Agriculture-front-end/dist/CesiumUnminified/Workers/chunk-PK7TEP3J.js

2717 lines
88 KiB
JavaScript

/**
* @license
* Cesium - https://github.com/CesiumGS/cesium
* Version 1.117
*
* Copyright 2011-2022 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
import {
AttributeCompression_default
} from "./chunk-PS6AEMBR.js";
import {
EncodedCartesian3_default
} from "./chunk-AOFMPKUB.js";
import {
IntersectionTests_default
} from "./chunk-G7CJQKKD.js";
import {
Plane_default
} from "./chunk-FOZQIHZK.js";
import {
IndexDatatype_default
} from "./chunk-WWP3I7R5.js";
import {
GeometryAttribute_default,
GeometryType_default,
Geometry_default,
PrimitiveType_default
} from "./chunk-34DGOKCO.js";
import {
BoundingSphere_default,
GeographicProjection_default,
Intersect_default
} from "./chunk-NI2R52QD.js";
import {
Cartesian4_default,
Matrix4_default
} from "./chunk-I5TDPPC4.js";
import {
ComponentDatatype_default
} from "./chunk-TMMOULW3.js";
import {
Cartesian2_default,
Cartesian3_default,
Cartographic_default,
Matrix3_default
} from "./chunk-C5CE4OG6.js";
import {
Math_default
} from "./chunk-4PHPQRSH.js";
import {
defaultValue_default
} from "./chunk-UCPPWV64.js";
import {
Check_default,
DeveloperError_default
} from "./chunk-U4IMCOF5.js";
import {
defined_default
} from "./chunk-BDUJXBVF.js";
// packages/engine/Source/Core/barycentricCoordinates.js
var scratchCartesian1 = new Cartesian3_default();
var scratchCartesian2 = new Cartesian3_default();
var scratchCartesian3 = new Cartesian3_default();
function barycentricCoordinates(point, p0, p1, p2, result) {
Check_default.defined("point", point);
Check_default.defined("p0", p0);
Check_default.defined("p1", p1);
Check_default.defined("p2", p2);
if (!defined_default(result)) {
result = new Cartesian3_default();
}
let v02;
let v12;
let v22;
let dot00;
let dot01;
let dot02;
let dot11;
let dot12;
if (!defined_default(p0.z)) {
if (Cartesian2_default.equalsEpsilon(point, p0, Math_default.EPSILON14)) {
return Cartesian3_default.clone(Cartesian3_default.UNIT_X, result);
}
if (Cartesian2_default.equalsEpsilon(point, p1, Math_default.EPSILON14)) {
return Cartesian3_default.clone(Cartesian3_default.UNIT_Y, result);
}
if (Cartesian2_default.equalsEpsilon(point, p2, Math_default.EPSILON14)) {
return Cartesian3_default.clone(Cartesian3_default.UNIT_Z, result);
}
v02 = Cartesian2_default.subtract(p1, p0, scratchCartesian1);
v12 = Cartesian2_default.subtract(p2, p0, scratchCartesian2);
v22 = Cartesian2_default.subtract(point, p0, scratchCartesian3);
dot00 = Cartesian2_default.dot(v02, v02);
dot01 = Cartesian2_default.dot(v02, v12);
dot02 = Cartesian2_default.dot(v02, v22);
dot11 = Cartesian2_default.dot(v12, v12);
dot12 = Cartesian2_default.dot(v12, v22);
} else {
if (Cartesian3_default.equalsEpsilon(point, p0, Math_default.EPSILON14)) {
return Cartesian3_default.clone(Cartesian3_default.UNIT_X, result);
}
if (Cartesian3_default.equalsEpsilon(point, p1, Math_default.EPSILON14)) {
return Cartesian3_default.clone(Cartesian3_default.UNIT_Y, result);
}
if (Cartesian3_default.equalsEpsilon(point, p2, Math_default.EPSILON14)) {
return Cartesian3_default.clone(Cartesian3_default.UNIT_Z, result);
}
v02 = Cartesian3_default.subtract(p1, p0, scratchCartesian1);
v12 = Cartesian3_default.subtract(p2, p0, scratchCartesian2);
v22 = Cartesian3_default.subtract(point, p0, scratchCartesian3);
dot00 = Cartesian3_default.dot(v02, v02);
dot01 = Cartesian3_default.dot(v02, v12);
dot02 = Cartesian3_default.dot(v02, v22);
dot11 = Cartesian3_default.dot(v12, v12);
dot12 = Cartesian3_default.dot(v12, v22);
}
result.y = dot11 * dot02 - dot01 * dot12;
result.z = dot00 * dot12 - dot01 * dot02;
const q = dot00 * dot11 - dot01 * dot01;
if (q === 0) {
return void 0;
}
result.y /= q;
result.z /= q;
result.x = 1 - result.y - result.z;
return result;
}
var barycentricCoordinates_default = barycentricCoordinates;
// packages/engine/Source/Core/Tipsify.js
var Tipsify = {};
Tipsify.calculateACMR = function(options) {
options = defaultValue_default(options, defaultValue_default.EMPTY_OBJECT);
const indices = options.indices;
let maximumIndex = options.maximumIndex;
const cacheSize = defaultValue_default(options.cacheSize, 24);
if (!defined_default(indices)) {
throw new DeveloperError_default("indices is required.");
}
const numIndices = indices.length;
if (numIndices < 3 || numIndices % 3 !== 0) {
throw new DeveloperError_default("indices length must be a multiple of three.");
}
if (maximumIndex <= 0) {
throw new DeveloperError_default("maximumIndex must be greater than zero.");
}
if (cacheSize < 3) {
throw new DeveloperError_default("cacheSize must be greater than two.");
}
if (!defined_default(maximumIndex)) {
maximumIndex = 0;
let currentIndex = 0;
let intoIndices = indices[currentIndex];
while (currentIndex < numIndices) {
if (intoIndices > maximumIndex) {
maximumIndex = intoIndices;
}
++currentIndex;
intoIndices = indices[currentIndex];
}
}
const vertexTimeStamps = [];
for (let i = 0; i < maximumIndex + 1; i++) {
vertexTimeStamps[i] = 0;
}
let s = cacheSize + 1;
for (let j = 0; j < numIndices; ++j) {
if (s - vertexTimeStamps[indices[j]] > cacheSize) {
vertexTimeStamps[indices[j]] = s;
++s;
}
}
return (s - cacheSize + 1) / (numIndices / 3);
};
Tipsify.tipsify = function(options) {
options = defaultValue_default(options, defaultValue_default.EMPTY_OBJECT);
const indices = options.indices;
const maximumIndex = options.maximumIndex;
const cacheSize = defaultValue_default(options.cacheSize, 24);
let cursor;
function skipDeadEnd(vertices2, deadEnd2, indices2, maximumIndexPlusOne2) {
while (deadEnd2.length >= 1) {
const d = deadEnd2[deadEnd2.length - 1];
deadEnd2.splice(deadEnd2.length - 1, 1);
if (vertices2[d].numLiveTriangles > 0) {
return d;
}
}
while (cursor < maximumIndexPlusOne2) {
if (vertices2[cursor].numLiveTriangles > 0) {
++cursor;
return cursor - 1;
}
++cursor;
}
return -1;
}
function getNextVertex(indices2, cacheSize2, oneRing2, vertices2, s2, deadEnd2, maximumIndexPlusOne2) {
let n = -1;
let p;
let m = -1;
let itOneRing = 0;
while (itOneRing < oneRing2.length) {
const index2 = oneRing2[itOneRing];
if (vertices2[index2].numLiveTriangles) {
p = 0;
if (s2 - vertices2[index2].timeStamp + 2 * vertices2[index2].numLiveTriangles <= cacheSize2) {
p = s2 - vertices2[index2].timeStamp;
}
if (p > m || m === -1) {
m = p;
n = index2;
}
}
++itOneRing;
}
if (n === -1) {
return skipDeadEnd(vertices2, deadEnd2, indices2, maximumIndexPlusOne2);
}
return n;
}
if (!defined_default(indices)) {
throw new DeveloperError_default("indices is required.");
}
const numIndices = indices.length;
if (numIndices < 3 || numIndices % 3 !== 0) {
throw new DeveloperError_default("indices length must be a multiple of three.");
}
if (maximumIndex <= 0) {
throw new DeveloperError_default("maximumIndex must be greater than zero.");
}
if (cacheSize < 3) {
throw new DeveloperError_default("cacheSize must be greater than two.");
}
let maximumIndexPlusOne = 0;
let currentIndex = 0;
let intoIndices = indices[currentIndex];
const endIndex = numIndices;
if (defined_default(maximumIndex)) {
maximumIndexPlusOne = maximumIndex + 1;
} else {
while (currentIndex < endIndex) {
if (intoIndices > maximumIndexPlusOne) {
maximumIndexPlusOne = intoIndices;
}
++currentIndex;
intoIndices = indices[currentIndex];
}
if (maximumIndexPlusOne === -1) {
return 0;
}
++maximumIndexPlusOne;
}
const vertices = [];
let i;
for (i = 0; i < maximumIndexPlusOne; i++) {
vertices[i] = {
numLiveTriangles: 0,
timeStamp: 0,
vertexTriangles: []
};
}
currentIndex = 0;
let triangle = 0;
while (currentIndex < endIndex) {
vertices[indices[currentIndex]].vertexTriangles.push(triangle);
++vertices[indices[currentIndex]].numLiveTriangles;
vertices[indices[currentIndex + 1]].vertexTriangles.push(triangle);
++vertices[indices[currentIndex + 1]].numLiveTriangles;
vertices[indices[currentIndex + 2]].vertexTriangles.push(triangle);
++vertices[indices[currentIndex + 2]].numLiveTriangles;
++triangle;
currentIndex += 3;
}
let f = 0;
let s = cacheSize + 1;
cursor = 1;
let oneRing = [];
const deadEnd = [];
let vertex;
let intoVertices;
let currentOutputIndex = 0;
const outputIndices = [];
const numTriangles = numIndices / 3;
const triangleEmitted = [];
for (i = 0; i < numTriangles; i++) {
triangleEmitted[i] = false;
}
let index;
let limit;
while (f !== -1) {
oneRing = [];
intoVertices = vertices[f];
limit = intoVertices.vertexTriangles.length;
for (let k = 0; k < limit; ++k) {
triangle = intoVertices.vertexTriangles[k];
if (!triangleEmitted[triangle]) {
triangleEmitted[triangle] = true;
currentIndex = triangle + triangle + triangle;
for (let j = 0; j < 3; ++j) {
index = indices[currentIndex];
oneRing.push(index);
deadEnd.push(index);
outputIndices[currentOutputIndex] = index;
++currentOutputIndex;
vertex = vertices[index];
--vertex.numLiveTriangles;
if (s - vertex.timeStamp > cacheSize) {
vertex.timeStamp = s;
++s;
}
++currentIndex;
}
}
}
f = getNextVertex(
indices,
cacheSize,
oneRing,
vertices,
s,
deadEnd,
maximumIndexPlusOne
);
}
return outputIndices;
};
var Tipsify_default = Tipsify;
// packages/engine/Source/Core/GeometryPipeline.js
var GeometryPipeline = {};
function addTriangle(lines, index, i0, i1, i2) {
lines[index++] = i0;
lines[index++] = i1;
lines[index++] = i1;
lines[index++] = i2;
lines[index++] = i2;
lines[index] = i0;
}
function trianglesToLines(triangles) {
const count = triangles.length;
const size = count / 3 * 6;
const lines = IndexDatatype_default.createTypedArray(count, size);
let index = 0;
for (let i = 0; i < count; i += 3, index += 6) {
addTriangle(lines, index, triangles[i], triangles[i + 1], triangles[i + 2]);
}
return lines;
}
function triangleStripToLines(triangles) {
const count = triangles.length;
if (count >= 3) {
const size = (count - 2) * 6;
const lines = IndexDatatype_default.createTypedArray(count, size);
addTriangle(lines, 0, triangles[0], triangles[1], triangles[2]);
let index = 6;
for (let i = 3; i < count; ++i, index += 6) {
addTriangle(
lines,
index,
triangles[i - 1],
triangles[i],
triangles[i - 2]
);
}
return lines;
}
return new Uint16Array();
}
function triangleFanToLines(triangles) {
if (triangles.length > 0) {
const count = triangles.length - 1;
const size = (count - 1) * 6;
const lines = IndexDatatype_default.createTypedArray(count, size);
const base = triangles[0];
let index = 0;
for (let i = 1; i < count; ++i, index += 6) {
addTriangle(lines, index, base, triangles[i], triangles[i + 1]);
}
return lines;
}
return new Uint16Array();
}
GeometryPipeline.toWireframe = function(geometry) {
if (!defined_default(geometry)) {
throw new DeveloperError_default("geometry is required.");
}
const indices = geometry.indices;
if (defined_default(indices)) {
switch (geometry.primitiveType) {
case PrimitiveType_default.TRIANGLES:
geometry.indices = trianglesToLines(indices);
break;
case PrimitiveType_default.TRIANGLE_STRIP:
geometry.indices = triangleStripToLines(indices);
break;
case PrimitiveType_default.TRIANGLE_FAN:
geometry.indices = triangleFanToLines(indices);
break;
default:
throw new DeveloperError_default(
"geometry.primitiveType must be TRIANGLES, TRIANGLE_STRIP, or TRIANGLE_FAN."
