置集合")]
|
||||
|
||||
//public ModelParamSetting ModelParamSetting { get; set; } = new ModelParamSetting();
|
||||
|
||||
|
||||
public string GetDisplayText()
|
||||
{
|
||||
return $"{LabelId}-{LabelName}";
|
||||
}
|
||||
}
|
||||
public class MLRequest
|
||||
{
|
||||
public int ImageChannels = 3;
|
||||
public Mat mImage;
|
||||
public int ResizeWidth;
|
||||
public int ResizeHeight;
|
||||
|
||||
public float confThreshold;
|
||||
|
||||
public float iouThreshold;
|
||||
|
||||
//public int ImageResizeCount;
|
||||
public bool IsCLDetection;
|
||||
public int ProCount;
|
||||
public string in_node_name;
|
||||
|
||||
public string out_node_name;
|
||||
|
||||
public string in_lable_path;
|
||||
|
||||
public int ResizeImageSize;
|
||||
public int segmentWidth;
|
||||
public int ImageWidth;
|
||||
|
||||
// public List<labelStringBase> OkClassTxtList;
|
||||
|
||||
|
||||
public List<ModelLabel> LabelNames;
|
||||
|
||||
|
||||
|
||||
}
|
||||
public enum ResultState
|
||||
{
|
||||
|
||||
[Description("检测NG")]
|
||||
DetectNG = -3,
|
||||
|
||||
//[Description("检测不足TBD")]
|
||||
// ShortageTBD = -2,
|
||||
[Description("检测结果TBD")]
|
||||
ResultTBD = -1,
|
||||
[Description("OK")]
|
||||
OK = 1,
|
||||
// [Description("NG")]
|
||||
// NG = 2,
|
||||
//统计结果
|
||||
[Description("A类NG")]
|
||||
A_NG = 25,
|
||||
[Description("B类NG")]
|
||||
B_NG = 26,
|
||||
[Description("C类NG")]
|
||||
C_NG = 27,
|
||||
}
|
||||
/// <summary>
|
||||
/// 深度学习 识别结果明细 面向业务:detect 面向深度学习:Recongnition、Inference
|
||||
/// </summary>
|
||||
public class DetectionResultDetail
|
||||
{
|
||||
public string LabelBGR { get; set; }//识别到对象的标签BGR
|
||||
|
||||
|
||||
public int LabelNo { get; set; } // 识别到对象的标签索引
|
||||
|
||||
public string LabelName { get; set; }//识别到对象的标签名称
|
||||
|
||||
public double Score { get; set; }//识别目标结果的可能性、得分
|
||||
|
||||
public string LabelDisplay { get; set; }//识别到对象的 显示信息
|
||||
|
||||
public double Area { get; set; }//识别目标的区域面积
|
||||
|
||||
public Rectangle Rect { get; set; }//识别目标的外接矩形
|
||||
|
||||
public RotatedRect MinRect { get; set; }//识别目标的最小外接矩形(带角度)
|
||||
|
||||
public ResultState InferenceResult { get; set; }//只是模型推理 label的结果
|
||||
|
||||
public double DistanceToImageCenter { get; set; } //计算矩形框到图像中心的距离
|
||||
|
||||
|
||||
|
||||
public ResultState FinalResult { get; set; }//模型推理+其他视觉、逻辑判断后 label结果
|
||||
}
|
||||
public class MLResult
|
||||
{
|
||||
public bool IsSuccess = false;
|
||||
public string ResultMessage;
|
||||
public Bitmap ResultMap;
|
||||
public List<DetectionResultDetail> ResultDetails = new List<DetectionResultDetail>();
|
||||
}
|
||||
public class MLInit
|
||||
{
|
||||
public string ModelFile;
|
||||
public string InferenceDevice;
|
||||
|
||||
|
||||
public int InferenceWidth;
|
||||
public int InferenceHeight;
|
||||
|
||||
public string InputNodeName;
|
||||
|
||||
|
||||
public int SizeModel;
|
||||
|
||||
public bool bReverse;//尺寸测量正反面
|
||||
//目标检测Gpu
|
||||
public bool IsGPU;
|
||||
public int GPUId;
|
||||
public float Score_thre;
|
||||
public MLInit(string modelFile, bool isGPU, int gpuId, float score_thre)
|
||||
{
|
||||
ModelFile = modelFile;
|
||||
IsGPU = isGPU;
|
||||
GPUId = gpuId;
|
||||
Score_thre = score_thre;
|
||||
}
|
||||
|
||||
public MLInit(string modelFile, string inputNodeName, string inferenceDevice, int inferenceWidth, int inferenceHeight)
|
||||
{
|
||||
ModelFile = modelFile;
|
||||
InferenceDevice = inferenceDevice;
|
||||
|
||||
InferenceWidth = inferenceWidth;
|
||||
InferenceHeight = inferenceHeight;
|
||||
InputNodeName = inputNodeName;
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
public class DetectStationResult
|
||||
{
|
||||
public string Pid { get; set; }
|
||||
|
||||
public string TempPid { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// 检测工位名称
|
||||
/// </summary>
|
||||
public string DetectName { get; set; }
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// 深度学习 检测结果
|
||||
/// </summary>
|
||||
public List<DetectionResultDetail> DetectDetails = new List<DetectionResultDetail>();
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// 工位检测结果
|
||||
/// </summary>
|
||||
public ResultState ResultState { get; set; } = ResultState.ResultTBD;
|
||||
|
||||
|
||||
public double FinalResultfScore { get; set; } = 0.0;
|
||||
|
||||
|
||||
public string ResultLabel { get; set; } = "";// 多个ng时,根据label优先级,设定当前检测项的label
|
||||
|
||||
public string ResultLabelCategoryId { get; set; } = "";// 多个ng时,根据label优先级,设定当前检测项的label
|
||||
|
||||
public int PreTreatState { get; set; }
|
||||
public bool IsPreTreatDone { get; set; } = true;
|
||||
|
||||
public bool IsAfterTreatDone { get; set; } = true;
|
||||
|
||||
public bool IsMLDetectDone { get; set; } = true;
|
||||
|
||||
/// <summary>
|
||||
/// 预处理阶段已经NG
|
||||
/// </summary>
|
||||
public bool IsPreTreatNG { get; set; } = false;
|
||||
|
||||
/// <summary>
|
||||
/// 目标检测NG
|
||||
/// </summary>
|
||||
public bool IsObjectDetectNG { get; set; } = false;
|
||||
|
||||
public DateTime EndTime { get; set; }
|
||||
|
||||
public int StationDetectElapsed { get; set; }
|
||||
public static string NormalizeAndClean(string input)
|
||||
{
|
||||
if (input == null) return null;
|
||||
|
||||
// Step 1: 标准化字符编码为 Form C (规范组合)
|
||||
string normalizedString = input.Normalize(NormalizationForm.FormC);
|
||||
|
||||
// Step 2: 移除所有空白字符,包括制表符和换行符
|
||||
string withoutWhitespace = Regex.Replace(normalizedString, @"\s+", "");
|
||||
|
||||
// Step 3: 移除控制字符 (Unicode 控制字符,范围 \u0000 - \u001F 和 \u007F)
|
||||
