Agriculture-front-end/public/Cesium/Workers/Cartesian2-85064f09.js
2023-04-16 22:33:44 +08:00

2270 lines
94 KiB
JavaScript

/**
* Cesium - https://github.com/AnalyticalGraphicsInc/cesium
*
* Copyright 2011-2017 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/AnalyticalGraphicsInc/cesium/blob/master/LICENSE.md for full licensing details.
*/
define(['exports', './when-8d13db60', './Check-70bec281', './Math-61ede240', './Cartographic-fe4be337'], function (exports, when, Check, _Math, Cartographic) { 'use strict';
function initialize(ellipsoid, x, y, z) {
x = when.defaultValue(x, 0.0);
y = when.defaultValue(y, 0.0);
z = when.defaultValue(z, 0.0);
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number.greaterThanOrEquals('x', x, 0.0);
Check.Check.typeOf.number.greaterThanOrEquals('y', y, 0.0);
Check.Check.typeOf.number.greaterThanOrEquals('z', z, 0.0);
//>>includeEnd('debug');
if(_Math.CesiumMath.equalsEpsilon(z, 6356752.3142451793, _Math.CesiumMath.EPSILON10)){
_Math.CesiumMath.Radius = z;
}
ellipsoid._radii = new Cartographic.Cartesian3(x, y, z);
ellipsoid._radiiSquared = new Cartographic.Cartesian3(x * x,
y * y,
z * z);
ellipsoid._radiiToTheFourth = new Cartographic.Cartesian3(x * x * x * x,
y * y * y * y,
z * z * z * z);
ellipsoid._oneOverRadii = new Cartographic.Cartesian3(x === 0.0 ? 0.0 : 1.0 / x,
y === 0.0 ? 0.0 : 1.0 / y,
z === 0.0 ? 0.0 : 1.0 / z);
ellipsoid._oneOverRadiiSquared = new Cartographic.Cartesian3(x === 0.0 ? 0.0 : 1.0 / (x * x),
y === 0.0 ? 0.0 : 1.0 / (y * y),
z === 0.0 ? 0.0 : 1.0 / (z * z));
ellipsoid._minimumRadius = Math.min(x, y, z);
ellipsoid._maximumRadius = Math.max(x, y, z);
ellipsoid._centerToleranceSquared = _Math.CesiumMath.EPSILON1;
if (ellipsoid._radiiSquared.z !== 0) {
ellipsoid._squaredXOverSquaredZ = ellipsoid._radiiSquared.x / ellipsoid._radiiSquared.z;
}
}
/**
* A quadratic surface defined in Cartesian coordinates by the equation
* <code>(x / a)^2 + (y / b)^2 + (z / c)^2 = 1</code>. Primarily used
* by Cesium to represent the shape of planetary bodies.
*
* Rather than constructing this object directly, one of the provided
* constants is normally used.
* @alias Ellipsoid
* @constructor
*
* @param {Number} [x=0] The radius in the x direction.
* @param {Number} [y=0] The radius in the y direction.
* @param {Number} [z=0] The radius in the z direction.
*
* @exception {DeveloperError} All radii components must be greater than or equal to zero.
*
* @see Ellipsoid.fromCartesian3
* @see Ellipsoid.WGS84
* @see Ellipsoid.UNIT_SPHERE
*/
function Ellipsoid(x, y, z) {
this._radii = undefined;
this._radiiSquared = undefined;
this._radiiToTheFourth = undefined;
this._oneOverRadii = undefined;
this._oneOverRadiiSquared = undefined;
this._minimumRadius = undefined;
this._maximumRadius = undefined;
this._centerToleranceSquared = undefined;
this._squaredXOverSquaredZ = undefined;
initialize(this, x, y, z);
}
Object.defineProperties(Ellipsoid.prototype, {
/**
* Gets the radii of the ellipsoid.
* @memberof Ellipsoid.prototype
* @type {Cartesian3}
* @readonly
*/
radii : {
get: function() {
return this._radii;
}
},
/**
* Gets the squared radii of the ellipsoid.
* @memberof Ellipsoid.prototype
* @type {Cartesian3}
* @readonly
*/
radiiSquared : {
get : function() {
return this._radiiSquared;
}
},
/**
* Gets the radii of the ellipsoid raise to the fourth power.
* @memberof Ellipsoid.prototype
* @type {Cartesian3}
* @readonly
*/
radiiToTheFourth : {
get : function() {
return this._radiiToTheFourth;
}
},
/**
* Gets one over the radii of the ellipsoid.