);
}
geometry.primitiveType = PrimitiveType_default.LINES;
}
return geometry;
};
GeometryPipeline.createLineSegmentsForVectors = function(geometry, attributeName, length) {
attributeName = defaultValue_default(attributeName, "normal");
if (!defined_default(geometry)) {
throw new DeveloperError_default("geometry is required.");
}
if (!defined_default(geometry.attributes.position)) {
throw new DeveloperError_default("geometry.attributes.position is required.");
}
if (!defined_default(geometry.attributes[attributeName])) {
throw new DeveloperError_default(
`geometry.attributes must have an attribute with the same name as the attributeName parameter, ${attributeName}.`
);
}
length = defaultValue_default(length, 1e4);
const positions = geometry.attributes.position.values;
const vectors = geometry.attributes[attributeName].values;
const positionsLength = positions.length;
const newPositions = new Float64Array(2 * positionsLength);
let j = 0;
for (let i = 0; i < positionsLength; i += 3) {
newPositions[j++] = positions[i];
newPositions[j++] = positions[i + 1];
newPositions[j++] = positions[i + 2];
newPositions[j++] = positions[i] + vectors[i] * length;
newPositions[j++] = positions[i + 1] + vectors[i + 1] * length;
newPositions[j++] = positions[i + 2] + vectors[i + 2] * length;
}
let newBoundingSphere;
const bs = geometry.boundingSphere;
if (defined_default(bs)) {
newBoundingSphere = new BoundingSphere_default(bs.center, bs.radius + length);
}
return new Geometry_default({
attributes: {
position: new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.DOUBLE,
componentsPerAttribute: 3,
values: newPositions
})
},
primitiveType: PrimitiveType_default.LINES,
boundingSphere: newBoundingSphere
});
};
GeometryPipeline.createAttributeLocations = function(geometry) {
if (!defined_default(geometry)) {
throw new DeveloperError_default("geometry is required.");
}
const semantics = [
"position",
"positionHigh",
"positionLow",
// From VertexFormat.position - after 2D projection and high-precision encoding
"position3DHigh",
"position3DLow",
"position2DHigh",
"position2DLow",
// From Primitive
"pickColor",
// From VertexFormat
"normal",
"st",
"tangent",
"bitangent",
// For shadow volumes
"extrudeDirection",
// From compressing texture coordinates and normals
"compressedAttributes"
];
const attributes = geometry.attributes;
const indices = {};
let j = 0;
let i;
const len = semantics.length;
for (i = 0; i < len; ++i) {
const semantic = semantics[i];
if (defined_default(attributes[semantic])) {
indices[semantic] = j++;
}
}
for (const name in attributes) {
if (attributes.hasOwnProperty(name) && !defined_default(indices[name])) {
indices[name] = j++;
}
}
return indices;
};
GeometryPipeline.reorderForPreVertexCache = function(geometry) {
if (!defined_default(geometry)) {
throw new DeveloperError_default("geometry is required.");
}
const numVertices = Geometry_default.computeNumberOfVertices(geometry);
const indices = geometry.indices;
if (defined_default(indices)) {
const indexCrossReferenceOldToNew = new Int32Array(numVertices);
for (let i = 0; i < numVertices; i++) {
indexCrossReferenceOldToNew[i] = -1;
}
const indicesIn = indices;
const numIndices = indicesIn.length;
const indicesOut = IndexDatatype_default.createTypedArray(numVertices, numIndices);
let intoIndicesIn = 0;
let intoIndicesOut = 0;
let nextIndex = 0;
let tempIndex;
while (intoIndicesIn < numIndices) {
tempIndex = indexCrossReferenceOldToNew[indicesIn[intoIndicesIn]];
if (tempIndex !== -1) {
indicesOut[intoIndicesOut] = tempIndex;
} else {
tempIndex = indicesIn[intoIndicesIn];
indexCrossReferenceOldToNew[tempIndex] = nextIndex;
indicesOut[intoIndicesOut] = nextIndex;
++nextIndex;
}
++intoIndicesIn;
++intoIndicesOut;
}
geometry.indices = indicesOut;
const attributes = geometry.attributes;
for (const property in attributes) {
if (attributes.hasOwnProperty(property) && defined_default(attributes[property]) && defined_default(attributes[property].values)) {
const attribute = attributes[property];
const elementsIn = attribute.values;
let intoElementsIn = 0;
const numComponents = attribute.componentsPerAttribute;
const elementsOut = ComponentDatatype_default.createTypedArray(
attribute.componentDatatype,
nextIndex * numComponents
);
while (intoElementsIn < numVertices) {
const temp = indexCrossReferenceOldToNew[intoElementsIn];
if (temp !== -1) {
for (let j = 0; j < numComponents; j++) {
elementsOut[numComponents * temp + j] = elementsIn[numComponents * intoElementsIn + j];
}
}
++intoElementsIn;
}
attribute.values = elementsOut;
}
}
}
return geometry;
};
GeometryPipeline.reorderForPostVertexCache = function(geometry, cacheCapacity) {
if (!defined_default(geometry)) {
throw new DeveloperError_default("geometry is required.");
}
const indices = geometry.indices;
if (geometry.primitiveType === PrimitiveType_default.TRIANGLES && defined_default(indices)) {
const numIndices = indices.length;
let maximumIndex = 0;
for (let j = 0; j < numIndices; j++) {
if (indices[j] > maximumIndex) {
maximumIndex = indices[j];
}
}
geometry.indices = Tipsify_default.tipsify({
indices,
maximumIndex,
cacheSize: cacheCapacity
});
}
return geometry;
};
function copyAttributesDescriptions(attributes) {
const newAttributes = {};
for (const attribute in attributes) {
if (attributes.hasOwnProperty(attribute) && defined_default(attributes[attribute]) && defined_default(attributes[attribute].values)) {
const attr = attributes[attribute];
newAttributes[attribute] = new GeometryAttribute_default({
componentDatatype: attr.componentDatatype,
componentsPerAttribute: attr.componentsPerAttribute,
normalize: attr.normalize,
values: []
});
}
}
return newAttributes;
}
function copyVertex(destinationAttributes, sourceAttributes, index) {
for (const attribute in sourceAttributes) {
if (sourceAttributes.hasOwnProperty(attribute) && defined_default(sourceAttributes[attribute]) && defined_default(sourceAttributes[attribute].values)) {
const attr = sourceAttributes[attribute];
for (let k = 0; k < attr.componentsPerAttribute; ++k) {
destinationAttributes[attribute].values.push(
attr.values[index * attr.componentsPerAttribute + k]
);
}
}
}
}
GeometryPipeline.fitToUnsignedShortIndices = function(geometry) {
if (!defined_default(geometry)) {
throw new DeveloperError_default("geometry is required.");
}
if (defined_default(geometry.indices) && geometry.primitiveType !== PrimitiveType_default.TRIANGLES && geometry.primitiveType !== PrimitiveType_default.LINES && geometry.primitiveType !== PrimitiveType_default.POINTS) {
throw new DeveloperError_default(
"geometry.primitiveType must equal to PrimitiveType.TRIANGLES, PrimitiveType.LINES, or PrimitiveType.POINTS."
);
}
const geometries = [];
const numberOfVertices = Geometry_default.computeNumberOfVertices(geometry);
if (defined_default(geometry.indices) && numberOfVertices >= Math_default.SIXTY_FOUR_KILOBYTES) {
let oldToNewIndex = [];
let newIndices = [];
let currentIndex = 0;
let newAttributes = copyAttributesDescriptions(geometry.attributes);
const originalIndices = geometry.indices;
const numberOfIndices = originalIndices.length;
let indicesPerPrimitive;
if (geometry.primitiveType === PrimitiveType_default.TRIANGLES) {
indicesPerPrimitive = 3;
} else if (geometry.primitiveType === PrimitiveType_default.LINES) {
indicesPerPrimitive = 2;
} else if (geometry.primitiveType === PrimitiveType_default.POINTS) {
indicesPerPrimitive = 1;
}
for (let j = 0; j < numberOfIndices; j += indicesPerPrimitive) {
for (let k = 0; k < indicesPerPrimitive; ++k) {
const x = originalIndices[j + k];
let i = oldToNewIndex[x];
if (!defined_default(i)) {
i = currentIndex++;
oldToNewIndex[x] = i;
copyVertex(newAttributes, geometry.attributes, x);
}
newIndices.push(i);
}
if (currentIndex + indicesPerPrimitive >= Math_default.SIXTY_FOUR_KILOBYTES) {
geometries.push(
new Geometry_default({
attributes: newAttributes,
indices: newIndices,
primitiveType: geometry.primitiveType,
boundingSphere: geometry.boundingSphere,
boundingSphereCV: geometry.boundingSphereCV
})
);
oldToNewIndex = [];
newIndices = [];
currentIndex = 0;
newAttributes = copyAttributesDescriptions(geometry.attributes);
}
}
if (newIndices.length !== 0) {
geometries.push(
new Geometry_default({
attributes: newAttributes,
indices: newIndices,
primitiveType: geometry.primitiveType,
boundingSphere: geometry.boundingSphere,
boundingSphereCV: geometry.boundingSphereCV
})
);
}
} else {
geometries.push(geometry);
}
return geometries;
};
var scratchProjectTo2DCartesian3 = new Cartesian3_default();
var scratchProjectTo2DCartographic = new Cartographic_default();
GeometryPipeline.projectTo2D = function(geometry, attributeName, attributeName3D, attributeName2D, projection) {
if (!defined_default(geometry)) {
throw new DeveloperError_default("geometry is required.");
}
if (!defined_default(attributeName)) {
throw new DeveloperError_default("attributeName is required.");
}
if (!defined_default(attributeName3D)) {
throw new DeveloperError_default("attributeName3D is required.");
}
if (!defined_default(attributeName2D)) {
throw new DeveloperError_default("attributeName2D is required.");
}
if (!defined_default(geometry.attributes[attributeName])) {
throw new DeveloperError_default(
`geometry must have attribute matching the attributeName argument: ${attributeName}.`
);
}
if (geometry.attributes[attributeName].componentDatatype !== ComponentDatatype_default.DOUBLE) {
throw new DeveloperError_default(
"The attribute componentDatatype must be ComponentDatatype.DOUBLE."