string withoutControlChars = Regex.Replace(withoutWhitespace, @"[\u0000-\u001F\u007F]+", "");
|
||||
|
||||
// Step 4: 移除特殊的不可见字符(如零宽度空格等)
|
||||
string cleanedString = Regex.Replace(withoutControlChars, @"[\u200B\u200C\u200D\uFEFF]+", "");
|
||||
|
||||
return cleanedString;
|
||||
}
|
||||
|
||||
}
|
||||
public class RelatedCamera
|
||||
{
|
||||
|
||||
[Category("关联相机")]
|
||||
[DisplayName("关联相机")]
|
||||
[Description("关联相机描述")]
|
||||
|
||||
//[TypeConverter(typeof(CollectionCountConvert))]
|
||||
public string CameraSourceId { get; set; } = "";
|
||||
|
||||
public RelatedCamera()
|
||||
{
|
||||
|
||||
}
|
||||
public RelatedCamera(string cameraSourceId)
|
||||
{
|
||||
CameraSourceId = cameraSourceId;
|
||||
|
||||
}
|
||||
}
|
||||
public class DetectionConfig
|
||||
{
|
||||
[ReadOnly(true)]
|
||||
public string Id { get; set; } = Guid.NewGuid().ToString();
|
||||
|
||||
|
||||
[Category("检测配置")]
|
||||
[DisplayName("检测配置名称")]
|
||||
[Description("检测配置名称")]
|
||||
public string Name { get; set; }
|
||||
|
||||
[Category("关联相机")]
|
||||
[DisplayName("关联相机")]
|
||||
[Description("关联相机描述")]
|
||||
|
||||
|
||||
public string CameraSourceId { get; set; } = "";
|
||||
|
||||
|
||||
[Category("关联相机集合")]
|
||||
[DisplayName("关联相机集合")]
|
||||
[Description("关联相机描述")]
|
||||
//[TypeConverter(typeof(DeviceIdSelectorConverter<CameraBase>))]
|
||||
|
||||
public List<RelatedCamera> CameraCollects { get; set; } = new List<RelatedCamera>();
|
||||
|
||||
|
||||
[Category("启用配置")]
|
||||
[DisplayName("是否启用GPU检测")]
|
||||
[Description("是否启用GPU检测")]
|
||||
public bool IsEnableGPU { get; set; } = false;
|
||||
|
||||
[Category("启用配置")]
|
||||
[DisplayName("是否混料模型")]
|
||||
[Description("是否混料模型")]
|
||||
public bool IsMixModel { get; set; } = false;
|
||||
|
||||
|
||||
|
||||
[Category("启用配置")]
|
||||
[DisplayName("是否启用该检测")]
|
||||
[Description("是否启用该检测")]
|
||||
public bool IsEnabled { get; set; }
|
||||
|
||||
[Category("启用配置")]
|
||||
[DisplayName("是否加入检测工位")]
|
||||
[Description("是否加入检测工位")]
|
||||
public bool IsAddStation { get; set; } = true;
|
||||
|
||||
[Category("2.中检测(深度学习)")]
|
||||
[DisplayName("中检测-模型类型")]
|
||||
[Description("模型类型:ImageClassification-图片分类;ObjectDetection:目标检测;Segmentation-图像分割")]
|
||||
//[TypeConverter(typeof(EnumDescriptionConverter<MLModelType>))]
|
||||
public MLModelType ModelType { get; set; } = MLModelType.ObjectDetection;
|
||||
|
||||
//[Category("2.中检测(深度学习)")]
|
||||
//[DisplayName("中检测-GPU索引")]
|
||||
//[Description("GPU索引")]
|
||||
//public int GPUIndex { get; set; } = 0;
|
||||
|
||||
[Category("2.中检测(深度学习)")]
|
||||
[DisplayName("中检测-模型文件路径")]
|
||||
[Description("中处理 深度学习模型文件路径,路径中不可含有中文字符,一般情况可以只配置中检测模型,当需要先用预检测过滤一次时,请先配置好与预检测相关配置")]
|
||||
|
||||
public string ModelPath { get; set; }
|
||||
|
||||
[Category("2.中检测(深度学习)")]
|
||||
[DisplayName("中检测-模型宽度")]
|
||||
[Description("中处理-模型宽度")]
|
||||
|
||||
public int ModelWidth { get; set; } = 640;
|
||||
|
||||
[Category("2.中检测(深度学习)")]
|
||||
[DisplayName("中检测-模型高度")]
|
||||
[Description("中处理-模型高度")]
|
||||
|
||||
public int ModelHeight { get; set; } = 640;
|
||||
|
||||
[Category("2.中检测(深度学习)")]
|
||||
[DisplayName("中检测-模型节点名称")]
|
||||
[Description("中处理-模型节点名称")]
|
||||
|
||||
public string ModeloutNodeName { get; set; } = "output0";
|
||||
|
||||
[Category("2.中检测(深度学习)")]
|
||||
[DisplayName("中检测-模型置信度")]
|
||||
[Description("中处理-模型置信度")]
|
||||
|
||||
public float ModelconfThreshold { get; set; } = 0.5f;
|
||||
|
||||
[Category("2.中检测(深度学习)")]
|
||||
[DisplayName("中检测-模型标签路径")]
|
||||
[Description("中处理-模型标签路径")]
|
||||
|
||||
public string in_lable_path { get; set; }
|
||||
|
||||
[Category("4.最终过滤(逻辑过滤)")]
|
||||
[DisplayName("过滤器集合")]
|
||||
[Description("最后的逻辑过滤:可根据 识别出对象的 宽度、高度、面积、得分来设置最终检测结果,同一识别目标同一判定,多项过滤器之间为“或”关系")]
|
||||
|
||||
public List<DetectionFilter> DetectionFilterList { get; set; } = new List<DetectionFilter>();
|
||||
|
||||
//[Category("深度学习配置")]
|
||||
//[DisplayName("检测配置标签")]
|
||||
//[Description("检测配置标签关联")]
|
||||
|
||||
//public List<DetectConfigLabel> DetectConfigLabelList { get; set; } = new List<DetectConfigLabel>();
|
||||
|
||||
|
||||
public DetectionConfig()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
public DetectionConfig(string name, MLModelType modelType, string modelPath, bool isEnableGPU,string sCameraSourceId)
|
||||
{
|
||||
ModelPath = modelPath ?? string.Empty;
|
||||
Name = name;
|
||||
ModelType = modelType;
|
||||
IsEnableGPU = isEnableGPU;
|
||||
Id = Guid.NewGuid().ToString();
|
||||
CameraSourceId = sCameraSourceId;
|
||||
|
||||
}
|
||||
}
|
||||
/// <summary>
|
||||
/// 识别目标定义 class:分类信息 Detection Segmentation:要识别的对象
|
||||
/// </summary>
|
||||
public class RecongnitionLabel //: IComplexDisplay
|
||||
{
|
||||
[Category("检测标签定义")]
|
||||
[Description("检测标签编码")]
|
||||
[ReadOnly(true)]
|
||||
public string Id { get; set; } = Guid.NewGuid().ToString();
|
||||
|
||||
[Category("检测标签定义")]
|
||||
[DisplayName("检测标签名称")]
|
||||
[Description("检测标签名称")]
|
||||
public string LabelName { get; set; } = "";
|
||||
|
||||
[Category("检测标签定义")]
|
||||
[DisplayName("检测标签描述")]
|
||||
[Description("检测标签描述,中文描述")]
|
||||
public string LabelDescription { get; set; } = "";
|
||||
|
||||
[Category("检测标签定义")]
|
||||
[DisplayName("检测标签分类")]
|
||||
[Description("检测标签分类id")]
|
||||
//[TypeConverter(typeof(LabelCategoryConverter))]
|
||||
public string LabelCategory { get; set; } = "";
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// 检测项识别对象
|
||||
/// </summary>
|
||||
public class DetectConfigLabel //: IComplexDisplay
|
||||
{
|
||||
[Category("检测项标签")]
|
||||
[DisplayName("检测项标签")]