* @memberof Ellipsoid.prototype
* @type {Cartesian3}
* @readonly
*/
oneOverRadii : {
get : function() {
return this._oneOverRadii;
}
},
/**
* Gets one over the squared radii of the ellipsoid.
* @memberof Ellipsoid.prototype
* @type {Cartesian3}
* @readonly
*/
oneOverRadiiSquared : {
get : function() {
return this._oneOverRadiiSquared;
}
},
/**
* Gets the minimum radius of the ellipsoid.
* @memberof Ellipsoid.prototype
* @type {Number}
* @readonly
*/
minimumRadius : {
get : function() {
return this._minimumRadius;
}
},
/**
* Gets the maximum radius of the ellipsoid.
* @memberof Ellipsoid.prototype
* @type {Number}
* @readonly
*/
maximumRadius : {
get : function() {
return this._maximumRadius;
}
}
});
/**
* Duplicates an Ellipsoid instance.
*
* @param {Ellipsoid} ellipsoid The ellipsoid to duplicate.
* @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new
* instance should be created.
* @returns {Ellipsoid} The cloned Ellipsoid. (Returns undefined if ellipsoid is undefined)
*/
Ellipsoid.clone = function(ellipsoid, result) {
if (!when.defined(ellipsoid)) {
return undefined;
}
var radii = ellipsoid._radii;
if (!when.defined(result)) {
return new Ellipsoid(radii.x, radii.y, radii.z);
}
Cartographic.Cartesian3.clone(radii, result._radii);
Cartographic.Cartesian3.clone(ellipsoid._radiiSquared, result._radiiSquared);
Cartographic.Cartesian3.clone(ellipsoid._radiiToTheFourth, result._radiiToTheFourth);
Cartographic.Cartesian3.clone(ellipsoid._oneOverRadii, result._oneOverRadii);
Cartographic.Cartesian3.clone(ellipsoid._oneOverRadiiSquared, result._oneOverRadiiSquared);
result._minimumRadius = ellipsoid._minimumRadius;
result._maximumRadius = ellipsoid._maximumRadius;
result._centerToleranceSquared = ellipsoid._centerToleranceSquared;
return result;
};
/**
* Computes an Ellipsoid from a Cartesian specifying the radii in x, y, and z directions.
*
* @param {Cartesian3} [cartesian=Cartesian3.ZERO] The ellipsoid's radius in the x, y, and z directions.
* @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new
* instance should be created.
* @returns {Ellipsoid} A new Ellipsoid instance.
*
* @exception {DeveloperError} All radii components must be greater than or equal to zero.
*
* @see Ellipsoid.WGS84
* @see Ellipsoid.UNIT_SPHERE
*/
Ellipsoid.fromCartesian3 = function(cartesian, result) {
if (!when.defined(result)) {
result = new Ellipsoid();
}
if (!when.defined(cartesian)) {
return result;
}
initialize(result, cartesian.x, cartesian.y, cartesian.z);
return result;
};
/**
* An Ellipsoid instance initialized to the WGS84 standard.
*
* @type {Ellipsoid}
* @constant
*/
Ellipsoid.WGS84 = Object.freeze(new Ellipsoid(6378137.0, 6378137.0, _Math.CesiumMath.Radius));
Ellipsoid.XIAN80 = Object.freeze(new Ellipsoid(6378140.0, 6378140.0, 6356755.29));
Ellipsoid.CGCS2000 = Object.freeze(new Ellipsoid(6378137.0, 6378137.0, 6356752.31));
/**
* An Ellipsoid instance initialized to radii of (1.0, 1.0, 1.0).
*
* @type {Ellipsoid}
* @constant
*/
Ellipsoid.UNIT_SPHERE = Object.freeze(new Ellipsoid(1.0, 1.0, 1.0));
/**
* An Ellipsoid instance initialized to a sphere with the lunar radius.
*
* @type {Ellipsoid}
* @constant
*/
Ellipsoid.MOON = Object.freeze(new Ellipsoid(_Math.CesiumMath.LUNAR_RADIUS, _Math.CesiumMath.LUNAR_RADIUS, _Math.CesiumMath.LUNAR_RADIUS));
/**
* Duplicates an Ellipsoid instance.
*
* @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new
* instance should be created.
* @returns {Ellipsoid} The cloned Ellipsoid.
*/
Ellipsoid.prototype.clone = function(result) {
return Ellipsoid.clone(this, result);
};
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
Ellipsoid.packedLength = Cartographic.Cartesian3.packedLength;
/**
* Stores the provided instance into the provided array.
