286 lines
13 KiB
JavaScript
286 lines
13 KiB
JavaScript
/**
|
|
* Cesium - https://github.com/CesiumGS/cesium
|
|
*
|
|
* Copyright 2011-2020 Cesium Contributors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* Columbus View (Pat. Pend.)
|
|
*
|
|
* Portions licensed separately.
|
|
* See https://github.com/CesiumGS/cesium/blob/master/LICENSE.md for full licensing details.
|
|
*/
|
|
define(['exports', './Math-61ede240', './Cartographic-f2a06374', './BoundingSphere-d018a565', './Transforms-f77c92da'], function (exports, _Math, Cartographic, BoundingSphere, Transforms) { 'use strict';
|
|
|
|
var EllipseGeometryLibrary = {};
|
|
|
|
var rotAxis = new Cartographic.Cartesian3();
|
|
var tempVec = new Cartographic.Cartesian3();
|
|
var unitQuat = new Transforms.Quaternion();
|
|
var rotMtx = new BoundingSphere.Matrix3();
|
|
|
|
function pointOnEllipsoid(theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, result) {
|
|
var azimuth = theta + rotation;
|
|
|
|
Cartographic.Cartesian3.multiplyByScalar(eastVec, Math.cos(azimuth), rotAxis);
|
|
Cartographic.Cartesian3.multiplyByScalar(northVec, Math.sin(azimuth), tempVec);
|
|
Cartographic.Cartesian3.add(rotAxis, tempVec, rotAxis);
|
|
|
|
var cosThetaSquared = Math.cos(theta);
|
|
cosThetaSquared = cosThetaSquared * cosThetaSquared;
|
|
|
|
var sinThetaSquared = Math.sin(theta);
|
|
sinThetaSquared = sinThetaSquared * sinThetaSquared;
|
|
|
|
var radius = ab / Math.sqrt(bSqr * cosThetaSquared + aSqr * sinThetaSquared);
|
|
var angle = radius / mag;
|
|
|
|
// Create the quaternion to rotate the position vector to the boundary of the ellipse.
|
|
Transforms.Quaternion.fromAxisAngle(rotAxis, angle, unitQuat);
|
|
BoundingSphere.Matrix3.fromQuaternion(unitQuat, rotMtx);
|
|
|
|
BoundingSphere.Matrix3.multiplyByVector(rotMtx, unitPos, result);
|
|
Cartographic.Cartesian3.normalize(result, result);
|
|
Cartographic.Cartesian3.multiplyByScalar(result, mag, result);
|
|
return result;
|
|
}
|
|
|
|
var scratchCartesian1 = new Cartographic.Cartesian3();
|
|
var scratchCartesian2 = new Cartographic.Cartesian3();
|
|
var scratchCartesian3 = new Cartographic.Cartesian3();
|
|
var scratchNormal = new Cartographic.Cartesian3();
|
|
/**
|
|
* Returns the positions raised to the given heights
|
|
* @private
|
|
*/
|
|
EllipseGeometryLibrary.raisePositionsToHeight = function(positions, options, extrude) {
|
|
var ellipsoid = options.ellipsoid;
|
|
var height = options.height;
|
|
var extrudedHeight = options.extrudedHeight;
|
|
var size = (extrude) ? positions.length / 3 * 2 : positions.length / 3;
|
|
|
|
var finalPositions = new Float64Array(size * 3);
|
|
|
|
var length = positions.length;
|
|
var bottomOffset = (extrude) ? length : 0;
|
|
for (var i = 0; i < length; i += 3) {
|
|
var i1 = i + 1;
|
|
var i2 = i + 2;
|
|
|
|
var position = Cartographic.Cartesian3.fromArray(positions, i, scratchCartesian1);
|
|
ellipsoid.scaleToGeodeticSurface(position, position);
|
|
|
|
var extrudedPosition = Cartographic.Cartesian3.clone(position, scratchCartesian2);
|
|
var normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal);
|
|
var scaledNormal = Cartographic.Cartesian3.multiplyByScalar(normal, height, scratchCartesian3);
|
|
Cartographic.Cartesian3.add(position, scaledNormal, position);
|
|
|
|
if (extrude) {
|
|
Cartographic.Cartesian3.multiplyByScalar(normal, extrudedHeight, scaledNormal);
|
|
Cartographic.Cartesian3.add(extrudedPosition, scaledNormal, extrudedPosition);
|
|
|
|
finalPositions[i + bottomOffset] = extrudedPosition.x;
|
|
finalPositions[i1 + bottomOffset] = extrudedPosition.y;
|
|
finalPositions[i2 + bottomOffset] = extrudedPosition.z;
|
|
}
|
|
|
|
finalPositions[i] = position.x;
|
|
finalPositions[i1] = position.y;
|
|
finalPositions[i2] = position.z;
|
|
}
|
|
|
|
return finalPositions;
|
|
};
|
|
|
|
var unitPosScratch = new Cartographic.Cartesian3();
|
|
var eastVecScratch = new Cartographic.Cartesian3();
|
|
var northVecScratch = new Cartographic.Cartesian3();
|
|
/**
|
|
* Returns an array of positions that make up the ellipse.