|
||||
[Description("检测标签Id")]
|
||||
//[TypeConverter(typeof(DetectionLabelConverter))]
|
||||
public string LabelId { get; set; }
|
||||
|
||||
[Browsable(false)]
|
||||
//public string LabelName { get => GetLabelName(); }
|
||||
|
||||
[Category("检测项标签")]
|
||||
[DisplayName("检测标签优先级")]
|
||||
[Description("检测标签优先级,值越小,优先级越高")]
|
||||
public int LabelPriority { get; set; } = 0;
|
||||
|
||||
//[Category("检测项标签")]
|
||||
//[DisplayName("标签BGR值")]
|
||||
//[Description("检测标签BGR值,例如:0,128,0")]
|
||||
//public string LabelBGR { get; set; }
|
||||
|
||||
//[Category("模型配置")]
|
||||
//[DisplayName("模型参数配置")]
|
||||
//[Description("模型参数配置集合")]
|
||||
//[TypeConverter(typeof(ComplexObjectConvert))]
|
||||
//[Editor(typeof(PropertyObjectEditor), typeof(UITypeEditor))]
|
||||
//public ModelParamSetting ModelParamSetting { get; set; } = new ModelParamSetting();
|
||||
|
||||
//public string GetDisplayText()
|
||||
//{
|
||||
// string dName = "";
|
||||
// if (!string.IsNullOrWhiteSpace(LabelId))
|
||||
// {
|
||||
// using (var scope = GlobalVar.Container.BeginLifetimeScope())
|
||||
// {
|
||||
// IProcessConfig config = scope.Resolve<IProcessConfig>();
|
||||
|
||||
// var mlBase = config.DeviceConfigs.FirstOrDefault(c => c is VisionEngineInitialConfigBase) as VisionEngineInitialConfigBase;
|
||||
// if (mlBase != null)
|
||||
// {
|
||||
// var targetLabel = mlBase.RecongnitionLabelList.FirstOrDefault(u => u.Id == LabelId);
|
||||
// if (targetLabel != null)
|
||||
// {
|
||||
// dName = targetLabel.GetDisplayText();
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// return dName;
|
||||
//}
|
||||
//public string GetLabelName()
|
||||
//{
|
||||
// var name = "";
|
||||
|
||||
|
||||
// var mlBase = iConfig.DeviceConfigs.FirstOrDefault(c => c is VisionEngineInitialConfigBase) as VisionEngineInitialConfigBase;
|
||||
// if (mlBase != null)
|
||||
// {
|
||||
// var label = mlBase.RecongnitionLabelList.FirstOrDefault(u => u.Id == LabelId);
|
||||
// if (label != null)
|
||||
// {
|
||||
// name = label.LabelName;
|
||||
// }
|
||||
// }
|
||||
|
||||
|
||||
// return name;
|
||||
//}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// 识别对象定义分类信息 A类B类
|
||||
/// </summary>
|
||||
public class RecongnitionLabelCategory //: IComplexDisplay
|
||||
{
|
||||
[Category("检测标签分类")]
|
||||
[Description("检测标签分类")]
|
||||
[ReadOnly(true)]
|
||||
public string Id { get; set; } = Guid.NewGuid().ToString();
|
||||
|
||||
[Category("检测标签分类")]
|
||||
[DisplayName("检测标签分类名称")]
|
||||
[Description("检测标签分类名称")]
|
||||
public string CategoryName { get; set; } = "A-NG";
|
||||
|
||||
[Category("检测标签分类")]
|
||||
[DisplayName("检测标签分类优先级")]
|
||||
[Description("检测标签分类优先级,值越小,优先级越高")]
|
||||
public int CategoryPriority { get; set; } = 0;
|
||||
|
||||
public string GetDisplayText()
|
||||
{
|
||||
return CategoryPriority + ":" + CategoryName;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// 检测过滤
|
||||
/// </summary>
|
||||
public class DetectionFilter ///: IComplexDisplay
|
||||
{
|
||||
[Category("过滤器基础信息")]
|
||||
[DisplayName("检测标签")]
|
||||
[Description("检测标签信息")]
|
||||
//[TypeConverter(typeof(DetectionLabelConverter))]
|
||||
public string LabelId { get; set; }
|
||||
|
||||
// [Browsable(false)]
|
||||
public string LabelName { get; set; }
|
||||
|
||||
[Category("过滤器基础信息")]
|
||||
[DisplayName("是否启用过滤器")]
|
||||
[Description("是否启用过滤器")]
|
||||
public bool IsEnabled { get; set; }
|
||||
|
||||
[Category("过滤器判定信息")]
|
||||
[DisplayName("判定结果")]
|
||||
[Description("过滤器默认判定结果")]
|
||||
public ResultState ResultState { get; set; } = ResultState.ResultTBD;
|
||||
|
||||
[Category("过滤条件")]
|
||||
[DisplayName("过滤条件集合")]
|
||||
[Description("过滤条件集合,集合之间为“且”关系")]
|
||||
//[TypeConverter(typeof(CollectionCountConvert))]
|
||||
// [Editor(typeof(ComplexCollectionEditor<FilterConditions>), typeof(UITypeEditor))]
|
||||
public List<FilterConditions> FilterConditionsCollection { get; set; } = new List<FilterConditions>();
|
||||
|
||||
|
||||
|
||||
public bool FilterOperation(DetectionResultDetail recongnitionResult)
|
||||
{
|
||||
return FilterConditionsCollection.All(u =>
|
||||
{
|
||||
return u.FilterConditionCollection.Any(c =>
|
||||
{
|
||||
double compareValue = 0;
|
||||
|
||||
switch (c.FilterPropperty)
|
||||
{
|
||||
case DetectionFilterProperty.Width:
|
||||
compareValue = recongnitionResult.Rect.Width;
|
||||
break;
|
||||
case DetectionFilterProperty.Height:
|
||||
compareValue = recongnitionResult.Rect.Height;
|
||||
break;
|
||||
case DetectionFilterProperty.Area:
|
||||
compareValue = recongnitionResult.Area;
|
||||
break;
|
||||
case DetectionFilterProperty.Score:
|
||||
compareValue = recongnitionResult.Score;
|
||||
break;
|
||||
//case RecongnitionTargetFilterProperty.Uncertainty:
|
||||
// compareValue = 0;
|
||||
// //defect.Uncertainty;
|
||||
// break;
|
||||
}
|
||||
|
||||
return compareValue >= c.MinValue && compareValue <= c.MaxValue;
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
public class FilterConditions //: IComplexDisplay
|
||||
{
|
||||
[Category("过滤条件")]
|
||||
[DisplayName("过滤条件集合")]
|
||||
[Description("过滤条件集合,集合之间为“或”关系")]
|
||||
//[TypeConverter(typeof(CollectionCountConvert))]
|
||||
//[Editor(typeof(ComplexCollectionEditor<FilterCondition>), typeof(UITypeEditor))]
|
||||
public List<FilterCondition> FilterConditionCollection { get; set; } = new List<FilterCondition>();
|
||||
|
||||
//public string GetDisplayText()
|
||||
//{
|
||||
// if (FilterConditionCollection.Count == 0)
|
||||
// {
|
||||
// return "空";
|
||||
// }
|
||||
