Files
CheckDevice/Check.Main/Process_Img.cs
2025-10-20 14:47:17 +08:00

151 lines
4.6 KiB
C#

using OpenCvSharp;
using System;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Drawing.Imaging;
using OpenCvSharp.Extensions;
using System.Collections.Concurrent;
using System.Threading.Tasks;
using System.Diagnostics;
using System.Threading;
public class ProcessImg
{
// 对单个图像进行模板匹配
public static (double score, Rect? coords) MatchTemplate(Mat img, string templatePath)
{
// 确保图像和模板文件存在
// 读取图像和模板
var template = Cv2.ImRead(templatePath, ImreadModes.Color);
// 创建一个模板匹配的结果矩阵
var result = new Mat();
Cv2.MatchTemplate(img, template, result, TemplateMatchModes.CCoeffNormed);
// 查找最大匹配值
Cv2.MinMaxLoc(result, out _, out var maxVal, out _, out var maxLoc);
// 如果找到的最大匹配值大于阈值
double threshold = 0.3; // 可以根据需要调整阈值
if (maxVal >= threshold)
{
// 计算匹配的坐标
var topLeft = maxLoc;
var rect = new Rect(topLeft.X, topLeft.Y, template.Width, template.Height);
return (maxVal, rect);
}
return (0, null);
}
// 遍历文件夹中的所有图像文件进行模板匹配,并找到最佳得分图像
public static Double ProcessImagesInFolder(string folderPath, Mat img)
{
// 获取所有图像文件
var imageFiles = Directory.GetFiles(folderPath, "*.*", SearchOption.TopDirectoryOnly)
.Where(file => file.EndsWith(".jpg", StringComparison.OrdinalIgnoreCase) ||
file.EndsWith(".png", StringComparison.OrdinalIgnoreCase) ||
file.EndsWith(".bmp", StringComparison.OrdinalIgnoreCase))
.ToList();
// 确保输出文件夹存在
// 线程数量
int numThreads = 5;
// 用于存储每个图像的得分和坐标
var bestMatch = new ConcurrentBag<(string imagePath, double score, Rect? coords)>();
DateTime startTime = DateTime.Now;
Stopwatch sw = new Stopwatch();
sw.Start();
Parallel.ForEach(imageFiles, new ParallelOptions { MaxDegreeOfParallelism = numThreads }, picPath =>
{
DateTime threadStartTime = DateTime.Now;
var (score, coords) = MatchTemplate(img, picPath);
bestMatch.Add((picPath, score, coords));
DateTime threadEndTime = DateTime.Now;
TimeSpan threadElapsed = threadEndTime - threadStartTime;
Console.WriteLine($"线程处理 {picPath} 耗时: {threadElapsed.TotalMilliseconds}ms");
});
sw.Stop();
TimeSpan totalElapsed = sw.Elapsed;
Console.WriteLine($"处理完成,耗时: {totalElapsed.TotalSeconds}秒");
// 查找最佳得分
var best = bestMatch.OrderByDescending(m => m.score).FirstOrDefault();
return best.score;
//if (best.coords.HasValue)
//{
// Rect rect = best.coords.Value;
// return rect;
//}
//else
//{
// return new Rect(0, 0, 0, 0);
//}
}
public static Mat BitmapToMat(Bitmap bitmap)
{
if (bitmap == null)
{
throw new ArgumentException("Bitmap is null");
}
// 根据 Bitmap 的宽度、高度和像素格式创建一个与其相对应的 Mat
Mat mat = new Mat(bitmap.Height, bitmap.Width, MatType.CV_8UC3); // 假设 Bitmap 是 24-bit RGB
// 锁定 Bitmap 的内存区域以直接访问它的内存
BitmapData bitmapData = bitmap.LockBits(
new Rectangle(0, 0, bitmap.Width, bitmap.Height),
ImageLockMode.ReadOnly,
bitmap.PixelFormat
);
try
{
// 使用直接内存拷贝将 Bitmap 的数据拷贝到 Mat
unsafe
{
byte* srcData = (byte*)bitmapData.Scan0;
byte* dstData = (byte*)mat.DataPointer;
int stride = bitmapData.Stride;
int width = bitmap.Width * 3; // 24bpp 3个字节一个像素
int height = bitmap.Height;
for (int y = 0; y < height; y++)
{
Buffer.MemoryCopy(srcData + y * stride, dstData + y * mat.Step(), width, width);
}
}
}
finally
{
bitmap.UnlockBits(bitmapData);
}
return mat;
}
}