*
* @param {Ellipsoid} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
Ellipsoid.pack = function(value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('value', value);
Check.Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
Cartographic.Cartesian3.pack(value._radii, array, startingIndex);
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {Ellipsoid} [result] The object into which to store the result.
* @returns {Ellipsoid} The modified result parameter or a new Ellipsoid instance if one was not provided.
*/
Ellipsoid.unpack = function(array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
var radii = Cartographic.Cartesian3.unpack(array, startingIndex);
return Ellipsoid.fromCartesian3(radii, result);
};
/**
* Computes the unit vector directed from the center of this ellipsoid toward the provided Cartesian position.
* @function
*
* @param {Cartesian3} cartesian The Cartesian for which to to determine the geocentric normal.
* @param {Cartesian3} [result] The object onto which to store the result.
* @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided.
*/
Ellipsoid.prototype.geocentricSurfaceNormal = Cartographic.Cartesian3.normalize;
/**
* Computes the normal of the plane tangent to the surface of the ellipsoid at the provided position.
*
* @param {Cartographic} cartographic The cartographic position for which to to determine the geodetic normal.
* @param {Cartesian3} [result] The object onto which to store the result.
* @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided.
*/
Ellipsoid.prototype.geodeticSurfaceNormalCartographic = function(cartographic, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartographic', cartographic);
//>>includeEnd('debug');
var longitude = cartographic.longitude;
var latitude = cartographic.latitude;
var cosLatitude = Math.cos(latitude);
var x = cosLatitude * Math.cos(longitude);
var y = cosLatitude * Math.sin(longitude);
var z = Math.sin(latitude);
if (!when.defined(result)) {
result = new Cartographic.Cartesian3();
}
result.x = x;
result.y = y;
result.z = z;
return Cartographic.Cartesian3.normalize(result, result);
};
/**
* Computes the normal of the plane tangent to the surface of the ellipsoid at the provided position.
*
* @param {Cartesian3} cartesian The Cartesian position for which to to determine the surface normal.
* @param {Cartesian3} [result] The object onto which to store the result.
* @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided.
*/
Ellipsoid.prototype.geodeticSurfaceNormal = function(cartesian, result) {
if (!when.defined(result)) {
result = new Cartographic.Cartesian3();
}
result = Cartographic.Cartesian3.multiplyComponents(cartesian, this._oneOverRadiiSquared, result);
return Cartographic.Cartesian3.normalize(result, result);
};
var cartographicToCartesianNormal = new Cartographic.Cartesian3();
var cartographicToCartesianK = new Cartographic.Cartesian3();
/**
* Converts the provided cartographic to Cartesian representation.
*
* @param {Cartographic} cartographic The cartographic position.
* @param {Cartesian3} [result] The object onto which to store the result.
* @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided.
*
* @example
* //Create a Cartographic and determine it's Cartesian representation on a WGS84 ellipsoid.
* var position = new Cesium.Cartographic(Cesium.Math.toRadians(21), Cesium.Math.toRadians(78), 5000);
* var cartesianPosition = Cesium.Ellipsoid.WGS84.cartographicToCartesian(position);
*/
Ellipsoid.prototype.cartographicToCartesian = function(cartographic, result) {
//`cartographic is required` is thrown from geodeticSurfaceNormalCartographic.
var n = cartographicToCartesianNormal;
var k = cartographicToCartesianK;
this.geodeticSurfaceNormalCartographic(cartographic, n);
Cartographic.Cartesian3.multiplyComponents(this._radiiSquared, n, k);
var gamma = Math.sqrt(Cartographic.Cartesian3.dot(n, k));
Cartographic.Cartesian3.divideByScalar(k, gamma, k);
Cartographic.Cartesian3.multiplyByScalar(n, cartographic.height, n);
if (!when.defined(result)) {
result = new Cartographic.Cartesian3();
}
return Cartographic.Cartesian3.add(k, n, result);
};
/**
* Converts the provided array of cartographics to an array of Cartesians.
*
* @param {Cartographic[]} cartographics An array of cartographic positions.
* @param {Cartesian3[]} [result] The object onto which to store the result.
* @returns {Cartesian3[]} The modified result parameter or a new Array instance if none was provided.
*
* @example
* //Convert an array of Cartographics and determine their Cartesian representation on a WGS84 ellipsoid.