// else
|
||||
// {
|
||||
// var desc = string.Join(" OR ", FilterConditionCollection.Select(u => u.GetDisplayText()));
|
||||
|
||||
// if (FilterConditionCollection.Count > 1)
|
||||
// {
|
||||
// desc = $"({desc})";
|
||||
// }
|
||||
|
||||
// return desc;
|
||||
// }
|
||||
//}
|
||||
}
|
||||
|
||||
public class FilterCondition //: IComplexDisplay
|
||||
{
|
||||
[Category("识别目标属性")]
|
||||
[DisplayName("过滤属性")]
|
||||
[Description("识别目标过滤针对的属性")]
|
||||
//[TypeConverter(typeof(EnumDescriptionConverter<DetectionFilterProperty>))]
|
||||
public DetectionFilterProperty FilterPropperty { get; set; } = DetectionFilterProperty.Width;
|
||||
|
||||
[Category("过滤值")]
|
||||
[DisplayName("最小值")]
|
||||
[Description("最小值")]
|
||||
public double MinValue { get; set; } = 1;
|
||||
|
||||
[Category("过滤值")]
|
||||
[DisplayName("最大值")]
|
||||
[Description("最大值")]
|
||||
public double MaxValue { get; set; } = 99999999;
|
||||
|
||||
//public string GetDisplayText()
|
||||
//{
|
||||
// return $"{FilterPropperty.GetEnumDescription()}:{MinValue}-{MaxValue}";
|
||||
//}
|
||||
}
|
||||
|
||||
public enum DetectionFilterProperty
|
||||
{
|
||||
[Description("宽度")]
|
||||
Width = 1,
|
||||
[Description("高度")]
|
||||
Height = 2,
|
||||
[Description("面积")]
|
||||
Area = 3,
|
||||
[Description("得分")]
|
||||
Score = 4,
|
||||
//[Description("不确定性")]
|
||||
//Uncertainty = 5,
|
||||
}
|
||||
}
|
244
DH.Devices.Vision/SimboDetection.cs
Normal file
244
DH.Devices.Vision/SimboDetection.cs
Normal file
@ -0,0 +1,244 @@
|
||||
#define USE_MULTI_THREAD
|
||||
|
||||
using OpenCvSharp;
|
||||
using OpenCvSharp.Extensions;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Diagnostics;
|
||||
using System.Drawing;
|
||||
using System.Linq;
|
||||
using System.Runtime.ExceptionServices;
|
||||
using System.Threading;
|
||||
using System.Threading.Tasks;
|
||||
using System.Security.Cryptography.Xml;
|
||||
using System.Runtime.InteropServices;
|
||||
using Newtonsoft.Json;
|
||||
|
||||
|
||||
|
||||
namespace DH.Devices.Vision
|
||||
{
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// 目标检测 GPU
|
||||
/// </summary>
|
||||
public class SimboDetection : SimboVisionMLBase
|
||||
{
|
||||
|
||||
public override bool Load(MLInit mLInit)
|
||||
{
|
||||
bool res = false;
|
||||
try
|
||||
{
|
||||
Model = MLGPUEngine.InitModel(mLInit.ModelFile, 1, mLInit.Score_thre, mLInit.GPUId, 3, 8);
|
||||
|
||||
//Model = MLEngine.InitModel(mLInit.ModelFile, 1, 0.45f, 0, 3);
|
||||
|
||||
res = true;
|
||||
|
||||
#if USE_MULTI_THREAD
|
||||
IsCreated = true;
|
||||
if (IsCreated)
|
||||
{
|
||||
_runHandleBefore ??= new AutoResetEvent(false);
|
||||
_runHandleAfter ??= new ManualResetEvent(false);
|
||||
|
||||
_runTask ??= Task.Factory.StartNew(() =>
|
||||
{
|
||||
while (IsCreated)
|
||||
{
|
||||
_runHandleBefore.WaitOne();
|
||||
|
||||
if (IsCreated)
|
||||
{
|
||||
_result = RunInferenceFixed(_req);
|
||||
_runHandleAfter.Set();
|
||||
}
|
||||
}
|
||||
}, TaskCreationOptions.LongRunning);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
throw ex;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
#if USE_MULTI_THREAD
|
||||
MLRequest _req = null;
|
||||
MLResult _result = null;
|
||||
public bool IsCreated { get; set; } = false;
|
||||
Task _runTask = null;
|
||||
AutoResetEvent _runHandleBefore = new AutoResetEvent(false);
|
||||
ManualResetEvent _runHandleAfter = new ManualResetEvent(false);
|
||||
object _runLock = new object();
|
||||
#endif
|
||||
[HandleProcessCorruptedStateExceptions]
|
||||
public override MLResult RunInference(MLRequest req)
|
||||
{
|
||||
#if USE_MULTI_THREAD
|
||||
MLResult mlResult = null;
|
||||
lock (_runLock)
|
||||
{
|
||||
_result = new MLResult();
|
||||
|
||||
_req = req;
|
||||
|
||||
_runHandleAfter.Reset();
|
||||
_runHandleBefore.Set();
|
||||
_runHandleAfter.WaitOne();
|
||||
|
||||
mlResult = _result;
|
||||
}
|
||||
|
||||
return mlResult;
|
||||
#else
|
||||
return RunInferenceFixed(req);
|
||||
#endif
|
||||
}
|
||||
private void ConvertJsonResult(string json, ref MLResult result)
|
||||
{
|
||||
// json = "{\"FastDetResult\":[{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654843,\"rect\":[175,99,110,594]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654589,\"rect\":[2608,19,104,661]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654285,\"rect\":[1275,19,104,662]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.620762,\"rect\":[1510,95,107,600]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.617812,\"rect\":[2844,93,106,602]}]}";
|
||||
//
|
||||
Console.WriteLine("检测结果JSON:" + json);
|
||||
HYoloResult detResult = JsonConvert.DeserializeObject<HYoloResult>(json);
|
||||
if (detResult == null)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
int iNum = detResult.HYolo.Count;
|
||||
int IokNum = 0;
|
||||
for (int ix = 0; ix < iNum; ix++)
|
||||
{
|
||||
var det = detResult.HYolo[ix];
|
||||
|
||||
var rect = det.rect;
|
||||
DetectionResultDetail detectionResultDetail = new DetectionResultDetail();
|
||||
// detectionResultDetail.LabelNo = det.classId;
|
||||
//todo: 标签名相对应
|
||||
detectionResultDetail.LabelDisplay = det.classname;
|
||||
detectionResultDetail.Rect = new Rectangle(rect[0], rect[1], rect[2], rect[3]);
|
||||
detectionResultDetail.Score = det.fScore;
|
||||
detectionResultDetail.LabelName = det.classname;
|
||||
detectionResultDetail.Area = rect[2] * rect[3];
|
||||
detectionResultDetail.InferenceResult = ResultState.DetectNG;
|
||||
|
||||
result.ResultDetails.Add(detectionResultDetail);
|
||||