);
}
const attribute = geometry.attributes[attributeName];
projection = defined_default(projection) ? projection : new GeographicProjection_default();
const ellipsoid = projection.ellipsoid;
const values3D = attribute.values;
const projectedValues = new Float64Array(values3D.length);
let index = 0;
for (let i = 0; i < values3D.length; i += 3) {
const value = Cartesian3_default.fromArray(
values3D,
i,
scratchProjectTo2DCartesian3
);
const lonLat = ellipsoid.cartesianToCartographic(
value,
scratchProjectTo2DCartographic
);
if (!defined_default(lonLat)) {
throw new DeveloperError_default(
`Could not project point (${value.x}, ${value.y}, ${value.z}) to 2D.`
);
}
const projectedLonLat = projection.project(
lonLat,
scratchProjectTo2DCartesian3
);
projectedValues[index++] = projectedLonLat.x;
projectedValues[index++] = projectedLonLat.y;
projectedValues[index++] = projectedLonLat.z;
}
geometry.attributes[attributeName3D] = attribute;
geometry.attributes[attributeName2D] = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.DOUBLE,
componentsPerAttribute: 3,
values: projectedValues
});
delete geometry.attributes[attributeName];
return geometry;
};
var encodedResult = {
high: 0,
low: 0
};
GeometryPipeline.encodeAttribute = function(geometry, attributeName, attributeHighName, attributeLowName) {
if (!defined_default(geometry)) {
throw new DeveloperError_default("geometry is required.");
}
if (!defined_default(attributeName)) {
throw new DeveloperError_default("attributeName is required.");
}
if (!defined_default(attributeHighName)) {
throw new DeveloperError_default("attributeHighName is required.");
}
if (!defined_default(attributeLowName)) {
throw new DeveloperError_default("attributeLowName is required.");
}
if (!defined_default(geometry.attributes[attributeName])) {
throw new DeveloperError_default(
`geometry must have attribute matching the attributeName argument: ${attributeName}.`
);
}
if (geometry.attributes[attributeName].componentDatatype !== ComponentDatatype_default.DOUBLE) {
throw new DeveloperError_default(
"The attribute componentDatatype must be ComponentDatatype.DOUBLE."
);
}
const attribute = geometry.attributes[attributeName];
const values = attribute.values;
const length = values.length;
const highValues = new Float32Array(length);
const lowValues = new Float32Array(length);
for (let i = 0; i < length; ++i) {
EncodedCartesian3_default.encode(values[i], encodedResult);
highValues[i] = encodedResult.high;
lowValues[i] = encodedResult.low;
}
const componentsPerAttribute = attribute.componentsPerAttribute;
geometry.attributes[attributeHighName] = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.FLOAT,
componentsPerAttribute,
values: highValues
});
geometry.attributes[attributeLowName] = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.FLOAT,
componentsPerAttribute,
values: lowValues
});
delete geometry.attributes[attributeName];
return geometry;
};
var scratchCartesian32 = new Cartesian3_default();
function transformPoint(matrix, attribute) {
if (defined_default(attribute)) {
const values = attribute.values;
const length = values.length;
for (let i = 0; i < length; i += 3) {
Cartesian3_default.unpack(values, i, scratchCartesian32);
Matrix4_default.multiplyByPoint(matrix, scratchCartesian32, scratchCartesian32);
Cartesian3_default.pack(scratchCartesian32, values, i);
}
}
}
function transformVector(matrix, attribute) {
if (defined_default(attribute)) {
const values = attribute.values;
const length = values.length;
for (let i = 0; i < length; i += 3) {
Cartesian3_default.unpack(values, i, scratchCartesian32);
Matrix3_default.multiplyByVector(matrix, scratchCartesian32, scratchCartesian32);
scratchCartesian32 = Cartesian3_default.normalize(
scratchCartesian32,
scratchCartesian32
);
Cartesian3_default.pack(scratchCartesian32, values, i);
}
}
}
var inverseTranspose = new Matrix4_default();
var normalMatrix = new Matrix3_default();
GeometryPipeline.transformToWorldCoordinates = function(instance) {
if (!defined_default(instance)) {
throw new DeveloperError_default("instance is required.");
}
const modelMatrix = instance.modelMatrix;
if (Matrix4_default.equals(modelMatrix, Matrix4_default.IDENTITY)) {
return instance;
}
const attributes = instance.geometry.attributes;
transformPoint(modelMatrix, attributes.position);
transformPoint(modelMatrix, attributes.prevPosition);
transformPoint(modelMatrix, attributes.nextPosition);
if (defined_default(attributes.normal) || defined_default(attributes.tangent) || defined_default(attributes.bitangent)) {
Matrix4_default.inverse(modelMatrix, inverseTranspose);
Matrix4_default.transpose(inverseTranspose, inverseTranspose);
Matrix4_default.getMatrix3(inverseTranspose, normalMatrix);
transformVector(normalMatrix, attributes.normal);
transformVector(normalMatrix, attributes.tangent);
transformVector(normalMatrix, attributes.bitangent);
}
const boundingSphere = instance.geometry.boundingSphere;
if (defined_default(boundingSphere)) {
instance.geometry.boundingSphere = BoundingSphere_default.transform(
boundingSphere,
modelMatrix,
boundingSphere
);
}
instance.modelMatrix = Matrix4_default.clone(Matrix4_default.IDENTITY);
return instance;
};
function findAttributesInAllGeometries(instances, propertyName) {
const length = instances.length;
const attributesInAllGeometries = {};
const attributes0 = instances[0][propertyName].attributes;
let name;
for (name in attributes0) {
if (attributes0.hasOwnProperty(name) && defined_default(attributes0[name]) && defined_default(attributes0[name].values)) {
const attribute = attributes0[name];
let numberOfComponents = attribute.values.length;
let inAllGeometries = true;
for (let i = 1; i < length; ++i) {
const otherAttribute = instances[i][propertyName].attributes[name];
if (!defined_default(otherAttribute) || attribute.componentDatatype !== otherAttribute.componentDatatype || attribute.componentsPerAttribute !== otherAttribute.componentsPerAttribute || attribute.normalize !== otherAttribute.normalize) {
inAllGeometries = false;
break;
}
numberOfComponents += otherAttribute.values.length;
}
if (inAllGeometries) {
attributesInAllGeometries[name] = new GeometryAttribute_default({
componentDatatype: attribute.componentDatatype,
componentsPerAttribute: attribute.componentsPerAttribute,
normalize: attribute.normalize,
values: ComponentDatatype_default.createTypedArray(
attribute.componentDatatype,
numberOfComponents
)
});
}
}
}
return attributesInAllGeometries;
}
var tempScratch = new Cartesian3_default();
function combineGeometries(instances, propertyName) {
const length = instances.length;
let name;
let i;
let j;
let k;
const m = instances[0].modelMatrix;
const haveIndices = defined_default(instances[0][propertyName].indices);
const primitiveType = instances[0][propertyName].primitiveType;
for (i = 1; i < length; ++i) {
if (!Matrix4_default.equals(instances[i].modelMatrix, m)) {
throw new DeveloperError_default("All instances must have the same modelMatrix.");
}
if (defined_default(instances[i][propertyName].indices) !== haveIndices) {
throw new DeveloperError_default(
"All instance geometries must have an indices or not have one."
);
}
if (instances[i][propertyName].primitiveType !== primitiveType) {
throw new DeveloperError_default(
"All instance geometries must have the same primitiveType."
);
}
}
const attributes = findAttributesInAllGeometries(instances, propertyName);
let values;
let sourceValues;
let sourceValuesLength;
for (name in attributes) {
if (attributes.hasOwnProperty(name)) {
values = attributes[name].values;
k = 0;
for (i = 0; i < length; ++i) {
sourceValues = instances[i][propertyName].attributes[name].values;
sourceValuesLength = sourceValues.length;
for (j = 0; j < sourceValuesLength; ++j) {
values[k++] = sourceValues[j];
}
}
}
}
let indices;
if (haveIndices) {
let numberOfIndices = 0;
for (i = 0; i < length; ++i) {
numberOfIndices += instances[i][propertyName].indices.length;
}
const numberOfVertices = Geometry_default.computeNumberOfVertices(
new Geometry_default({
attributes,
primitiveType: PrimitiveType_default.POINTS
})
);
const destIndices = IndexDatatype_default.createTypedArray(
numberOfVertices,
numberOfIndices
);
let destOffset = 0;
let offset = 0;
for (i = 0; i < length; ++i) {
const sourceIndices = instances[i][propertyName].indices;
const sourceIndicesLen = sourceIndices.length;
for (k = 0; k < sourceIndicesLen; ++k) {
destIndices[destOffset++] = offset + sourceIndices[k];
}
offset += Geometry_default.computeNumberOfVertices(instances[i][propertyName]);
}
indices = destIndices;
}
let center = new Cartesian3_default();
let radius = 0;
let bs;
for (i = 0; i < length; ++i) {
bs = instances[i][propertyName].boundingSphere;
if (!defined_default(bs)) {
center = void 0;
break;
}
Cartesian3_default.add(bs.center, center, center);
}
if (defined_default(center)) {
Cartesian3_default.divideByScalar(center, length, center);
for (i = 0; i < length; ++i) {
bs = instances[i][propertyName].boundingSphere;
const tempRadius = Cartesian3_default.magnitude(
Cartesian3_default.subtract(bs.center, center, tempScratch)
) + bs.radius;
if (tempRadius > radius) {
radius = tempRadius;
}
}
}
return new Geometry_default({
attributes,
indices,
primitiveType,
boundingSphere: defined_default(center) ? new BoundingSphere_default(center, radius) : void 0
});
}
GeometryPipeline.combineInstances = function(instances) {
if (!defined_default(instances) || instances.length < 1) {
throw new DeveloperError_default(
"instances is required and must have length greater than zero."