* var positions = [new Cesium.Cartographic(Cesium.Math.toRadians(21), Cesium.Math.toRadians(78), 0),
* new Cesium.Cartographic(Cesium.Math.toRadians(21.321), Cesium.Math.toRadians(78.123), 100),
* new Cesium.Cartographic(Cesium.Math.toRadians(21.645), Cesium.Math.toRadians(78.456), 250)];
* var cartesianPositions = Cesium.Ellipsoid.WGS84.cartographicArrayToCartesianArray(positions);
*/
Ellipsoid.prototype.cartographicArrayToCartesianArray = function(cartographics, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('cartographics', cartographics);
//>>includeEnd('debug')
var length = cartographics.length;
if (!when.defined(result)) {
result = new Array(length);
} else {
result.length = length;
}
for ( var i = 0; i < length; i++) {
result[i] = this.cartographicToCartesian(cartographics[i], result[i]);
}
return result;
};
var cartesianToCartographicN = new Cartographic.Cartesian3();
var cartesianToCartographicP = new Cartographic.Cartesian3();
var cartesianToCartographicH = new Cartographic.Cartesian3();
/**
* Converts the provided cartesian to cartographic representation.
* The cartesian is undefined at the center of the ellipsoid.
*
* @param {Cartesian3} cartesian The Cartesian position to convert to cartographic representation.
* @param {Cartographic} [result] The object onto which to store the result.
* @returns {Cartographic} The modified result parameter, new Cartographic instance if none was provided, or undefined if the cartesian is at the center of the ellipsoid.
*
* @example
* //Create a Cartesian and determine it's Cartographic representation on a WGS84 ellipsoid.
* var position = new Cesium.Cartesian3(17832.12, 83234.52, 952313.73);
* var cartographicPosition = Cesium.Ellipsoid.WGS84.cartesianToCartographic(position);
*/
Ellipsoid.prototype.cartesianToCartographic = function(cartesian, result) {
//`cartesian is required.` is thrown from scaleToGeodeticSurface
var p = this.scaleToGeodeticSurface(cartesian, cartesianToCartographicP);
if (!when.defined(p)) {
return undefined;
}
var n = this.geodeticSurfaceNormal(p, cartesianToCartographicN);
var h = Cartographic.Cartesian3.subtract(cartesian, p, cartesianToCartographicH);
var longitude = Math.atan2(n.y, n.x);
var latitude = Math.asin(n.z);
var height = _Math.CesiumMath.sign(Cartographic.Cartesian3.dot(h, cartesian)) * Cartographic.Cartesian3.magnitude(h);
if (!when.defined(result)) {
return new Cartographic.Cartographic(longitude, latitude, height);
}
result.longitude = longitude;
result.latitude = latitude;
result.height = height;
return result;
};
/**
* Converts the provided array of cartesians to an array of cartographics.
*
* @param {Cartesian3[]} cartesians An array of Cartesian positions.
* @param {Cartographic[]} [result] The object onto which to store the result.
* @returns {Cartographic[]} The modified result parameter or a new Array instance if none was provided.
*
* @example
* //Create an array of Cartesians and determine their Cartographic representation on a WGS84 ellipsoid.
* var positions = [new Cesium.Cartesian3(17832.12, 83234.52, 952313.73),
* new Cesium.Cartesian3(17832.13, 83234.53, 952313.73),
* new Cesium.Cartesian3(17832.14, 83234.54, 952313.73)]
* var cartographicPositions = Cesium.Ellipsoid.WGS84.cartesianArrayToCartographicArray(positions);
*/
Ellipsoid.prototype.cartesianArrayToCartographicArray = function(cartesians, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('cartesians', cartesians);
//>>includeEnd('debug');
var length = cartesians.length;
if (!when.defined(result)) {
result = new Array(length);
} else {
result.length = length;
}
for ( var i = 0; i < length; ++i) {
result[i] = this.cartesianToCartographic(cartesians[i], result[i]);
}
return result;
};
/**
* Scales the provided Cartesian position along the geodetic surface normal
* so that it is on the surface of this ellipsoid. If the position is
* at the center of the ellipsoid, this function returns undefined.
*
* @param {Cartesian3} cartesian The Cartesian position to scale.
* @param {Cartesian3} [result] The object onto which to store the result.
* @returns {Cartesian3} The modified result parameter, a new Cartesian3 instance if none was provided, or undefined if the position is at the center.
*/
Ellipsoid.prototype.scaleToGeodeticSurface = function(cartesian, result) {
return Cartographic.scaleToGeodeticSurface(cartesian, this._oneOverRadii, this._oneOverRadiiSquared, this._centerToleranceSquared, result);
};
/**
* Scales the provided Cartesian position along the geocentric surface normal
* so that it is on the surface of this ellipsoid.
*
* @param {Cartesian3} cartesian The Cartesian position to scale.
* @param {Cartesian3} [result] The object onto which to store the result.
* @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided.