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
[HandleProcessCorruptedStateExceptions]
|
||||
public MLResult RunInferenceFixed(MLRequest req)
|
||||
{
|
||||
MLResult mlResult = new MLResult();
|
||||
Mat originMat = new Mat();
|
||||
Mat detectMat = new Mat();
|
||||
|
||||
try
|
||||
{
|
||||
if (req.mImage == null)
|
||||
{
|
||||
mlResult.IsSuccess = false;
|
||||
mlResult.ResultMessage = "异常:mat为null,无法执行推理!";
|
||||
return mlResult;
|
||||
}
|
||||
|
||||
// resize
|
||||
detectMat = req.mImage;//1ms
|
||||
|
||||
|
||||
|
||||
int iWidth = detectMat.Cols;
|
||||
int iHeight = detectMat.Rows;
|
||||
|
||||
// 如果是单通道图像,转换为三通道 RGB 格式
|
||||
if (detectMat.Channels() == 1)
|
||||
{
|
||||
// 将灰度图像转换为RGB格式(三通道)
|
||||
|
||||
Cv2.CvtColor(detectMat, originMat, ColorConversionCodes.GRAY2BGR);
|
||||
|
||||
}
|
||||
else if (detectMat.Channels() == 3)
|
||||
{
|
||||
// 如果已经是三通道(BGR),则直接转换为RGB
|
||||
|
||||
Cv2.CvtColor(detectMat, originMat, ColorConversionCodes.BGR2RGB);
|
||||
|
||||
}
|
||||
|
||||
//输入数据转化为字节
|
||||
var inputByte = new byte[originMat.Total() * 3];//这里必须乘以通道数,不然数组越界,也可以用w*h*c,差不多
|
||||
Marshal.Copy(originMat.Data, inputByte, 0, inputByte.Length);
|
||||
|
||||
byte[] labellist = new byte[40960]; //新建字节数组:label1_str label2_str
|
||||
|
||||
byte[] outputByte = new byte[originMat.Total() * 3];
|
||||
|
||||
Stopwatch sw = new Stopwatch();
|
||||
sw.Start();
|
||||
|
||||
//mlResult.IsSuccess = true;
|
||||
unsafe
|
||||
{
|
||||
//mlResult.IsSuccess = MLGPUEngine.Inference(Model, inputByte, iWidth, iHeight, 3, req.in_lable_path, ref outputByte[0], ref labellist[0]);
|
||||
|
||||
mlResult.IsSuccess = MLGPUEngine.Inference2(Model, inputByte, iWidth, iHeight, 3, req.in_lable_path, ref labellist[0]);
|
||||
}
|
||||
|
||||
sw.Stop();
|
||||
|
||||
|
||||
if (mlResult.IsSuccess)
|
||||
{
|
||||
mlResult.ResultMessage = $"深度学习推理成功,耗时:{sw.ElapsedMilliseconds} ms";
|
||||
|
||||
//将字节数组转换为字符串
|
||||
mlResult.ResultMap = originMat.ToBitmap();//4ms
|
||||
string strGet = System.Text.Encoding.Default.GetString(labellist, 0, labellist.Length);
|
||||
|
||||
if (strGet == null)
|
||||
{
|
||||
mlResult.ResultMessage = $"异常:深度学习执行推理失败!";
|
||||
return mlResult;
|
||||
}
|
||||
|
||||
ConvertJsonResult(strGet, ref mlResult);
|
||||
|
||||
return mlResult;
|
||||
}
|
||||
else
|
||||
{
|
||||
mlResult.ResultMessage = $"异常:深度学习执行推理失败!";
|
||||
return mlResult;
|
||||
}
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
mlResult.ResultMessage = $"深度学习执行推理异常";
|
||||
return mlResult;
|
||||
}
|
||||
finally
|
||||
{
|
||||
|
||||
originMat?.Dispose();
|
||||
originMat = null;
|
||||
//maskMat?.Dispose();
|
||||
// maskMat = null;
|
||||
detectMat?.Dispose();
|
||||
detectMat = null;
|
||||
// maskWeighted?.Dispose();
|
||||
// maskWeighted = null;
|
||||
// GC.Collect();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
264
DH.Devices.Vision/SimboInstanceSegmentation.cs
Normal file
264
DH.Devices.Vision/SimboInstanceSegmentation.cs
Normal file
@ -0,0 +1,264 @@
|
||||
//#define USE_MULTI_THREAD
|
||||
|
||||
using OpenCvSharp;
|
||||
using OpenCvSharp.Extensions;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Diagnostics;
|
||||
using System.Drawing;
|
||||
using System.Linq;
|
||||
using System.Runtime.ExceptionServices;
|
||||
using System.Threading;
|
||||
using System.Threading.Tasks;
|
||||
using System.Runtime.InteropServices;
|
||||
using Newtonsoft.Json;
|
||||
|
||||
|
||||
namespace DH.Devices.Vision
|
||||
{
|
||||
|
||||
/// <summary>
|
||||
/// 实例分割 maskrcnn
|
||||
/// </summary>
|
||||
public class SimboInstanceSegmentation : SimboVisionMLBase
|
||||
{
|
||||
public override bool Load(MLInit mLInit)
|
||||
{
|
||||
bool res = false;
|
||||
try
|
||||
{
|
||||
|
||||
|
||||
Model = MLEngine.InitModel(mLInit.ModelFile,
|
||||
mLInit.InferenceDevice,
|
||||
mLInit.InputNodeName,
|
||||
1, 3,
|
||||
mLInit.InferenceWidth,
|
||||
mLInit.InferenceHeight,5);
|
||||
res = true;
|
||||
|
||||
#if USE_MULTI_THREAD
|
||||
|
||||
IsCreated = true;
|
||||
if (IsCreated)
|
||||
{
|
||||
if (_runHandleBefore == null)
|
||||
{
|
||||
_runHandleBefore = new AutoResetEvent(false);
|
||||
}
|
||||
|
||||
if (_runHandleAfter == null)
|
||||
{
|
||||
_runHandleAfter = new ManualResetEvent(false);
|
||||
}
|
||||
|
||||
if (_runTask == null)
|
||||
{
|
||||
_runTask = Task.Factory.StartNew(() =>
|
||||
{
|
||||
while (IsCreated)
|
||||
{
|
||||
_runHandleBefore.WaitOne();
|
||||
|
||||
if (IsCreated)
|
||||
{
|
||||
_result = RunInferenceFixed(_req);
|
||||
_runHandleAfter.Set();
|
||||
}
|
||||
}
|
||||
}, TaskCreationOptions.LongRunning);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
throw ex;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
|
||||
#if USE_MULTI_THREAD
|
||||
MLRequest _req = null;
|
||||
MLResult _result = null;
|
||||
|
||||
|
||||
public bool IsCreated { get; set; } = false;
|
||||
Task _runTask = null;
|
||||
AutoResetEvent _runHandleBefore = new AutoResetEvent(false);
|
||||
ManualResetEvent _runHandleAfter = new ManualResetEvent(false);
|
||||
object _runLock = new object();
|
||||
#endif
|
||||
|
||||
[HandleProcessCorruptedStateExceptions]
|
||||
public override MLResult RunInference(MLRequest req)
|
||||
{
|
||||
#if USE_MULTI_THREAD
|
||||
MLResult mlResult = null;
|
||||
lock (_runLock)
|
||||
{
|
||||
_result = new MLResult();
|
||||
|
||||
_req = req;
|
||||
|
||||
_runHandleAfter.Reset();
|
||||
_runHandleBefore.Set();
|
||||
_runHandleAfter.WaitOne();
|
||||
|
||||
mlResult = _result;
|
||||
}
|
||||
|
||||
return mlResult;
|
||||