|
|
* @private
|
|
*/
|
|
EllipseGeometryLibrary.computeEllipsePositions = function(options, addFillPositions, addEdgePositions) {
|
|
var semiMinorAxis = options.semiMinorAxis;
|
|
var semiMajorAxis = options.semiMajorAxis;
|
|
var rotation = options.rotation;
|
|
var center = options.center;
|
|
|
|
// Computing the arc-length of the ellipse is too expensive to be practical. Estimating it using the
|
|
// arc length of the sphere is too inaccurate and creates sharp edges when either the semi-major or
|
|
// semi-minor axis is much bigger than the other. Instead, scale the angle delta to make
|
|
// the distance along the ellipse boundary more closely match the granularity.
|
|
var granularity = options.granularity * 8.0;
|
|
|
|
var aSqr = semiMinorAxis * semiMinorAxis;
|
|
var bSqr = semiMajorAxis * semiMajorAxis;
|
|
var ab = semiMajorAxis * semiMinorAxis;
|
|
|
|
var mag = Cartographic.Cartesian3.magnitude(center);
|
|
|
|
var unitPos = Cartographic.Cartesian3.normalize(center, unitPosScratch);
|
|
var eastVec = Cartographic.Cartesian3.cross(Cartographic.Cartesian3.UNIT_Z, center, eastVecScratch);
|
|
eastVec = Cartographic.Cartesian3.normalize(eastVec, eastVec);
|
|
var northVec = Cartographic.Cartesian3.cross(unitPos, eastVec, northVecScratch);
|
|
|
|
// The number of points in the first quadrant
|
|
var numPts = 1 + Math.ceil(_Math.CesiumMath.PI_OVER_TWO / granularity);
|
|
|
|
var deltaTheta = _Math.CesiumMath.PI_OVER_TWO / (numPts - 1);
|
|
var theta = _Math.CesiumMath.PI_OVER_TWO - numPts * deltaTheta;
|
|
if (theta < 0.0) {
|
|
numPts -= Math.ceil(Math.abs(theta) / deltaTheta);
|
|
}
|
|
|
|
// If the number of points were three, the ellipse
|
|
// would be tessellated like below:
|
|
//
|
|
// *---*
|
|
// / | \ | \
|
|
// *---*---*---*
|
|
// / | \ | \ | \ | \
|
|
// / .*---*---*---*. \
|
|
// * ` | \ | \ | \ | `*
|
|
// \`.*---*---*---*.`/
|
|
// \ | \ | \ | \ | /
|
|
// *---*---*---*
|
|
// \ | \ | /
|
|
// *---*
|
|
// The first and last column have one position and fan to connect to the adjacent column.
|
|
// Each other vertical column contains an even number of positions.