*/
Ellipsoid.prototype.scaleToGeocentricSurface = function(cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
//>>includeEnd('debug');
if (!when.defined(result)) {
result = new Cartographic.Cartesian3();
}
var positionX = cartesian.x;
var positionY = cartesian.y;
var positionZ = cartesian.z;
var oneOverRadiiSquared = this._oneOverRadiiSquared;
var beta = 1.0 / Math.sqrt((positionX * positionX) * oneOverRadiiSquared.x +
(positionY * positionY) * oneOverRadiiSquared.y +
(positionZ * positionZ) * oneOverRadiiSquared.z);
return Cartographic.Cartesian3.multiplyByScalar(cartesian, beta, result);
};
/**
* Transforms a Cartesian X, Y, Z position to the ellipsoid-scaled space by multiplying
* its components by the result of {@link Ellipsoid#oneOverRadii}.
*
* @param {Cartesian3} position The position to transform.
* @param {Cartesian3} [result] The position to which to copy the result, or undefined to create and
* return a new instance.
* @returns {Cartesian3} The position expressed in the scaled space. The returned instance is the
* one passed as the result parameter if it is not undefined, or a new instance of it is.
*/
Ellipsoid.prototype.transformPositionToScaledSpace = function(position, result) {
if (!when.defined(result)) {
result = new Cartographic.Cartesian3();
}
return Cartographic.Cartesian3.multiplyComponents(position, this._oneOverRadii, result);
};
/**
* Transforms a Cartesian X, Y, Z position from the ellipsoid-scaled space by multiplying
* its components by the result of {@link Ellipsoid#radii}.
*
* @param {Cartesian3} position The position to transform.
* @param {Cartesian3} [result] The position to which to copy the result, or undefined to create and
* return a new instance.
* @returns {Cartesian3} The position expressed in the unscaled space. The returned instance is the
* one passed as the result parameter if it is not undefined, or a new instance of it is.
*/
Ellipsoid.prototype.transformPositionFromScaledSpace = function(position, result) {
if (!when.defined(result)) {
result = new Cartographic.Cartesian3();
}
return Cartographic.Cartesian3.multiplyComponents(position, this._radii, result);
};
/**
* Compares this Ellipsoid against the provided Ellipsoid componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {Ellipsoid} [right] The other Ellipsoid.
* @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
*/
Ellipsoid.prototype.equals = function(right) {
return (this === right) ||
(when.defined(right) &&
Cartographic.Cartesian3.equals(this._radii, right._radii));
};
/**
* Creates a string representing this Ellipsoid in the format '(radii.x, radii.y, radii.z)'.
*
* @returns {String} A string representing this ellipsoid in the format '(radii.x, radii.y, radii.z)'.
*/
Ellipsoid.prototype.toString = function() {
return this._radii.toString();
};
/**
* Computes a point which is the intersection of the surface normal with the z-axis.
*
* @param {Cartesian3} position the position. must be on the surface of the ellipsoid.
* @param {Number} [buffer = 0.0] A buffer to subtract from the ellipsoid size when checking if the point is inside the ellipsoid.
* In earth case, with common earth datums, there is no need for this buffer since the intersection point is always (relatively) very close to the center.
* In WGS84 datum, intersection point is at max z = +-42841.31151331382 (0.673% of z-axis).
* Intersection point could be outside the ellipsoid if the ratio of MajorAxis / AxisOfRotation is bigger than the square root of 2
* @param {Cartesian3} [result] The cartesian to which to copy the result, or undefined to create and
* return a new instance.
* @returns {Cartesian3 | undefined} the intersection point if it's inside the ellipsoid, undefined otherwise
*
* @exception {DeveloperError} position is required.
* @exception {DeveloperError} Ellipsoid must be an ellipsoid of revolution (radii.x == radii.y).
* @exception {DeveloperError} Ellipsoid.radii.z must be greater than 0.
*/
Ellipsoid.prototype.getSurfaceNormalIntersectionWithZAxis = function(position, buffer, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('position', position);
if (!_Math.CesiumMath.equalsEpsilon(this._radii.x, this._radii.y, _Math.CesiumMath.EPSILON15)) {
throw new Check.DeveloperError('Ellipsoid must be an ellipsoid of revolution (radii.x == radii.y)');
}
Check.Check.typeOf.number.greaterThan('Ellipsoid.radii.z', this._radii.z, 0);
//>>includeEnd('debug');
buffer = when.defaultValue(buffer, 0.0);
var squaredXOverSquaredZ = this._squaredXOverSquaredZ;
if (!when.defined(result)) {
result = new Cartographic.Cartesian3();
}
result.x = 0.0;
result.y = 0.0;
result.z = position.z * (1 - squaredXOverSquaredZ);
if (Math.abs(result.z) >= this._radii.z - buffer) {
return undefined;
}
return result;
};
/**
* A two dimensional region specified as longitude and latitude coordinates.