);
}
const instanceGeometry = [];
const instanceSplitGeometry = [];
const length = instances.length;
for (let i = 0; i < length; ++i) {
const instance = instances[i];
if (defined_default(instance.geometry)) {
instanceGeometry.push(instance);
} else if (defined_default(instance.westHemisphereGeometry) && defined_default(instance.eastHemisphereGeometry)) {
instanceSplitGeometry.push(instance);
}
}
const geometries = [];
if (instanceGeometry.length > 0) {
geometries.push(combineGeometries(instanceGeometry, "geometry"));
}
if (instanceSplitGeometry.length > 0) {
geometries.push(
combineGeometries(instanceSplitGeometry, "westHemisphereGeometry")
);
geometries.push(
combineGeometries(instanceSplitGeometry, "eastHemisphereGeometry")
);
}
return geometries;
};
var normal = new Cartesian3_default();
var v0 = new Cartesian3_default();
var v1 = new Cartesian3_default();
var v2 = new Cartesian3_default();
GeometryPipeline.computeNormal = function(geometry) {
if (!defined_default(geometry)) {
throw new DeveloperError_default("geometry is required.");
}
if (!defined_default(geometry.attributes.position) || !defined_default(geometry.attributes.position.values)) {
throw new DeveloperError_default(
"geometry.attributes.position.values is required."
);
}
if (!defined_default(geometry.indices)) {
throw new DeveloperError_default("geometry.indices is required.");
}
if (geometry.indices.length < 2 || geometry.indices.length % 3 !== 0) {
throw new DeveloperError_default(
"geometry.indices length must be greater than 0 and be a multiple of 3."
);
}
if (geometry.primitiveType !== PrimitiveType_default.TRIANGLES) {
throw new DeveloperError_default(
"geometry.primitiveType must be PrimitiveType.TRIANGLES."
);
}
const indices = geometry.indices;
const attributes = geometry.attributes;
const vertices = attributes.position.values;
const numVertices = attributes.position.values.length / 3;
const numIndices = indices.length;
const normalsPerVertex = new Array(numVertices);
const normalsPerTriangle = new Array(numIndices / 3);
const normalIndices = new Array(numIndices);
let i;
for (i = 0; i < numVertices; i++) {
normalsPerVertex[i] = {
indexOffset: 0,
count: 0,
currentCount: 0
};
}
let j = 0;
for (i = 0; i < numIndices; i += 3) {
const i0 = indices[i];
const i1 = indices[i + 1];
const i2 = indices[i + 2];
const i03 = i0 * 3;
const i13 = i1 * 3;
const i23 = i2 * 3;
v0.x = vertices[i03];
v0.y = vertices[i03 + 1];
v0.z = vertices[i03 + 2];
v1.x = vertices[i13];
v1.y = vertices[i13 + 1];
v1.z = vertices[i13 + 2];
v2.x = vertices[i23];
v2.y = vertices[i23 + 1];
v2.z = vertices[i23 + 2];
normalsPerVertex[i0].count++;
normalsPerVertex[i1].count++;
normalsPerVertex[i2].count++;
Cartesian3_default.subtract(v1, v0, v1);
Cartesian3_default.subtract(v2, v0, v2);
normalsPerTriangle[j] = Cartesian3_default.cross(v1, v2, new Cartesian3_default());
j++;
}
let indexOffset = 0;
for (i = 0; i < numVertices; i++) {
normalsPerVertex[i].indexOffset += indexOffset;
indexOffset += normalsPerVertex[i].count;
}
j = 0;
let vertexNormalData;
for (i = 0; i < numIndices; i += 3) {
vertexNormalData = normalsPerVertex[indices[i]];
let index = vertexNormalData.indexOffset + vertexNormalData.currentCount;
normalIndices[index] = j;
vertexNormalData.currentCount++;
vertexNormalData = normalsPerVertex[indices[i + 1]];
index = vertexNormalData.indexOffset + vertexNormalData.currentCount;
normalIndices[index] = j;
vertexNormalData.currentCount++;
vertexNormalData = normalsPerVertex[indices[i + 2]];
index = vertexNormalData.indexOffset + vertexNormalData.currentCount;
normalIndices[index] = j;
vertexNormalData.currentCount++;
j++;
}
const normalValues = new Float32Array(numVertices * 3);
for (i = 0; i < numVertices; i++) {
const i3 = i * 3;
vertexNormalData = normalsPerVertex[i];
Cartesian3_default.clone(Cartesian3_default.ZERO, normal);
if (vertexNormalData.count > 0) {
for (j = 0; j < vertexNormalData.count; j++) {
Cartesian3_default.add(
normal,
normalsPerTriangle[normalIndices[vertexNormalData.indexOffset + j]],
normal
);
}
if (Cartesian3_default.equalsEpsilon(Cartesian3_default.ZERO, normal, Math_default.EPSILON10)) {
Cartesian3_default.clone(
normalsPerTriangle[normalIndices[vertexNormalData.indexOffset]],
normal
);
}
}
if (Cartesian3_default.equalsEpsilon(Cartesian3_default.ZERO, normal, Math_default.EPSILON10)) {
normal.z = 1;
}
Cartesian3_default.normalize(normal, normal);
normalValues[i3] = normal.x;
normalValues[i3 + 1] = normal.y;
normalValues[i3 + 2] = normal.z;
}
geometry.attributes.normal = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.FLOAT,
componentsPerAttribute: 3,
values: normalValues
});
return geometry;
};
var normalScratch = new Cartesian3_default();
var normalScale = new Cartesian3_default();
var tScratch = new Cartesian3_default();
GeometryPipeline.computeTangentAndBitangent = function(geometry) {
if (!defined_default(geometry)) {
throw new DeveloperError_default("geometry is required.");
}
const attributes = geometry.attributes;
const indices = geometry.indices;
if (!defined_default(attributes.position) || !defined_default(attributes.position.values)) {
throw new DeveloperError_default(
"geometry.attributes.position.values is required."
);
}
if (!defined_default(attributes.normal) || !defined_default(attributes.normal.values)) {
throw new DeveloperError_default("geometry.attributes.normal.values is required.");
}
if (!defined_default(attributes.st) || !defined_default(attributes.st.values)) {
throw new DeveloperError_default("geometry.attributes.st.values is required.");
}
if (!defined_default(indices)) {
throw new DeveloperError_default("geometry.indices is required.");
}
if (indices.length < 2 || indices.length % 3 !== 0) {
throw new DeveloperError_default(
"geometry.indices length must be greater than 0 and be a multiple of 3."
);
}
if (geometry.primitiveType !== PrimitiveType_default.TRIANGLES) {
throw new DeveloperError_default(
"geometry.primitiveType must be PrimitiveType.TRIANGLES."
);
}
const vertices = geometry.attributes.position.values;
const normals = geometry.attributes.normal.values;
const st = geometry.attributes.st.values;
const numVertices = geometry.attributes.position.values.length / 3;
const numIndices = indices.length;
const tan1 = new Array(numVertices * 3);
let i;
for (i = 0; i < tan1.length; i++) {
tan1[i] = 0;
}
let i03;
let i13;
let i23;
for (i = 0; i < numIndices; i += 3) {
const i0 = indices[i];
const i1 = indices[i + 1];
const i2 = indices[i + 2];
i03 = i0 * 3;
i13 = i1 * 3;
i23 = i2 * 3;
const i02 = i0 * 2;
const i12 = i1 * 2;
const i22 = i2 * 2;
const ux = vertices[i03];
const uy = vertices[i03 + 1];
const uz = vertices[i03 + 2];
const wx = st[i02];
const wy = st[i02 + 1];
const t1 = st[i12 + 1] - wy;
const t2 = st[i22 + 1] - wy;
const r = 1 / ((st[i12] - wx) * t2 - (st[i22] - wx) * t1);
const sdirx = (t2 * (vertices[i13] - ux) - t1 * (vertices[i23] - ux)) * r;
const sdiry = (t2 * (vertices[i13 + 1] - uy) - t1 * (vertices[i23 + 1] - uy)) * r;
const sdirz = (t2 * (vertices[i13 + 2] - uz) - t1 * (vertices[i23 + 2] - uz)) * r;
tan1[i03] += sdirx;
tan1[i03 + 1] += sdiry;
tan1[i03 + 2] += sdirz;
tan1[i13] += sdirx;
tan1[i13 + 1] += sdiry;
tan1[i13 + 2] += sdirz;
tan1[i23] += sdirx;
tan1[i23 + 1] += sdiry;
tan1[i23 + 2] += sdirz;
}
const tangentValues = new Float32Array(numVertices * 3);
const bitangentValues = new Float32Array(numVertices * 3);
for (i = 0; i < numVertices; i++) {
i03 = i * 3;
i13 = i03 + 1;
i23 = i03 + 2;
const n = Cartesian3_default.fromArray(normals, i03, normalScratch);
const t = Cartesian3_default.fromArray(tan1, i03, tScratch);
const scalar = Cartesian3_default.dot(n, t);
Cartesian3_default.multiplyByScalar(n, scalar, normalScale);
Cartesian3_default.normalize(Cartesian3_default.subtract(t, normalScale, t), t);
tangentValues[i03] = t.x;
tangentValues[i13] = t.y;
tangentValues[i23] = t.z;
Cartesian3_default.normalize(Cartesian3_default.cross(n, t, t), t);
bitangentValues[i03] = t.x;
bitangentValues[i13] = t.y;
bitangentValues[i23] = t.z;
}
geometry.attributes.tangent = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.FLOAT,
componentsPerAttribute: 3,
values: tangentValues
});
geometry.attributes.bitangent = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.FLOAT,
componentsPerAttribute: 3,
values: bitangentValues
});
return geometry;
};
var scratchCartesian22 = new Cartesian2_default();
var toEncode1 = new Cartesian3_default();
var toEncode2 = new Cartesian3_default();
var toEncode3 = new Cartesian3_default();
var encodeResult2 = new Cartesian2_default();
GeometryPipeline.compressVertices = function(geometry) {
if (!defined_default(geometry)) {
throw new DeveloperError_default("geometry is required.");
}
const extrudeAttribute = geometry.attributes.extrudeDirection;
let i;
let numVertices;
if (defined_default(extrudeAttribute)) {
const extrudeDirections = extrudeAttribute.values;
numVertices = extrudeDirections.length / 3;
const compressedDirections = new Float32Array(numVertices * 2);
let i2 = 0;
for (i = 0; i < numVertices; ++i) {
Cartesian3_default.fromArray(extrudeDirections, i * 3, toEncode1);
if (Cartesian3_default.equals(toEncode1, Cartesian3_default.ZERO)) {
i2 += 2;
continue;
}
encodeResult2 = AttributeCompression_default.octEncodeInRange(
toEncode1,
65535,
encodeResult2
);
compressedDirections[i2++] = encodeResult2.x;
compressedDirections[i2++] = encodeResult2.y;
}
geometry.attributes.compressedAttributes = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.FLOAT,
componentsPerAttribute: 2,
values: compressedDirections
});
delete geometry.attributes.extrudeDirection;
return geometry;
}
const normalAttribute = geometry.attributes.normal;
const stAttribute = geometry.attributes.st;
const hasNormal = defined_default(normalAttribute);
const hasSt = defined_default(stAttribute);
if (!hasNormal && !hasSt) {
return geometry;
}
const tangentAttribute = geometry.attributes.tangent;
const bitangentAttribute = geometry.attributes.bitangent;
const hasTangent = defined_default(tangentAttribute);
const hasBitangent = defined_default(bitangentAttribute);
let normals;
let st;
let tangents;
let bitangents;
if (hasNormal) {
normals = normalAttribute.values;
}
if (hasSt) {
st = stAttribute.values;
}
if (hasTangent) {
tangents = tangentAttribute.values;
}
if (hasBitangent) {
bitangents = bitangentAttribute.values;
}
const length = hasNormal ? normals.length : st.length;
const numComponents = hasNormal ? 3 : 2;
numVertices = length / numComponents;
let compressedLength = numVertices;
let numCompressedComponents = hasSt && hasNormal ? 2 : 1;
numCompressedComponents += hasTangent || hasBitangent ? 1 : 0;
compressedLength *= numCompressedComponents;
const compressedAttributes = new Float32Array(compressedLength);
let normalIndex = 0;
for (i = 0; i < numVertices; ++i) {
if (hasSt) {
Cartesian2_default.fromArray(st, i * 2, scratchCartesian22);
compressedAttributes[normalIndex++] = AttributeCompression_default.compressTextureCoordinates(scratchCartesian22);
}
const index = i * 3;
if (hasNormal && defined_default(tangents) && defined_default(bitangents)) {
Cartesian3_default.fromArray(normals, index, toEncode1);
Cartesian3_default.fromArray(tangents, index, toEncode2);
Cartesian3_default.fromArray(bitangents, index, toEncode3);
AttributeCompression_default.octPack(
toEncode1,
toEncode2,
toEncode3,
scratchCartesian22
);
compressedAttributes[normalIndex++] = scratchCartesian22.x;
compressedAttributes[normalIndex++] = scratchCartesian22.y;
} else {
if (hasNormal) {
Cartesian3_default.fromArray(normals, index, toEncode1);
compressedAttributes[normalIndex++] = AttributeCompression_default.octEncodeFloat(toEncode1);
}
if (hasTangent) {
Cartesian3_default.fromArray(tangents, index, toEncode1);
compressedAttributes[normalIndex++] = AttributeCompression_default.octEncodeFloat(toEncode1);
}
if (hasBitangent) {
Cartesian3_default.fromArray(bitangents, index, toEncode1);
compressedAttributes[normalIndex++] = AttributeCompression_default.octEncodeFloat(toEncode1);
}
}
}
geometry.attributes.compressedAttributes = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.FLOAT,
componentsPerAttribute: numCompressedComponents,
values: compressedAttributes
});
if (hasNormal) {
delete geometry.attributes.normal;
}
if (hasSt) {
delete geometry.attributes.st;
}
if (hasBitangent) {
delete geometry.attributes.bitangent;
}
if (hasTangent) {
delete geometry.attributes.tangent;
}
return geometry;
};
function indexTriangles(geometry) {
if (defined_default(geometry.indices)) {
return geometry;
}
const numberOfVertices = Geometry_default.computeNumberOfVertices(geometry);
if (numberOfVertices < 3) {
throw new DeveloperError_default("The number of vertices must be at least three.");
}
if (numberOfVertices % 3 !== 0) {
throw new DeveloperError_default(
"The number of vertices must be a multiple of three."