#else
|
||||
return RunInferenceFixed(req);
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
private void ConvertJsonResult(string json, ref MLResult result)
|
||||
{
|
||||
// json = "{\"FastDetResult\":[{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654843,\"rect\":[175,99,110,594]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654589,\"rect\":[2608,19,104,661]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654285,\"rect\":[1275,19,104,662]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.620762,\"rect\":[1510,95,107,600]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.617812,\"rect\":[2844,93,106,602]}]}";
|
||||
//
|
||||
Console.WriteLine("检测结果JSON:" + json);
|
||||
SegResult detResult = JsonConvert.DeserializeObject<SegResult>(json);
|
||||
if (detResult == null)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
int iNum = detResult.SegmentResult.Count;
|
||||
int IokNum = 0;
|
||||
for (int ix = 0; ix < iNum; ix++)
|
||||
{
|
||||
var det = detResult.SegmentResult[ix];
|
||||
|
||||
var rect = det.rect;
|
||||
DetectionResultDetail detectionResultDetail = new DetectionResultDetail();
|
||||
detectionResultDetail.LabelNo = det.classId;
|
||||
//todo: 标签名相对应
|
||||
detectionResultDetail.LabelDisplay = det.classname;
|
||||
detectionResultDetail.Rect = new Rectangle(rect[0], rect[1], rect[2], rect[3]);
|
||||
detectionResultDetail.Score = det.fScore;
|
||||
detectionResultDetail.LabelName = det.classname;
|
||||
detectionResultDetail.Area = det.area;
|
||||
detectionResultDetail.InferenceResult = ResultState.DetectNG;
|
||||
|
||||
result.ResultDetails.Add(detectionResultDetail);
|
||||
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
[HandleProcessCorruptedStateExceptions]
|
||||
public MLResult RunInferenceFixed(MLRequest req)
|
||||
{
|
||||
MLResult mlResult = new MLResult();
|
||||
Mat originMat = new Mat();
|
||||
Mat detectMat = new Mat();
|
||||
|
||||
try
|
||||
{
|
||||
if (req.mImage == null)
|
||||
{
|
||||
mlResult.IsSuccess = false;
|
||||
mlResult.ResultMessage = "异常:mat为null,无法执行推理!";
|
||||
return mlResult;
|
||||
}
|
||||
|
||||
// resize
|
||||
detectMat = req.mImage;//1ms
|
||||
|
||||
|
||||
|
||||
int iWidth = detectMat.Cols;
|
||||
int iHeight = detectMat.Rows;
|
||||
|
||||
// 如果是单通道图像,转换为三通道 RGB 格式
|
||||
if (detectMat.Channels() == 1)
|
||||
{
|
||||
// 将灰度图像转换为RGB格式(三通道)
|
||||
|
||||
Cv2.CvtColor(detectMat, originMat, ColorConversionCodes.GRAY2BGR);
|
||||
|
||||
}
|
||||
else if (detectMat.Channels() == 3)
|
||||
{
|
||||
// 如果已经是三通道(BGR),则直接转换为RGB
|
||||
|
||||
Cv2.CvtColor(detectMat, originMat, ColorConversionCodes.BGR2RGB);
|
||||
|
||||
}
|
||||
|
||||
//输入数据转化为字节
|
||||
var inputByte = new byte[originMat.Total() * 3];//这里必须乘以通道数,不然数组越界,也可以用w*h*c,差不多
|
||||
Marshal.Copy(originMat.Data, inputByte, 0, inputByte.Length);
|
||||
|
||||
byte[] labellist = new byte[40960]; //新建字节数组:label1_str label2_str
|
||||
|
||||
byte[] outputByte = new byte[originMat.Total() * 3];
|
||||
|
||||
Stopwatch sw = new Stopwatch();
|
||||
sw.Start();
|
||||
unsafe
|
||||
{
|
||||
|
||||
mlResult.IsSuccess = MLEngine.seg_ModelPredict(Model, inputByte, iWidth, iHeight, 3,
|
||||
req.in_lable_path, req.confThreshold, req.iouThreshold, req.confThreshold, req.segmentWidth, ref outputByte[0], ref labellist[0]);
|
||||
//mlResult.IsSuccess = true;
|
||||
}
|
||||
sw.Stop();
|
||||
|
||||
if (mlResult.IsSuccess)
|
||||
{
|
||||
mlResult.ResultMessage = $"深度学习推理成功,耗时:{sw.ElapsedMilliseconds} ms";
|
||||
|
||||
//将字节数组转换为字符串
|
||||
mlResult.ResultMap = originMat.ToBitmap();//4ms
|
||||
string strGet = System.Text.Encoding.Default.GetString(labellist, 0, labellist.Length);
|
||||
|
||||
|
||||
Console.WriteLine("strGet:", strGet);
|
||||
|
||||
|
||||
ConvertJsonResult(strGet, ref mlResult);
|
||||
|
||||
|
||||
|
||||
//解析json字符串
|
||||
|
||||
return mlResult;
|
||||
}
|
||||
else
|
||||
{
|
||||
mlResult.ResultMessage = $"异常:深度学习执行推理失败!";
|
||||
return mlResult;
|
||||
}
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
mlResult.ResultMessage = $"深度学习执行推理异常";
|
||||
return mlResult;
|
||||
}
|
||||
finally
|
||||
{
|
||||
|
||||
originMat?.Dispose();
|
||||
originMat = null;
|
||||
|
||||
|
||||
// GC.Collect();
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
@ -17,23 +17,7 @@ using Newtonsoft.Json;
|
||||
namespace DH.Devices.Vision
|
||||
{
|
||||
|
||||
//public class SegResult
|
||||
//{
|
||||
// public List<Result> SegmentResult;
|
||||
// public class Result
|
||||
// {
|
||||
|
||||
// public double fScore;
|
||||
// public int classId;
|
||||
// public string classname;
|
||||
|
||||
// public double area;
|
||||
// public List<int> rect;
|
||||
|
||||
|
||||
// }
|
||||
|
||||
//}
|
||||
|
||||
|
||||
|
||||
@ -157,7 +141,6 @@ namespace DH.Devices.Vision
|
||||
}
|
||||
|
||||
int iNum = detResult.SegmentResult.Count;
|
||||
int IokNum = 0;
|
||||
for (int ix = 0; ix < iNum; ix++)
|
||||
{
|
||||
var det = detResult.SegmentResult[ix];
|
||||
@ -188,7 +171,7 @@ namespace DH.Devices.Vision
|
||||
{
|
||||
MLResult mlResult = new MLResult();
|
||||
Mat originMat=new Mat() ;
|
||||
Mat tempMat;
|
||||
Mat detectMat;
|
||||
try
|
||||
{
|
||||
if (req.mImage == null)
|
||||
@ -199,26 +182,26 @@ namespace DH.Devices.Vision
|
||||
}
|
||||
|
||||
// resize
|
||||
tempMat = req.mImage;//1ms
|
||||
detectMat = req.mImage;//1ms
|
||||
|
||||
|
||||
|
||||
int iWidth = tempMat.Cols;
|
||||
int iHeight = tempMat.Rows;
|
||||
int iWidth = detectMat.Cols;
|
||||
int iHeight = detectMat.Rows;
|
||||
|
||||
// 如果是单通道图像,转换为三通道 RGB 格式