*
* @alias Rectangle
* @constructor
*
* @param {Number} [west=0.0] The westernmost longitude, in radians, in the range [-Pi, Pi].
* @param {Number} [south=0.0] The southernmost latitude, in radians, in the range [-Pi/2, Pi/2].
* @param {Number} [east=0.0] The easternmost longitude, in radians, in the range [-Pi, Pi].
* @param {Number} [north=0.0] The northernmost latitude, in radians, in the range [-Pi/2, Pi/2].
*
* @see Packable
*/
function Rectangle(west, south, east, north) {
/**
* The westernmost longitude in radians in the range [-Pi, Pi].
*
* @type {Number}
* @default 0.0
*/
this.west = when.defaultValue(west, 0.0);
/**
* The southernmost latitude in radians in the range [-Pi/2, Pi/2].
*
* @type {Number}
* @default 0.0
*/
this.south = when.defaultValue(south, 0.0);
/**
* The easternmost longitude in radians in the range [-Pi, Pi].
*
* @type {Number}
* @default 0.0
*/
this.east = when.defaultValue(east, 0.0);
/**
* The northernmost latitude in radians in the range [-Pi/2, Pi/2].
*
* @type {Number}
* @default 0.0
*/
this.north = when.defaultValue(north, 0.0);
}
Object.defineProperties(Rectangle.prototype, {
/**
* Gets the width of the rectangle in radians.
* @memberof Rectangle.prototype
* @type {Number}
*/
width : {
get : function() {
return Rectangle.computeWidth(this);
}
},
/**
* Gets the height of the rectangle in radians.
* @memberof Rectangle.prototype
* @type {Number}
*/
height : {
get : function() {
return Rectangle.computeHeight(this);
}
}
});
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
Rectangle.packedLength = 4;
/**
* Stores the provided instance into the provided array.
*
* @param {Rectangle} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
Rectangle.pack = function(value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('value', value);
Check.Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
array[startingIndex++] = value.west;
array[startingIndex++] = value.south;
array[startingIndex++] = value.east;
array[startingIndex] = value.north;
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {Rectangle} [result] The object into which to store the result.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if one was not provided.
*/
Rectangle.unpack = function(array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
if (!when.defined(result)) {
result = new Rectangle();
}
result.west = array[startingIndex++];
result.south = array[startingIndex++];
result.east = array[startingIndex++];
result.north = array[startingIndex];
return result;
};
/**
* Computes the width of a rectangle in radians.
* @param {Rectangle} rectangle The rectangle to compute the width of.
* @returns {Number} The width.
*/
Rectangle.computeWidth = function(rectangle) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('rectangle', rectangle);
//>>includeEnd('debug');
var east = rectangle.east;
var west = rectangle.west;
if (east < west) {
east += _Math.CesiumMath.TWO_PI;
}
return east - west;
};
/**
* Computes the height of a rectangle in radians.
* @param {Rectangle} rectangle The rectangle to compute the height of.
* @returns {Number} The height.
*/
Rectangle.computeHeight = function(rectangle) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('rectangle', rectangle);
//>>includeEnd('debug');
return rectangle.north - rectangle.south;
};
/**
* Creates a rectangle given the boundary longitude and latitude in degrees.
*
* @param {Number} [west=0.0] The westernmost longitude in degrees in the range [-180.0, 180.0].
* @param {Number} [south=0.0] The southernmost latitude in degrees in the range [-90.0, 90.0].
* @param {Number} [east=0.0] The easternmost longitude in degrees in the range [-180.0, 180.0].
* @param {Number} [north=0.0] The northernmost latitude in degrees in the range [-90.0, 90.0].
* @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
*
* @example
* var rectangle = Cesium.Rectangle.fromDegrees(0.0, 20.0, 10.0, 30.0);
*/
Rectangle.fromDegrees = function(west, south, east, north, result) {
west = _Math.CesiumMath.toRadians(when.defaultValue(west, 0.0));
south = _Math.CesiumMath.toRadians(when.defaultValue(south, 0.0));
east = _Math.CesiumMath.toRadians(when.defaultValue(east, 0.0));
north = _Math.CesiumMath.toRadians(when.defaultValue(north, 0.0));
if (!when.defined(result)) {
return new Rectangle(west, south, east, north);
}
result.west = west;
result.south = south;
result.east = east;
result.north = north;
return result;
};
/**
* Creates a rectangle given the boundary longitude and latitude in radians.