);
}
const indices = IndexDatatype_default.createTypedArray(
numberOfVertices,
numberOfVertices
);
for (let i = 0; i < numberOfVertices; ++i) {
indices[i] = i;
}
geometry.indices = indices;
return geometry;
}
function indexTriangleFan(geometry) {
const numberOfVertices = Geometry_default.computeNumberOfVertices(geometry);
if (numberOfVertices < 3) {
throw new DeveloperError_default("The number of vertices must be at least three.");
}
const indices = IndexDatatype_default.createTypedArray(
numberOfVertices,
(numberOfVertices - 2) * 3
);
indices[0] = 1;
indices[1] = 0;
indices[2] = 2;
let indicesIndex = 3;
for (let i = 3; i < numberOfVertices; ++i) {
indices[indicesIndex++] = i - 1;
indices[indicesIndex++] = 0;
indices[indicesIndex++] = i;
}
geometry.indices = indices;
geometry.primitiveType = PrimitiveType_default.TRIANGLES;
return geometry;
}
function indexTriangleStrip(geometry) {
const numberOfVertices = Geometry_default.computeNumberOfVertices(geometry);
if (numberOfVertices < 3) {
throw new DeveloperError_default("The number of vertices must be at least 3.");
}
const indices = IndexDatatype_default.createTypedArray(
numberOfVertices,
(numberOfVertices - 2) * 3
);
indices[0] = 0;
indices[1] = 1;
indices[2] = 2;
if (numberOfVertices > 3) {
indices[3] = 0;
indices[4] = 2;
indices[5] = 3;
}
let indicesIndex = 6;
for (let i = 3; i < numberOfVertices - 1; i += 2) {
indices[indicesIndex++] = i;
indices[indicesIndex++] = i - 1;
indices[indicesIndex++] = i + 1;
if (i + 2 < numberOfVertices) {
indices[indicesIndex++] = i;
indices[indicesIndex++] = i + 1;
indices[indicesIndex++] = i + 2;
}
}
geometry.indices = indices;
geometry.primitiveType = PrimitiveType_default.TRIANGLES;
return geometry;
}
function indexLines(geometry) {
if (defined_default(geometry.indices)) {
return geometry;
}
const numberOfVertices = Geometry_default.computeNumberOfVertices(geometry);
if (numberOfVertices < 2) {
throw new DeveloperError_default("The number of vertices must be at least two.");
}
if (numberOfVertices % 2 !== 0) {
throw new DeveloperError_default("The number of vertices must be a multiple of 2.");
}
const indices = IndexDatatype_default.createTypedArray(
numberOfVertices,
numberOfVertices
);
for (let i = 0; i < numberOfVertices; ++i) {
indices[i] = i;
}
geometry.indices = indices;
return geometry;
}
function indexLineStrip(geometry) {
const numberOfVertices = Geometry_default.computeNumberOfVertices(geometry);
if (numberOfVertices < 2) {
throw new DeveloperError_default("The number of vertices must be at least two.");
}
const indices = IndexDatatype_default.createTypedArray(
numberOfVertices,
(numberOfVertices - 1) * 2
);
indices[0] = 0;
indices[1] = 1;
let indicesIndex = 2;
for (let i = 2; i < numberOfVertices; ++i) {
indices[indicesIndex++] = i - 1;
indices[indicesIndex++] = i;
}
geometry.indices = indices;
geometry.primitiveType = PrimitiveType_default.LINES;
return geometry;
}
function indexLineLoop(geometry) {
const numberOfVertices = Geometry_default.computeNumberOfVertices(geometry);
if (numberOfVertices < 2) {
throw new DeveloperError_default("The number of vertices must be at least two.");
}
const indices = IndexDatatype_default.createTypedArray(
numberOfVertices,
numberOfVertices * 2
);
indices[0] = 0;
indices[1] = 1;
let indicesIndex = 2;
for (let i = 2; i < numberOfVertices; ++i) {
indices[indicesIndex++] = i - 1;
indices[indicesIndex++] = i;
}
indices[indicesIndex++] = numberOfVertices - 1;
indices[indicesIndex] = 0;
geometry.indices = indices;
geometry.primitiveType = PrimitiveType_default.LINES;
return geometry;
}
function indexPrimitive(geometry) {
switch (geometry.primitiveType) {
case PrimitiveType_default.TRIANGLE_FAN:
return indexTriangleFan(geometry);
case PrimitiveType_default.TRIANGLE_STRIP:
return indexTriangleStrip(geometry);
case PrimitiveType_default.TRIANGLES:
return indexTriangles(geometry);
case PrimitiveType_default.LINE_STRIP:
return indexLineStrip(geometry);
case PrimitiveType_default.LINE_LOOP:
return indexLineLoop(geometry);
case PrimitiveType_default.LINES:
return indexLines(geometry);
}
return geometry;
}
function offsetPointFromXZPlane(p, isBehind) {
if (Math.abs(p.y) < Math_default.EPSILON6) {
if (isBehind) {
p.y = -Math_default.EPSILON6;
} else {
p.y = Math_default.EPSILON6;
}
}
}
function offsetTriangleFromXZPlane(p0, p1, p2) {
if (p0.y !== 0 && p1.y !== 0 && p2.y !== 0) {
offsetPointFromXZPlane(p0, p0.y < 0);
offsetPointFromXZPlane(p1, p1.y < 0);
offsetPointFromXZPlane(p2, p2.y < 0);
return;
}
const p0y = Math.abs(p0.y);
const p1y = Math.abs(p1.y);
const p2y = Math.abs(p2.y);
let sign;
if (p0y > p1y) {
if (p0y > p2y) {
sign = Math_default.sign(p0.y);
} else {
sign = Math_default.sign(p2.y);
}
} else if (p1y > p2y) {
sign = Math_default.sign(p1.y);
} else {
sign = Math_default.sign(p2.y);
}
const isBehind = sign < 0;
offsetPointFromXZPlane(p0, isBehind);
offsetPointFromXZPlane(p1, isBehind);
offsetPointFromXZPlane(p2, isBehind);
}
var c3 = new Cartesian3_default();
function getXZIntersectionOffsetPoints(p, p1, u12, v12) {
Cartesian3_default.add(
p,
Cartesian3_default.multiplyByScalar(
Cartesian3_default.subtract(p1, p, c3),
p.y / (p.y - p1.y),
c3
),
u12
);
Cartesian3_default.clone(u12, v12);
offsetPointFromXZPlane(u12, true);
offsetPointFromXZPlane(v12, false);
}
var u1 = new Cartesian3_default();
var u2 = new Cartesian3_default();
var q1 = new Cartesian3_default();
var q2 = new Cartesian3_default();
var splitTriangleResult = {
positions: new Array(7),
indices: new Array(3 * 3)
};
function splitTriangle(p0, p1, p2) {
if (p0.x >= 0 || p1.x >= 0 || p2.x >= 0) {
return void 0;
}
offsetTriangleFromXZPlane(p0, p1, p2);
const p0Behind = p0.y < 0;
const p1Behind = p1.y < 0;
const p2Behind = p2.y < 0;
let numBehind = 0;
numBehind += p0Behind ? 1 : 0;
numBehind += p1Behind ? 1 : 0;
numBehind += p2Behind ? 1 : 0;
const indices = splitTriangleResult.indices;
if (numBehind === 1) {
indices[1] = 3;
indices[2] = 4;
indices[5] = 6;
indices[7] = 6;
indices[8] = 5;
if (p0Behind) {
getXZIntersectionOffsetPoints(p0, p1, u1, q1);
getXZIntersectionOffsetPoints(p0, p2, u2, q2);
indices[0] = 0;
indices[3] = 1;
indices[4] = 2;
indices[6] = 1;
} else if (p1Behind) {
getXZIntersectionOffsetPoints(p1, p2, u1, q1);
getXZIntersectionOffsetPoints(p1, p0, u2, q2);
indices[0] = 1;
indices[3] = 2;
indices[4] = 0;
indices[6] = 2;
} else if (p2Behind) {
getXZIntersectionOffsetPoints(p2, p0, u1, q1);
getXZIntersectionOffsetPoints(p2, p1, u2, q2);
indices[0] = 2;
indices[3] = 0;
indices[4] = 1;
indices[6] = 0;
}
} else if (numBehind === 2) {
indices[2] = 4;
indices[4] = 4;
indices[5] = 3;
indices[7] = 5;
indices[8] = 6;
if (!p0Behind) {
getXZIntersectionOffsetPoints(p0, p1, u1, q1);
getXZIntersectionOffsetPoints(p0, p2, u2, q2);
indices[0] = 1;
indices[1] = 2;
indices[3] = 1;
indices[6] = 0;
} else if (!p1Behind) {
getXZIntersectionOffsetPoints(p1, p2, u1, q1);
getXZIntersectionOffsetPoints(p1, p0, u2, q2);
indices[0] = 2;
indices[1] = 0;
indices[3] = 2;
indices[6] = 1;
} else if (!p2Behind) {
getXZIntersectionOffsetPoints(p2, p0, u1, q1);
getXZIntersectionOffsetPoints(p2, p1, u2, q2);
indices[0] = 0;
indices[1] = 1;
indices[3] = 0;
indices[6] = 2;
}
}
const positions = splitTriangleResult.positions;
positions[0] = p0;
positions[1] = p1;
positions[2] = p2;
positions.length = 3;
if (numBehind === 1 || numBehind === 2) {
positions[3] = u1;
positions[4] = u2;
positions[5] = q1;
positions[6] = q2;
positions.length = 7;
}
return splitTriangleResult;
}
function updateGeometryAfterSplit(geometry, computeBoundingSphere) {
const attributes = geometry.attributes;
if (attributes.position.values.length === 0) {
return void 0;
}
for (const property in attributes) {
if (attributes.hasOwnProperty(property) && defined_default(attributes[property]) && defined_default(attributes[property].values)) {
const attribute = attributes[property];
attribute.values = ComponentDatatype_default.createTypedArray(
attribute.componentDatatype,
attribute.values
);
}
}
const numberOfVertices = Geometry_default.computeNumberOfVertices(geometry);
geometry.indices = IndexDatatype_default.createTypedArray(
numberOfVertices,
geometry.indices
);
if (computeBoundingSphere) {
geometry.boundingSphere = BoundingSphere_default.fromVertices(
attributes.position.values
);
}
return geometry;
}
function copyGeometryForSplit(geometry) {
const attributes = geometry.attributes;
const copiedAttributes = {};
for (const property in attributes) {
if (attributes.hasOwnProperty(property) && defined_default(attributes[property]) && defined_default(attributes[property].values)) {
const attribute = attributes[property];
copiedAttributes[property] = new GeometryAttribute_default({
componentDatatype: attribute.componentDatatype,
componentsPerAttribute: attribute.componentsPerAttribute,