|
|
var size = 2 * (numPts * (numPts + 2));
|
|
var positions = (addFillPositions) ? new Array(size * 3) : undefined;
|
|
var positionIndex = 0;
|
|
var position = scratchCartesian1;
|
|
var reflectedPosition = scratchCartesian2;
|
|
|
|
var outerPositionsLength = (numPts * 4) * 3;
|
|
var outerRightIndex = outerPositionsLength - 1;
|
|
var outerLeftIndex = 0;
|
|
var outerPositions = (addEdgePositions) ? new Array(outerPositionsLength) : undefined;
|
|
|
|
var i;
|
|
var j;
|
|
var numInterior;
|
|
var t;
|
|
var interiorPosition;
|
|
|
|
// Compute points in the 'eastern' half of the ellipse
|
|
theta = _Math.CesiumMath.PI_OVER_TWO;
|
|
position = pointOnEllipsoid(theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, position);
|
|
if (addFillPositions) {
|
|
positions[positionIndex++] = position.x;
|
|
positions[positionIndex++] = position.y;
|
|
positions[positionIndex++] = position.z;
|
|
}
|
|
if (addEdgePositions) {
|
|
outerPositions[outerRightIndex--] = position.z;
|
|
outerPositions[outerRightIndex--] = position.y;
|
|
outerPositions[outerRightIndex--] = position.x;
|
|
}
|
|
theta = _Math.CesiumMath.PI_OVER_TWO - deltaTheta;
|
|
for (i = 1; i < numPts + 1; ++i) {
|
|
position = pointOnEllipsoid(theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, position);
|
|
reflectedPosition = pointOnEllipsoid(Math.PI - theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, reflectedPosition);
|
|
|
|
if (addFillPositions) {
|
|
positions[positionIndex++] = position.x;
|
|
positions[positionIndex++] = position.y;
|
|
positions[positionIndex++] = position.z;
|
|
|
|
numInterior = 2 * i + 2;
|
|
for (j = 1; j < numInterior - 1; ++j) {
|
|
t = j / (numInterior - 1);
|
|
interiorPosition = Cartographic.Cartesian3.lerp(position, reflectedPosition, t, scratchCartesian3);
|
|
positions[positionIndex++] = interiorPosition.x;
|
|
positions[positionIndex++] = interiorPosition.y;
|
|
positions[positionIndex++] = interiorPosition.z;
|
|
}
|
|
|
|
positions[positionIndex++] = reflectedPosition.x;
|
|
positions[positionIndex++] = reflectedPosition.y;
|
|
positions[positionIndex++] = reflectedPosition.z;
|
|
}
|
|
|
|
if (addEdgePositions) {
|
|
outerPositions[outerRightIndex--] = position.z;
|
|
outerPositions[outerRightIndex--] = position.y;
|
|
outerPositions[outerRightIndex--] = position.x;
|
|
outerPositions[outerLeftIndex++] = reflectedPosition.x;
|
|
outerPositions[outerLeftIndex++] = reflectedPosition.y;
|
|
outerPositions[outerLeftIndex++] = reflectedPosition.z;
|
|
}
|
|
|
|
theta = _Math.CesiumMath.PI_OVER_TWO - (i + 1) * deltaTheta;
|
|
}
|
|
|
|
// Compute points in the 'western' half of the ellipse
|
|
for (i = numPts; i > 1; --i) {
|
|
theta = _Math.CesiumMath.PI_OVER_TWO - (i - 1) * deltaTheta;
|
|
|
|
position = pointOnEllipsoid(-theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, position);
|
|
reflectedPosition = pointOnEllipsoid(theta + Math.PI, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, reflectedPosition);
|
|
|
|
if (addFillPositions) {
|
|
positions[positionIndex++] = position.x;
|
|
positions[positionIndex++] = position.y;
|
|
positions[positionIndex++] = position.z;
|
|
|
|
numInterior = 2 * (i - 1) + 2;
|
|
for (j = 1; j < numInterior - 1; ++j) {
|
|
t = j / (numInterior - 1);
|
|
interiorPosition = Cartographic.Cartesian3.lerp(position, reflectedPosition, t, scratchCartesian3);
|
|
positions[positionIndex++] = interiorPosition.x;
|
|
positions[positionIndex++] = interiorPosition.y;
|
|
positions[positionIndex++] = interiorPosition.z;
|
|
}
|
|
|
|
positions[positionIndex++] = reflectedPosition.x;
|
|
positions[positionIndex++] = reflectedPosition.y;
|
|
positions[positionIndex++] = reflectedPosition.z;
|
|
}
|
|
|
|
if (addEdgePositions) {
|
|
outerPositions[outerRightIndex--] = position.z;
|
|
outerPositions[outerRightIndex--] = position.y;
|
|
outerPositions[outerRightIndex--] = position.x;
|
|
outerPositions[outerLeftIndex++] = reflectedPosition.x;
|
|
outerPositions[outerLeftIndex++] = reflectedPosition.y;
|
|
outerPositions[outerLeftIndex++] = reflectedPosition.z;
|
|
}
|
|
}
|
|
|
|
theta = _Math.CesiumMath.PI_OVER_TWO;
|
|
position = pointOnEllipsoid(-theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, position);
|
|
|
|
var r = {};
|
|
if (addFillPositions) {
|
|
positions[positionIndex++] = position.x;
|
|
positions[positionIndex++] = position.y;
|
|
positions[positionIndex++] = position.z;
|
|
r.positions = positions;
|
|
r.numPts = numPts;
|
|
}
|
|
if (addEdgePositions) {
|
|
outerPositions[outerRightIndex--] = position.z;
|
|
outerPositions[outerRightIndex--] = position.y;
|
|
outerPositions[outerRightIndex--] = position.x;
|
|
r.outerPositions = outerPositions;
|
|
}
|
|
|
|
return r;
|
|
};
|
|
|
|
exports.EllipseGeometryLibrary = EllipseGeometryLibrary;
|
|
|
|
});
|