*
* @param {Number} [west=0.0] The westernmost longitude in radians in the range [-Math.PI, Math.PI].
* @param {Number} [south=0.0] The southernmost latitude in radians in the range [-Math.PI/2, Math.PI/2].
* @param {Number} [east=0.0] The easternmost longitude in radians in the range [-Math.PI, Math.PI].
* @param {Number} [north=0.0] The northernmost latitude in radians in the range [-Math.PI/2, Math.PI/2].
* @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
*
* @example
* var rectangle = Cesium.Rectangle.fromRadians(0.0, Math.PI/4, Math.PI/8, 3*Math.PI/4);
*/
Rectangle.fromRadians = function(west, south, east, north, result) {
if (!when.defined(result)) {
return new Rectangle(west, south, east, north);
}
result.west = when.defaultValue(west, 0.0);
result.south = when.defaultValue(south, 0.0);
result.east = when.defaultValue(east, 0.0);
result.north = when.defaultValue(north, 0.0);
return result;
};
/**
* Creates the smallest possible Rectangle that encloses all positions in the provided array.
*
* @param {Cartographic[]} cartographics The list of Cartographic instances.
* @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
*/
Rectangle.fromCartographicArray = function(cartographics, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('cartographics', cartographics);
//>>includeEnd('debug');
var west = Number.MAX_VALUE;
var east = -Number.MAX_VALUE;
var westOverIDL = Number.MAX_VALUE;
var eastOverIDL = -Number.MAX_VALUE;
var south = Number.MAX_VALUE;
var north = -Number.MAX_VALUE;
for ( var i = 0, len = cartographics.length; i < len; i++) {
var position = cartographics[i];
west = Math.min(west, position.longitude);
east = Math.max(east, position.longitude);
south = Math.min(south, position.latitude);
north = Math.max(north, position.latitude);
var lonAdjusted = position.longitude >= 0 ? position.longitude : position.longitude + _Math.CesiumMath.TWO_PI;
westOverIDL = Math.min(westOverIDL, lonAdjusted);
eastOverIDL = Math.max(eastOverIDL, lonAdjusted);
}
if(east - west > eastOverIDL - westOverIDL) {
west = westOverIDL;
east = eastOverIDL;
if (east > _Math.CesiumMath.PI) {
east = east - _Math.CesiumMath.TWO_PI;
}
if (west > _Math.CesiumMath.PI) {
west = west - _Math.CesiumMath.TWO_PI;
}
}
if (!when.defined(result)) {
return new Rectangle(west, south, east, north);
}
result.west = west;
result.south = south;
result.east = east;
result.north = north;
return result;
};
/**
* Creates the smallest possible Rectangle that encloses all positions in the provided array.
*
* @param {Cartesian3[]} cartesians The list of Cartesian instances.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid the cartesians are on.
* @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
*/
Rectangle.fromCartesianArray = function(cartesians, ellipsoid, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('cartesians', cartesians);
//>>includeEnd('debug');
ellipsoid = when.defaultValue(ellipsoid, Ellipsoid.WGS84);
var west = Number.MAX_VALUE;
var east = -Number.MAX_VALUE;
var westOverIDL = Number.MAX_VALUE;
var eastOverIDL = -Number.MAX_VALUE;
var south = Number.MAX_VALUE;
var north = -Number.MAX_VALUE;
for ( var i = 0, len = cartesians.length; i < len; i++) {
var position = ellipsoid.cartesianToCartographic(cartesians[i]);
west = Math.min(west, position.longitude);
east = Math.max(east, position.longitude);
south = Math.min(south, position.latitude);
north = Math.max(north, position.latitude);
var lonAdjusted = position.longitude >= 0 ? position.longitude : position.longitude + _Math.CesiumMath.TWO_PI;
westOverIDL = Math.min(westOverIDL, lonAdjusted);
eastOverIDL = Math.max(eastOverIDL, lonAdjusted);
}
if(east - west > eastOverIDL - westOverIDL) {
west = westOverIDL;
east = eastOverIDL;
if (east > _Math.CesiumMath.PI) {
east = east - _Math.CesiumMath.TWO_PI;
}
if (west > _Math.CesiumMath.PI) {
west = west - _Math.CesiumMath.TWO_PI;
}
}
if (!when.defined(result)) {
return new Rectangle(west, south, east, north);
}
result.west = west;
result.south = south;
result.east = east;
result.north = north;
return result;
};
/**
* Duplicates a Rectangle.