|
||||
if (tempMat.Channels() == 1)
|
||||
if (detectMat.Channels() == 1)
|
||||
{
|
||||
// 将灰度图像转换为RGB格式(三通道)
|
||||
|
||||
Cv2.CvtColor( tempMat,originMat, ColorConversionCodes.GRAY2BGR);
|
||||
Cv2.CvtColor( detectMat,originMat, ColorConversionCodes.GRAY2BGR);
|
||||
|
||||
}
|
||||
else if (tempMat.Channels() == 3)
|
||||
else if (detectMat.Channels() == 3)
|
||||
{
|
||||
// 如果已经是三通道(BGR),则直接转换为RGB
|
||||
|
||||
Cv2.CvtColor( tempMat,originMat, ColorConversionCodes.BGR2RGB);
|
||||
Cv2.CvtColor( detectMat,originMat, ColorConversionCodes.BGR2RGB);
|
||||
|
||||
}
|
||||
|
||||
@ -250,9 +233,6 @@ namespace DH.Devices.Vision
|
||||
{
|
||||
mlResult.ResultMessage = $"深度学习推理成功,耗时:{sw.ElapsedMilliseconds} ms";
|
||||
|
||||
//Mat maskWeighted = new Mat(iHeight, iWidth, MatType.CV_8UC3, outputByte);
|
||||
|
||||
//mlResult.ResultMap = BitmapConverter.ToBitmap(maskWeighted);//4ms
|
||||
//将字节数组转换为字符串
|
||||
mlResult.ResultMap = originMat.ToBitmap();//4ms
|
||||
string strGet = System.Text.Encoding.Default.GetString(labellist, 0, labellist.Length);
|
||||
@ -261,9 +241,6 @@ namespace DH.Devices.Vision
|
||||
|
||||
ConvertJsonResult(strGet, ref mlResult);
|
||||
|
||||
//maskWeighted?.Dispose();
|
||||
//maskWeighted = null;
|
||||
|
||||
// 解析json字符串
|
||||
return mlResult;
|
||||
}
|
||||
|
18
DH.Devices.Vision/SimboVisionDriver.cs
Normal file
18
DH.Devices.Vision/SimboVisionDriver.cs
Normal file
@ -0,0 +1,18 @@
|
||||
using OpenCvSharp;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Diagnostics;
|
||||
using System.Linq;
|
||||
using System.Runtime.ExceptionServices;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
using System.Xml.Linq;
|
||||
|
||||
namespace DH.Devices.Vision
|
||||
{
|
||||
public class SimboVisionDriver
|
||||
{
|
||||
|
||||
|
||||
}
|
||||
}
|
@ -44,6 +44,31 @@ namespace DH.Devices.Vision
|
||||
// ColorLut = new Mat(1, 256, MatType.CV_8UC3, ColorMap);
|
||||
}
|
||||
}
|
||||
public class HYoloResult
|
||||
{
|
||||
//{
|
||||
// "HYolo": [{
|
||||
// "fScore": "0.687012",
|
||||
// "classId": 0,
|
||||
// "classname": "quejiao",
|
||||
// "rect": [421, 823, 6, 8]
|
||||
// }]
|
||||
//}
|
||||
public List<Result> HYolo;
|
||||
public class Result
|
||||
{
|
||||
|
||||
public double fScore;
|
||||
public int classId;
|
||||
public string classname;
|
||||
|
||||
//public double area;
|
||||
public List<int> rect;
|
||||
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
public class SegResult
|
||||
{
|
||||
public List<Result> SegmentResult;
|
||||
|
@ -1,299 +0,0 @@
|
||||
using OpenCvSharp;
|
||||
using System.ComponentModel;
|
||||
using System.Drawing;
|
||||
using static OpenCvSharp.AgastFeatureDetector;
|
||||
using System.Text.RegularExpressions;
|
||||
using System.Text;
|
||||
|
||||
namespace DH.Devices.Vision
|
||||
{
|
||||
public enum MLModelType
|
||||
{
|
||||
[Description("图像分类")]
|
||||
ImageClassification = 1,
|
||||
[Description("目标检测")]
|
||||
ObjectDetection = 2,
|
||||
//[Description("图像分割")]
|
||||
//ImageSegmentation = 3
|
||||
[Description("语义分割")]
|
||||
SemanticSegmentation = 3,
|
||||
[Description("实例分割")]
|
||||
InstanceSegmentation = 4,
|
||||
[Description("目标检测GPU")]
|
||||
ObjectGPUDetection = 5
|
||||
}
|
||||
public class MLRequest
|
||||
{
|
||||
public int ImageChannels = 3;
|
||||
public Mat mImage;
|
||||
public int ResizeWidth;
|
||||
public int ResizeHeight;
|
||||
|
||||
public float confThreshold;
|
||||
|
||||
public float iouThreshold;
|
||||
|
||||
//public int ImageResizeCount;
|
||||
public bool IsCLDetection;
|
||||
public int ProCount;
|
||||
public string in_node_name;
|
||||
|
||||
public string out_node_name;
|
||||
|
||||
public string in_lable_path;
|
||||
|
||||
public int ResizeImageSize;
|
||||
public int segmentWidth;
|
||||
public int ImageWidth;
|
||||
|
||||
// public List<labelStringBase> OkClassTxtList;
|
||||
|
||||
|
||||
// public List<ModelLabel> LabelNames;
|
||||
|
||||
public float Score;
|
||||
|
||||
}
|
||||
public enum ResultState
|
||||
{
|
||||
|
||||
[Description("检测NG")]
|
||||
DetectNG = -3,
|
||||
|
||||
//[Description("检测不足TBD")]
|
||||
// ShortageTBD = -2,
|
||||
[Description("检测结果TBD")]
|
||||
ResultTBD = -1,
|
||||
[Description("OK")]
|
||||
OK = 1,
|
||||
// [Description("NG")]
|
||||
// NG = 2,
|
||||
//统计结果
|
||||
[Description("A类NG")]
|
||||
A_NG = 25,
|
||||
[Description("B类NG")]
|
||||
B_NG = 26,
|
||||
[Description("C类NG")]
|
||||
C_NG = 27,
|
||||
}
|
||||
/// <summary>
|
||||
/// 深度学习 识别结果明细 面向业务:detect 面向深度学习:Recongnition、Inference
|
||||
/// </summary>
|
||||
public class DetectionResultDetail
|
||||
{
|
||||
public string LabelBGR { get; set; }//识别到对象的标签BGR
|
||||
|
||||
|
||||
public int LabelNo { get; set; } // 识别到对象的标签索引
|
||||
|
||||
public string LabelName { get; set; }//识别到对象的标签名称
|
||||
|
||||
public double Score { get; set; }//识别目标结果的可能性、得分
|
||||
|
||||
public string LabelDisplay { get; set; }//识别到对象的 显示信息
|
||||
|
||||
public double Area { get; set; }//识别目标的区域面积
|
||||
|
||||
public Rectangle Rect { get; set; }//识别目标的外接矩形
|
||||
|
||||
public RotatedRect MinRect { get; set; }//识别目标的最小外接矩形(带角度)
|
||||
|
||||
public ResultState InferenceResult { get; set; }//只是模型推理 label的结果
|
||||
|
||||
public double DistanceToImageCenter { get; set; } //计算矩形框到图像中心的距离
|
||||
|
||||
|
||||
|
||||
public ResultState FinalResult { get; set; }//模型推理+其他视觉、逻辑判断后 label结果
|
||||
}
|
||||
public class MLResult
|
||||
{
|
||||
public bool IsSuccess = false;
|
||||
public string ResultMessage;
|
||||
public Bitmap ResultMap;
|
||||