normalize: attribute.normalize,
values: []
});
}
}
return new Geometry_default({
attributes: copiedAttributes,
indices: [],
primitiveType: geometry.primitiveType
});
}
function updateInstanceAfterSplit(instance, westGeometry, eastGeometry) {
const computeBoundingSphere = defined_default(instance.geometry.boundingSphere);
westGeometry = updateGeometryAfterSplit(westGeometry, computeBoundingSphere);
eastGeometry = updateGeometryAfterSplit(eastGeometry, computeBoundingSphere);
if (defined_default(eastGeometry) && !defined_default(westGeometry)) {
instance.geometry = eastGeometry;
} else if (!defined_default(eastGeometry) && defined_default(westGeometry)) {
instance.geometry = westGeometry;
} else {
instance.westHemisphereGeometry = westGeometry;
instance.eastHemisphereGeometry = eastGeometry;
instance.geometry = void 0;
}
}
function generateBarycentricInterpolateFunction(CartesianType, numberOfComponents) {
const v0Scratch = new CartesianType();
const v1Scratch = new CartesianType();
const v2Scratch = new CartesianType();
return function(i0, i1, i2, coords, sourceValues, currentValues, insertedIndex, normalize) {
const v02 = CartesianType.fromArray(
sourceValues,
i0 * numberOfComponents,
v0Scratch
);
const v12 = CartesianType.fromArray(
sourceValues,
i1 * numberOfComponents,
v1Scratch
);
const v22 = CartesianType.fromArray(
sourceValues,
i2 * numberOfComponents,
v2Scratch
);
CartesianType.multiplyByScalar(v02, coords.x, v02);
CartesianType.multiplyByScalar(v12, coords.y, v12);
CartesianType.multiplyByScalar(v22, coords.z, v22);
const value = CartesianType.add(v02, v12, v02);
CartesianType.add(value, v22, value);
if (normalize) {
CartesianType.normalize(value, value);
}
CartesianType.pack(
value,
currentValues,
insertedIndex * numberOfComponents
);
};
}
var interpolateAndPackCartesian4 = generateBarycentricInterpolateFunction(
Cartesian4_default,
4
);
var interpolateAndPackCartesian3 = generateBarycentricInterpolateFunction(
Cartesian3_default,
3
);
var interpolateAndPackCartesian2 = generateBarycentricInterpolateFunction(
Cartesian2_default,
2
);
var interpolateAndPackBoolean = function(i0, i1, i2, coords, sourceValues, currentValues, insertedIndex) {
const v12 = sourceValues[i0] * coords.x;
const v22 = sourceValues[i1] * coords.y;
const v3 = sourceValues[i2] * coords.z;
currentValues[insertedIndex] = v12 + v22 + v3 > Math_default.EPSILON6 ? 1 : 0;
};
var p0Scratch = new Cartesian3_default();
var p1Scratch = new Cartesian3_default();
var p2Scratch = new Cartesian3_default();
var barycentricScratch = new Cartesian3_default();
function computeTriangleAttributes(i0, i1, i2, point, positions, normals, tangents, bitangents, texCoords, extrudeDirections, applyOffset, currentAttributes, customAttributeNames, customAttributesLength, allAttributes, insertedIndex) {
if (!defined_default(normals) && !defined_default(tangents) && !defined_default(bitangents) && !defined_default(texCoords) && !defined_default(extrudeDirections) && customAttributesLength === 0) {
return;
}
const p0 = Cartesian3_default.fromArray(positions, i0 * 3, p0Scratch);
const p1 = Cartesian3_default.fromArray(positions, i1 * 3, p1Scratch);
const p2 = Cartesian3_default.fromArray(positions, i2 * 3, p2Scratch);
const coords = barycentricCoordinates_default(point, p0, p1, p2, barycentricScratch);
if (!defined_default(coords)) {
return;
}
if (defined_default(normals)) {
interpolateAndPackCartesian3(
i0,
i1,
i2,
coords,
normals,
currentAttributes.normal.values,
insertedIndex,
true
);
}
if (defined_default(extrudeDirections)) {
const d0 = Cartesian3_default.fromArray(extrudeDirections, i0 * 3, p0Scratch);
const d1 = Cartesian3_default.fromArray(extrudeDirections, i1 * 3, p1Scratch);
const d2 = Cartesian3_default.fromArray(extrudeDirections, i2 * 3, p2Scratch);
Cartesian3_default.multiplyByScalar(d0, coords.x, d0);
Cartesian3_default.multiplyByScalar(d1, coords.y, d1);
Cartesian3_default.multiplyByScalar(d2, coords.z, d2);
let direction;
if (!Cartesian3_default.equals(d0, Cartesian3_default.ZERO) || !Cartesian3_default.equals(d1, Cartesian3_default.ZERO) || !Cartesian3_default.equals(d2, Cartesian3_default.ZERO)) {
direction = Cartesian3_default.add(d0, d1, d0);
Cartesian3_default.add(direction, d2, direction);
Cartesian3_default.normalize(direction, direction);
} else {
direction = p0Scratch;
direction.x = 0;
direction.y = 0;
direction.z = 0;
}
Cartesian3_default.pack(
direction,
currentAttributes.extrudeDirection.values,
insertedIndex * 3
);
}
if (defined_default(applyOffset)) {
interpolateAndPackBoolean(
i0,
i1,
i2,
coords,
applyOffset,
currentAttributes.applyOffset.values,
insertedIndex
);
}
if (defined_default(tangents)) {
interpolateAndPackCartesian3(
i0,
i1,
i2,
coords,
tangents,
currentAttributes.tangent.values,
insertedIndex,
true
);
}
if (defined_default(bitangents)) {
interpolateAndPackCartesian3(
i0,
i1,
i2,
coords,
bitangents,
currentAttributes.bitangent.values,
insertedIndex,
true
);
}
if (defined_default(texCoords)) {
interpolateAndPackCartesian2(
i0,
i1,
i2,
coords,
texCoords,
currentAttributes.st.values,
insertedIndex
);
}
if (customAttributesLength > 0) {
for (let i = 0; i < customAttributesLength; i++) {
const attributeName = customAttributeNames[i];
genericInterpolate(
i0,
i1,
i2,
coords,
insertedIndex,
allAttributes[attributeName],
currentAttributes[attributeName]
);
}
}
}
function genericInterpolate(i0, i1, i2, coords, insertedIndex, sourceAttribute, currentAttribute) {
const componentsPerAttribute = sourceAttribute.componentsPerAttribute;
const sourceValues = sourceAttribute.values;
const currentValues = currentAttribute.values;
switch (componentsPerAttribute) {
case 4:
interpolateAndPackCartesian4(
i0,
i1,
i2,
coords,
sourceValues,
currentValues,
insertedIndex,
false
);
break;
case 3:
interpolateAndPackCartesian3(
i0,
i1,
i2,
coords,
sourceValues,
currentValues,
insertedIndex,
false
);
break;
case 2:
interpolateAndPackCartesian2(
i0,
i1,
i2,
coords,
sourceValues,
currentValues,
insertedIndex,
false
);
break;
default:
currentValues[insertedIndex] = sourceValues[i0] * coords.x + sourceValues[i1] * coords.y + sourceValues[i2] * coords.z;
}
}
function insertSplitPoint(currentAttributes, currentIndices, currentIndexMap, indices, currentIndex, point) {
const insertIndex = currentAttributes.position.values.length / 3;
if (currentIndex !== -1) {
const prevIndex = indices[currentIndex];
const newIndex = currentIndexMap[prevIndex];
if (newIndex === -1) {
currentIndexMap[prevIndex] = insertIndex;
currentAttributes.position.values.push(point.x, point.y, point.z);
currentIndices.push(insertIndex);
return insertIndex;
}
currentIndices.push(newIndex);
return newIndex;
}
currentAttributes.position.values.push(point.x, point.y, point.z);
currentIndices.push(insertIndex);
return insertIndex;
}
var NAMED_ATTRIBUTES = {
position: true,
normal: true,
bitangent: true,
tangent: true,
st: true,
extrudeDirection: true,
applyOffset: true
};
function splitLongitudeTriangles(instance) {
const geometry = instance.geometry;
const attributes = geometry.attributes;
const positions = attributes.position.values;
const normals = defined_default(attributes.normal) ? attributes.normal.values : void 0;
const bitangents = defined_default(attributes.bitangent) ? attributes.bitangent.values : void 0;
const tangents = defined_default(attributes.tangent) ? attributes.tangent.values : void 0;
const texCoords = defined_default(attributes.st) ? attributes.st.values : void 0;
const extrudeDirections = defined_default(attributes.extrudeDirection) ? attributes.extrudeDirection.values : void 0;
const applyOffset = defined_default(attributes.applyOffset) ? attributes.applyOffset.values : void 0;
const indices = geometry.indices;
const customAttributeNames = [];
for (const attributeName in attributes) {
if (attributes.hasOwnProperty(attributeName) && !NAMED_ATTRIBUTES[attributeName] && defined_default(attributes[attributeName])) {
customAttributeNames.push(attributeName);
}
}
const customAttributesLength = customAttributeNames.length;
const eastGeometry = copyGeometryForSplit(geometry);
const westGeometry = copyGeometryForSplit(geometry);
let currentAttributes;
let currentIndices;
let currentIndexMap;
let insertedIndex;
let i;
const westGeometryIndexMap = [];
westGeometryIndexMap.length = positions.length / 3;
const eastGeometryIndexMap = [];
eastGeometryIndexMap.length = positions.length / 3;
for (i = 0; i < westGeometryIndexMap.length; ++i) {
westGeometryIndexMap[i] = -1;
eastGeometryIndexMap[i] = -1;
}
const len = indices.length;
for (i = 0; i < len; i += 3) {
const i0 = indices[i];
const i1 = indices[i + 1];
const i2 = indices[i + 2];
let p0 = Cartesian3_default.fromArray(positions, i0 * 3);
let p1 = Cartesian3_default.fromArray(positions, i1 * 3);
let p2 = Cartesian3_default.fromArray(positions, i2 * 3);
const result = splitTriangle(p0, p1, p2);
if (defined_default(result) && result.positions.length > 3) {
const resultPositions = result.positions;
const resultIndices = result.indices;
const resultLength = resultIndices.length;
for (let j = 0; j < resultLength; ++j) {
const resultIndex = resultIndices[j];
const point = resultPositions[resultIndex];
if (point.y < 0) {
currentAttributes = westGeometry.attributes;
currentIndices = westGeometry.indices;
currentIndexMap = westGeometryIndexMap;
} else {
currentAttributes = eastGeometry.attributes;
currentIndices = eastGeometry.indices;
currentIndexMap = eastGeometryIndexMap;
}
insertedIndex = insertSplitPoint(
currentAttributes,
currentIndices,
currentIndexMap,
indices,
resultIndex < 3 ? i + resultIndex : -1,
point
);
computeTriangleAttributes(
i0,
i1,
i2,
point,
positions,
normals,
tangents,
bitangents,
texCoords,
extrudeDirections,
applyOffset,
currentAttributes,
customAttributeNames,
customAttributesLength,
attributes,
insertedIndex
);
}
} else {
if (defined_default(result)) {
p0 = result.positions[0];
p1 = result.positions[1];
p2 = result.positions[2];
}
if (p0.y < 0) {
currentAttributes = westGeometry.attributes;
currentIndices = westGeometry.indices;
currentIndexMap = westGeometryIndexMap;
} else {
currentAttributes = eastGeometry.attributes;
currentIndices = eastGeometry.indices;
currentIndexMap = eastGeometryIndexMap;
}
insertedIndex = insertSplitPoint(
currentAttributes,
currentIndices,
currentIndexMap,
indices,
i,
p0
);
computeTriangleAttributes(
i0,
i1,
i2,
p0,
positions,
normals,
tangents,
bitangents,
texCoords,
extrudeDirections,
applyOffset,
currentAttributes,
customAttributeNames,
customAttributesLength,
attributes,
insertedIndex
);
insertedIndex = insertSplitPoint(
currentAttributes,
currentIndices,
currentIndexMap,
indices,
i + 1,
p1
);
computeTriangleAttributes(
i0,
i1,
i2,
p1,
positions,
normals,
tangents,
bitangents,
texCoords,
extrudeDirections,
applyOffset,
currentAttributes,
customAttributeNames,
customAttributesLength,
attributes,
insertedIndex
);
insertedIndex = insertSplitPoint(
currentAttributes,
currentIndices,
currentIndexMap,
indices,
i + 2,
p2
);
computeTriangleAttributes(
i0,
i1,
i2,
p2,
positions,
normals,
tangents,
bitangents,
texCoords,
extrudeDirections,
applyOffset,
currentAttributes,
customAttributeNames,
customAttributesLength,
attributes,
insertedIndex
);
}
}
updateInstanceAfterSplit(instance, westGeometry, eastGeometry);
}
var xzPlane = Plane_default.fromPointNormal(Cartesian3_default.ZERO, Cartesian3_default.UNIT_Y);
var offsetScratch = new Cartesian3_default();
var offsetPointScratch = new Cartesian3_default();
function computeLineAttributes(i0, i1, point, positions, insertIndex, currentAttributes, applyOffset) {
if (!defined_default(applyOffset)) {
return;
}
const p0 = Cartesian3_default.fromArray(positions, i0 * 3, p0Scratch);
if (Cartesian3_default.equalsEpsilon(p0, point, Math_default.EPSILON10)) {
currentAttributes.applyOffset.values[insertIndex] = applyOffset[i0];
} else {
currentAttributes.applyOffset.values[insertIndex] = applyOffset[i1];
}
}
function splitLongitudeLines(instance) {
const geometry = instance.geometry;
const attributes = geometry.attributes;
const positions = attributes.position.values;
const applyOffset = defined_default(attributes.applyOffset) ? attributes.applyOffset.values : void 0;
const indices = geometry.indices;
const eastGeometry = copyGeometryForSplit(geometry);
const westGeometry = copyGeometryForSplit(geometry);
let i;
const length = indices.length;
const westGeometryIndexMap = [];
westGeometryIndexMap.length = positions.length / 3;
const eastGeometryIndexMap = [];
eastGeometryIndexMap.length = positions.length / 3;
for (i = 0; i < westGeometryIndexMap.length; ++i) {
westGeometryIndexMap[i] = -1;
eastGeometryIndexMap[i] = -1;
}
for (i = 0; i < length; i += 2) {
const i0 = indices[i];
const i1 = indices[i + 1];
const p0 = Cartesian3_default.fromArray(positions, i0 * 3, p0Scratch);
const p1 = Cartesian3_default.fromArray(positions, i1 * 3, p1Scratch);
let insertIndex;
if (Math.abs(p0.y) < Math_default.EPSILON6) {
if (p0.y < 0) {
p0.y = -Math_default.EPSILON6;
} else {
p0.y = Math_default.EPSILON6;
}
}
if (Math.abs(p1.y) < Math_default.EPSILON6) {
if (p1.y < 0) {
p1.y = -Math_default.EPSILON6;
} else {
p1.y = Math_default.EPSILON6;
}
}
let p0Attributes = eastGeometry.attributes;
let p0Indices = eastGeometry.indices;
let p0IndexMap = eastGeometryIndexMap;
let p1Attributes = westGeometry.attributes;
let p1Indices = westGeometry.indices;
let p1IndexMap = westGeometryIndexMap;
const intersection = IntersectionTests_default.lineSegmentPlane(
p0,
p1,
xzPlane,
p2Scratch
);
if (defined_default(intersection)) {
const offset = Cartesian3_default.multiplyByScalar(
Cartesian3_default.UNIT_Y,
5 * Math_default.EPSILON9,
offsetScratch
);
if (p0.y < 0) {
Cartesian3_default.negate(offset, offset);
p0Attributes = westGeometry.attributes;
p0Indices = westGeometry.indices;
p0IndexMap = westGeometryIndexMap;
p1Attributes = eastGeometry.attributes;
p1Indices = eastGeometry.indices;
p1IndexMap = eastGeometryIndexMap;
}
const offsetPoint = Cartesian3_default.add(
intersection,
offset,
offsetPointScratch
);
insertIndex = insertSplitPoint(
p0Attributes,
p0Indices,
p0IndexMap,
indices,
i,
p0
);
computeLineAttributes(
i0,
i1,
p0,
positions,
insertIndex,
p0Attributes,
applyOffset
);
insertIndex = insertSplitPoint(
p0Attributes,
p0Indices,
p0IndexMap,
indices,
-1,
offsetPoint
);
computeLineAttributes(
i0,
i1,
offsetPoint,
positions,
insertIndex,
p0Attributes,
applyOffset
);
Cartesian3_default.negate(offset, offset);
Cartesian3_default.add(intersection, offset, offsetPoint);
insertIndex = insertSplitPoint(
p1Attributes,
p1Indices,
p1IndexMap,
indices,
-1,
offsetPoint
);
computeLineAttributes(
i0,
i1,
offsetPoint,
positions,
insertIndex,
p1Attributes,
applyOffset
);
insertIndex = insertSplitPoint(
p1Attributes,
p1Indices,
p1IndexMap,
indices,
i + 1,
p1
);
computeLineAttributes(
i0,
i1,
p1,
positions,
insertIndex,
p1Attributes,
applyOffset
);
} else {
let currentAttributes;
let currentIndices;
let currentIndexMap;
if (p0.y < 0) {
currentAttributes = westGeometry.attributes;
currentIndices = westGeometry.indices;
currentIndexMap = westGeometryIndexMap;
} else {
currentAttributes = eastGeometry.attributes;
currentIndices = eastGeometry.indices;
currentIndexMap = eastGeometryIndexMap;
}
insertIndex = insertSplitPoint(
currentAttributes,
currentIndices,
currentIndexMap,
indices,
i,
p0
);
computeLineAttributes(
i0,
i1,
p0,
positions,
insertIndex,
currentAttributes,
applyOffset
);
insertIndex = insertSplitPoint(
currentAttributes,
currentIndices,
currentIndexMap,
indices,
i + 1,
p1
);
computeLineAttributes(
i0,
i1,
p1,
positions,
insertIndex,
currentAttributes,
applyOffset
);
}
}
updateInstanceAfterSplit(instance, westGeometry, eastGeometry);
}
var cartesian2Scratch0 = new Cartesian2_default();
var cartesian2Scratch1 = new Cartesian2_default();
var cartesian3Scratch0 = new Cartesian3_default();
var cartesian3Scratch2 = new Cartesian3_default();
var cartesian3Scratch3 = new Cartesian3_default();
var cartesian3Scratch4 = new Cartesian3_default();
var cartesian3Scratch5 = new Cartesian3_default();
var cartesian3Scratch6 = new Cartesian3_default();
var cartesian4Scratch0 = new Cartesian4_default();
function updateAdjacencyAfterSplit(geometry) {
const attributes = geometry.attributes;
const positions = attributes.position.values;
const prevPositions = attributes.prevPosition.values;
const nextPositions = attributes.nextPosition.values;
const length = positions.length;
for (let j = 0; j < length; j += 3) {
const position = Cartesian3_default.unpack(positions, j, cartesian3Scratch0);
if (position.x > 0) {
continue;
}
const prevPosition = Cartesian3_default.unpack(
prevPositions,
j,
cartesian3Scratch2
);
if (position.y < 0 && prevPosition.y > 0 || position.y > 0 && prevPosition.y < 0) {
if (j - 3 > 0) {
prevPositions[j] = positions[j - 3];
prevPositions[j + 1] = positions[j - 2];
prevPositions[j + 2] = positions[j - 1];
} else {
Cartesian3_default.pack(position, prevPositions, j);
}
}
const nextPosition = Cartesian3_default.unpack(
nextPositions,
j,
cartesian3Scratch3
);
if (position.y < 0 && nextPosition.y > 0 || position.y > 0 && nextPosition.y < 0) {
if (j + 3 < length) {
nextPositions[j] = positions[j + 3];
nextPositions[j + 1] = positions[j + 4];
nextPositions[j + 2] = positions[j + 5];
} else {
Cartesian3_default.pack(position, nextPositions, j);
}
}
}
}
var offsetScalar = 5 * Math_default.EPSILON9;
var coplanarOffset = Math_default.EPSILON6;
function splitLongitudePolyline(instance) {
const geometry = instance.geometry;
const attributes = geometry.attributes;