public List<DetectionResultDetail> ResultDetails = new List<DetectionResultDetail>();
|
||||
}
|
||||
public class MLInit
|
||||
{
|
||||
public string ModelFile;
|
||||
public string InferenceDevice;
|
||||
|
||||
|
||||
public int InferenceWidth;
|
||||
public int InferenceHeight;
|
||||
|
||||
public string InputNodeName;
|
||||
|
||||
|
||||
public int SizeModel;
|
||||
|
||||
public bool bReverse;//尺寸测量正反面
|
||||
//目标检测Gpu
|
||||
public bool IsGPU;
|
||||
public int GPUId;
|
||||
public float Score_thre;
|
||||
public MLInit(string modelFile, bool isGPU, int gpuId, float score_thre)
|
||||
{
|
||||
ModelFile = modelFile;
|
||||
IsGPU = isGPU;
|
||||
GPUId = gpuId;
|
||||
Score_thre = score_thre;
|
||||
}
|
||||
|
||||
public MLInit(string modelFile, string inputNodeName, string inferenceDevice, int inferenceWidth, int inferenceHeight)
|
||||
{
|
||||
ModelFile = modelFile;
|
||||
InferenceDevice = inferenceDevice;
|
||||
|
||||
InferenceWidth = inferenceWidth;
|
||||
InferenceHeight = inferenceHeight;
|
||||
InputNodeName = inputNodeName;
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
public class DetectStationResult
|
||||
{
|
||||
public string Pid { get; set; }
|
||||
|
||||
public string TempPid { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// 检测工位名称
|
||||
/// </summary>
|
||||
public string DetectName { get; set; }
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// 深度学习 检测结果
|
||||
/// </summary>
|
||||
public List<DetectionResultDetail> DetectDetails = new List<DetectionResultDetail>();
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// 工位检测结果
|
||||
/// </summary>
|
||||
public ResultState ResultState { get; set; } = ResultState.ResultTBD;
|
||||
|
||||
|
||||
public double FinalResultfScore { get; set; } = 0.0;
|
||||
|
||||
|
||||
public string ResultLabel { get; set; } = "";// 多个ng时,根据label优先级,设定当前检测项的label
|
||||
|
||||
public string ResultLabelCategoryId { get; set; } = "";// 多个ng时,根据label优先级,设定当前检测项的label
|
||||
|
||||
public int PreTreatState { get; set; }
|
||||
public bool IsPreTreatDone { get; set; } = true;
|
||||
|
||||
public bool IsAfterTreatDone { get; set; } = true;
|
||||
|
||||
public bool IsMLDetectDone { get; set; } = true;
|
||||
|
||||
/// <summary>
|
||||
/// 预处理阶段已经NG
|
||||
/// </summary>
|
||||
public bool IsPreTreatNG { get; set; } = false;
|
||||
|
||||
/// <summary>
|
||||
/// 目标检测NG
|
||||
/// </summary>
|
||||
public bool IsObjectDetectNG { get; set; } = false;
|
||||
|
||||
public DateTime EndTime { get; set; }
|
||||
|
||||
public int StationDetectElapsed { get; set; }
|
||||
public static string NormalizeAndClean(string input)
|
||||
{
|
||||
if (input == null) return null;
|
||||
|
||||
// Step 1: 标准化字符编码为 Form C (规范组合)
|
||||
string normalizedString = input.Normalize(NormalizationForm.FormC);
|
||||
|
||||
// Step 2: 移除所有空白字符,包括制表符和换行符
|
||||
string withoutWhitespace = Regex.Replace(normalizedString, @"\s+", "");
|
||||
|
||||
// Step 3: 移除控制字符 (Unicode 控制字符,范围 \u0000 - \u001F 和 \u007F)
|
||||
string withoutControlChars = Regex.Replace(withoutWhitespace, @"[\u0000-\u001F\u007F]+", "");
|
||||
|
||||
// Step 4: 移除特殊的不可见字符(如零宽度空格等)
|
||||
string cleanedString = Regex.Replace(withoutControlChars, @"[\u200B\u200C\u200D\uFEFF]+", "");
|
||||
|
||||
return cleanedString;
|
||||
}
|
||||
|
||||
}
|
||||
public class RelatedCamera
|
||||
{
|
||||
|
||||
[Category("关联相机")]
|
||||
[DisplayName("关联相机")]
|
||||
[Description("关联相机描述")]
|
||||
|
||||
//[TypeConverter(typeof(CollectionCountConvert))]
|
||||
public string CameraSourceId { get; set; } = "";
|
||||
|
||||
|
||||
|
||||
}
|
||||
public class VisionEngine
|
||||
{
|
||||
[ReadOnly(true)]
|
||||
public string Id { get; set; } = Guid.NewGuid().ToString();
|
||||
|
||||
|
||||
[Category("检测配置")]
|
||||
[DisplayName("检测配置名称")]
|
||||
[Description("检测配置名称")]
|
||||
public string Name { get; set; }
|
||||
|
||||
[Category("关联相机")]
|
||||
[DisplayName("关联相机")]
|
||||
[Description("关联相机描述")]
|
||||
|
||||
|
||||
public string CameraSourceId { get; set; } = "";
|
||||
|
||||
|
||||
[Category("关联相机集合")]
|
||||
[DisplayName("关联相机集合")]
|
||||
[Description("关联相机描述")]
|
||||
//[TypeConverter(typeof(DeviceIdSelectorConverter<CameraBase>))]
|
||||
|
||||
public List<RelatedCamera> CameraCollects { get; set; } = new List<RelatedCamera>();
|
||||
|
||||
|
||||
[Category("启用配置")]
|
||||
[DisplayName("是否启用GPU检测")]
|
||||
[Description("是否启用GPU检测")]
|
||||
public bool IsEnableGPU { get; set; } = false;
|
||||
|
||||
[Category("2.中检测(深度学习)")]
|
||||
[DisplayName("中检测-模型类型")]
|
||||
[Description("模型类型:ImageClassification-图片分类;ObjectDetection:目标检测;Segmentation-图像分割")]
|
||||
//[TypeConverter(typeof(EnumDescriptionConverter<MLModelType>))]
|
||||
public MLModelType ModelType { get; set; } = MLModelType.ObjectDetection;
|
||||
|
||||
//[Category("2.中检测(深度学习)")]
|
||||
//[DisplayName("中检测-GPU索引")]
|
||||
//[Description("GPU索引")]
|
||||
//public int GPUIndex { get; set; } = 0;
|
||||
|
||||
[Category("2.中检测(深度学习)")]
|
||||
[DisplayName("中检测-模型文件路径")]
|
||||
[Description("中处理 深度学习模型文件路径,路径中不可含有中文字符,一般情况可以只配置中检测模型,当需要先用预检测过滤一次时,请先配置好与预检测相关配置")]
|
||||
|
||||
public string ModelPath { get; set; }
|
||||
|
||||
public VisionEngine(string name, MLModelType modelType, string modelPath, bool isEnableGPU,string sCameraSourceId)
|
||||
{
|
||||
ModelPath = modelPath ?? string.Empty;
|
||||
Name = name;
|
||||
ModelType = modelType;
|
||||
IsEnableGPU = isEnableGPU;
|
||||
Id = Guid.NewGuid().ToString();
|
||||
CameraSourceId = sCameraSourceId;
|
||||
|
||||
}
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user