const positions = attributes.position.values;
const prevPositions = attributes.prevPosition.values;
const nextPositions = attributes.nextPosition.values;
const expandAndWidths = attributes.expandAndWidth.values;
const texCoords = defined_default(attributes.st) ? attributes.st.values : void 0;
const colors = defined_default(attributes.color) ? attributes.color.values : void 0;
const eastGeometry = copyGeometryForSplit(geometry);
const westGeometry = copyGeometryForSplit(geometry);
let i;
let j;
let index;
let intersectionFound = false;
const length = positions.length / 3;
for (i = 0; i < length; i += 4) {
const i0 = i;
const i2 = i + 2;
const p0 = Cartesian3_default.fromArray(positions, i0 * 3, cartesian3Scratch0);
const p2 = Cartesian3_default.fromArray(positions, i2 * 3, cartesian3Scratch2);
if (Math.abs(p0.y) < coplanarOffset) {
p0.y = coplanarOffset * (p2.y < 0 ? -1 : 1);
positions[i * 3 + 1] = p0.y;
positions[(i + 1) * 3 + 1] = p0.y;
for (j = i0 * 3; j < i0 * 3 + 4 * 3; j += 3) {
prevPositions[j] = positions[i * 3];
prevPositions[j + 1] = positions[i * 3 + 1];
prevPositions[j + 2] = positions[i * 3 + 2];
}
}
if (Math.abs(p2.y) < coplanarOffset) {
p2.y = coplanarOffset * (p0.y < 0 ? -1 : 1);
positions[(i + 2) * 3 + 1] = p2.y;
positions[(i + 3) * 3 + 1] = p2.y;
for (j = i0 * 3; j < i0 * 3 + 4 * 3; j += 3) {
nextPositions[j] = positions[(i + 2) * 3];
nextPositions[j + 1] = positions[(i + 2) * 3 + 1];
nextPositions[j + 2] = positions[(i + 2) * 3 + 2];
}
}
let p0Attributes = eastGeometry.attributes;
let p0Indices = eastGeometry.indices;
let p2Attributes = westGeometry.attributes;
let p2Indices = westGeometry.indices;
const intersection = IntersectionTests_default.lineSegmentPlane(
p0,
p2,
xzPlane,
cartesian3Scratch4
);
if (defined_default(intersection)) {
intersectionFound = true;
const offset = Cartesian3_default.multiplyByScalar(
Cartesian3_default.UNIT_Y,
offsetScalar,
cartesian3Scratch5
);
if (p0.y < 0) {
Cartesian3_default.negate(offset, offset);
p0Attributes = westGeometry.attributes;
p0Indices = westGeometry.indices;
p2Attributes = eastGeometry.attributes;
p2Indices = eastGeometry.indices;
}
const offsetPoint = Cartesian3_default.add(
intersection,
offset,
cartesian3Scratch6
);
p0Attributes.position.values.push(p0.x, p0.y, p0.z, p0.x, p0.y, p0.z);
p0Attributes.position.values.push(
offsetPoint.x,
offsetPoint.y,
offsetPoint.z
);
p0Attributes.position.values.push(
offsetPoint.x,
offsetPoint.y,
offsetPoint.z
);
p0Attributes.prevPosition.values.push(
prevPositions[i0 * 3],
prevPositions[i0 * 3 + 1],
prevPositions[i0 * 3 + 2]
);
p0Attributes.prevPosition.values.push(
prevPositions[i0 * 3 + 3],
prevPositions[i0 * 3 + 4],
prevPositions[i0 * 3 + 5]
);
p0Attributes.prevPosition.values.push(p0.x, p0.y, p0.z, p0.x, p0.y, p0.z);
p0Attributes.nextPosition.values.push(
offsetPoint.x,
offsetPoint.y,
offsetPoint.z
);
p0Attributes.nextPosition.values.push(
offsetPoint.x,
offsetPoint.y,
offsetPoint.z
);
p0Attributes.nextPosition.values.push(
offsetPoint.x,
offsetPoint.y,
offsetPoint.z
);
p0Attributes.nextPosition.values.push(
offsetPoint.x,
offsetPoint.y,
offsetPoint.z
);
Cartesian3_default.negate(offset, offset);
Cartesian3_default.add(intersection, offset, offsetPoint);
p2Attributes.position.values.push(
offsetPoint.x,
offsetPoint.y,
offsetPoint.z
);
p2Attributes.position.values.push(
offsetPoint.x,
offsetPoint.y,
offsetPoint.z
);
p2Attributes.position.values.push(p2.x, p2.y, p2.z, p2.x, p2.y, p2.z);
p2Attributes.prevPosition.values.push(
offsetPoint.x,
offsetPoint.y,
offsetPoint.z
);
p2Attributes.prevPosition.values.push(
offsetPoint.x,
offsetPoint.y,
offsetPoint.z
);
p2Attributes.prevPosition.values.push(
offsetPoint.x,
offsetPoint.y,
offsetPoint.z
);
p2Attributes.prevPosition.values.push(
offsetPoint.x,
offsetPoint.y,
offsetPoint.z
);
p2Attributes.nextPosition.values.push(p2.x, p2.y, p2.z, p2.x, p2.y, p2.z);
p2Attributes.nextPosition.values.push(
nextPositions[i2 * 3],
nextPositions[i2 * 3 + 1],
nextPositions[i2 * 3 + 2]
);
p2Attributes.nextPosition.values.push(
nextPositions[i2 * 3 + 3],
nextPositions[i2 * 3 + 4],
nextPositions[i2 * 3 + 5]
);
const ew0 = Cartesian2_default.fromArray(
expandAndWidths,
i0 * 2,
cartesian2Scratch0
);
const width = Math.abs(ew0.y);
p0Attributes.expandAndWidth.values.push(-1, width, 1, width);
p0Attributes.expandAndWidth.values.push(-1, -width, 1, -width);
p2Attributes.expandAndWidth.values.push(-1, width, 1, width);
p2Attributes.expandAndWidth.values.push(-1, -width, 1, -width);
let t = Cartesian3_default.magnitudeSquared(
Cartesian3_default.subtract(intersection, p0, cartesian3Scratch3)
);
t /= Cartesian3_default.magnitudeSquared(
Cartesian3_default.subtract(p2, p0, cartesian3Scratch3)
);
if (defined_default(colors)) {
const c0 = Cartesian4_default.fromArray(colors, i0 * 4, cartesian4Scratch0);
const c2 = Cartesian4_default.fromArray(colors, i2 * 4, cartesian4Scratch0);
const r = Math_default.lerp(c0.x, c2.x, t);
const g = Math_default.lerp(c0.y, c2.y, t);
const b = Math_default.lerp(c0.z, c2.z, t);
const a = Math_default.lerp(c0.w, c2.w, t);
for (j = i0 * 4; j < i0 * 4 + 2 * 4; ++j) {
p0Attributes.color.values.push(colors[j]);
}
p0Attributes.color.values.push(r, g, b, a);
p0Attributes.color.values.push(r, g, b, a);
p2Attributes.color.values.push(r, g, b, a);
p2Attributes.color.values.push(r, g, b, a);
for (j = i2 * 4; j < i2 * 4 + 2 * 4; ++j) {
p2Attributes.color.values.push(colors[j]);
}
}
if (defined_default(texCoords)) {
const s0 = Cartesian2_default.fromArray(texCoords, i0 * 2, cartesian2Scratch0);
const s3 = Cartesian2_default.fromArray(
texCoords,
(i + 3) * 2,
cartesian2Scratch1
);
const sx = Math_default.lerp(s0.x, s3.x, t);
for (j = i0 * 2; j < i0 * 2 + 2 * 2; ++j) {
p0Attributes.st.values.push(texCoords[j]);
}
p0Attributes.st.values.push(sx, s0.y);
p0Attributes.st.values.push(sx, s3.y);
p2Attributes.st.values.push(sx, s0.y);
p2Attributes.st.values.push(sx, s3.y);
for (j = i2 * 2; j < i2 * 2 + 2 * 2; ++j) {
p2Attributes.st.values.push(texCoords[j]);
}
}
index = p0Attributes.position.values.length / 3 - 4;
p0Indices.push(index, index + 2, index + 1);
p0Indices.push(index + 1, index + 2, index + 3);
index = p2Attributes.position.values.length / 3 - 4;
p2Indices.push(index, index + 2, index + 1);
p2Indices.push(index + 1, index + 2, index + 3);
} else {
let currentAttributes;
let currentIndices;
if (p0.y < 0) {
currentAttributes = westGeometry.attributes;
currentIndices = westGeometry.indices;
} else {
currentAttributes = eastGeometry.attributes;
currentIndices = eastGeometry.indices;
}
currentAttributes.position.values.push(p0.x, p0.y, p0.z);
currentAttributes.position.values.push(p0.x, p0.y, p0.z);
currentAttributes.position.values.push(p2.x, p2.y, p2.z);
currentAttributes.position.values.push(p2.x, p2.y, p2.z);
for (j = i * 3; j < i * 3 + 4 * 3; ++j) {
currentAttributes.prevPosition.values.push(prevPositions[j]);
currentAttributes.nextPosition.values.push(nextPositions[j]);
}
for (j = i * 2; j < i * 2 + 4 * 2; ++j) {
currentAttributes.expandAndWidth.values.push(expandAndWidths[j]);
if (defined_default(texCoords)) {
currentAttributes.st.values.push(texCoords[j]);
}
}
if (defined_default(colors)) {
for (j = i * 4; j < i * 4 + 4 * 4; ++j) {
currentAttributes.color.values.push(colors[j]);
}
}
index = currentAttributes.position.values.length / 3 - 4;
currentIndices.push(index, index + 2, index + 1);
currentIndices.push(index + 1, index + 2, index + 3);
}
}
if (intersectionFound) {
updateAdjacencyAfterSplit(westGeometry);
updateAdjacencyAfterSplit(eastGeometry);
}
updateInstanceAfterSplit(instance, westGeometry, eastGeometry);
}
GeometryPipeline.splitLongitude = function(instance) {
if (!defined_default(instance)) {
throw new DeveloperError_default("instance is required.");
}
const geometry = instance.geometry;
const boundingSphere = geometry.boundingSphere;
if (defined_default(boundingSphere)) {
const minX = boundingSphere.center.x - boundingSphere.radius;
if (minX > 0 || BoundingSphere_default.intersectPlane(boundingSphere, Plane_default.ORIGIN_ZX_PLANE) !== Intersect_default.INTERSECTING) {
return instance;
}
}
if (geometry.geometryType !== GeometryType_default.NONE) {
switch (geometry.geometryType) {
case GeometryType_default.POLYLINES:
splitLongitudePolyline(instance);
break;
case GeometryType_default.TRIANGLES:
splitLongitudeTriangles(instance);
break;
case GeometryType_default.LINES:
splitLongitudeLines(instance);
break;
}
} else {
indexPrimitive(geometry);
if (geometry.primitiveType === PrimitiveType_default.TRIANGLES) {
splitLongitudeTriangles(instance);
} else if (geometry.primitiveType === PrimitiveType_default.LINES) {
splitLongitudeLines(instance);
}
}
return instance;
};
var GeometryPipeline_default = GeometryPipeline;
export {
GeometryPipeline_default
};