*
* @param {Rectangle} rectangle The rectangle to clone.
* @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided. (Returns undefined if rectangle is undefined)
*/
Rectangle.clone = function(rectangle, result) {
if (!when.defined(rectangle)) {
return undefined;
}
if (!when.defined(result)) {
return new Rectangle(rectangle.west, rectangle.south, rectangle.east, rectangle.north);
}
result.west = rectangle.west;
result.south = rectangle.south;
result.east = rectangle.east;
result.north = rectangle.north;
return result;
};
/**
* Compares the provided Rectangles componentwise and returns
* <code>true</code> if they pass an absolute or relative tolerance test,
* <code>false</code> otherwise.
*
* @param {Rectangle} [left] The first Rectangle.
* @param {Rectangle} [right] The second Rectangle.
* @param {Number} absoluteEpsilon The absolute epsilon tolerance to use for equality testing.
* @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise.
*/
Rectangle.equalsEpsilon = function(left, right, absoluteEpsilon) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number('absoluteEpsilon', absoluteEpsilon);
//>>includeEnd('debug');
return (left === right) ||
(when.defined(left) &&
when.defined(right) &&
(Math.abs(left.west - right.west) <= absoluteEpsilon) &&
(Math.abs(left.south - right.south) <= absoluteEpsilon) &&
(Math.abs(left.east - right.east) <= absoluteEpsilon) &&
(Math.abs(left.north - right.north) <= absoluteEpsilon));
};
/**
* Duplicates this Rectangle.
*
* @param {Rectangle} [result] The object onto which to store the result.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
*/
Rectangle.prototype.clone = function(result) {
return Rectangle.clone(this, result);
};
/**
* Compares the provided Rectangle with this Rectangle componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {Rectangle} [other] The Rectangle to compare.
* @returns {Boolean} <code>true</code> if the Rectangles are equal, <code>false</code> otherwise.
*/
Rectangle.prototype.equals = function(other) {
return Rectangle.equals(this, other);
};
/**
* Compares the provided rectangles and returns <code>true</code> if they are equal,
* <code>false</code> otherwise.
*
* @param {Rectangle} [left] The first Rectangle.
* @param {Rectangle} [right] The second Rectangle.
* @returns {Boolean} <code>true</code> if left and right are equal; otherwise <code>false</code>.
*/
Rectangle.equals = function(left, right) {
return (left === right) ||
((when.defined(left)) &&
(when.defined(right)) &&
(left.west === right.west) &&
(left.south === right.south) &&
(left.east === right.east) &&
(left.north === right.north));
};
/**
* Compares the provided Rectangle with this Rectangle componentwise and returns
* <code>true</code> if they are within the provided epsilon,
* <code>false</code> otherwise.
*
* @param {Rectangle} [other] The Rectangle to compare.
* @param {Number} epsilon The epsilon to use for equality testing.
* @returns {Boolean} <code>true</code> if the Rectangles are within the provided epsilon, <code>false</code> otherwise.
*/
Rectangle.prototype.equalsEpsilon = function(other, epsilon) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number('epsilon', epsilon);
//>>includeEnd('debug');
return Rectangle.equalsEpsilon(this, other, epsilon);
};
/**
* Checks a Rectangle's properties and throws if they are not in valid ranges.
*
* @param {Rectangle} rectangle The rectangle to validate
*
* @exception {DeveloperError} <code>north</code> must be in the interval [<code>-Pi/2</code>, <code>Pi/2</code>].
* @exception {DeveloperError} <code>south</code> must be in the interval [<code>-Pi/2</code>, <code>Pi/2</code>].
* @exception {DeveloperError} <code>east</code> must be in the interval [<code>-Pi</code>, <code>Pi</code>].
* @exception {DeveloperError} <code>west</code> must be in the interval [<code>-Pi</code>, <code>Pi</code>].
*/
Rectangle.validate = function(rectangle) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('rectangle', rectangle);
var north = rectangle.north;
Check.Check.typeOf.number.greaterThanOrEquals('north', north, -_Math.CesiumMath.PI_OVER_TWO);
Check.Check.typeOf.number.lessThanOrEquals('north', north, _Math.CesiumMath.PI_OVER_TWO);
var south = rectangle.south;
Check.Check.typeOf.number.greaterThanOrEquals('south', south, -_Math.CesiumMath.PI_OVER_TWO);
Check.Check.typeOf.number.lessThanOrEquals('south', south, _Math.CesiumMath.PI_OVER_TWO);
var west = rectangle.west;
Check.Check.typeOf.number.greaterThanOrEquals('west', west, -Math.PI);
Check.Check.typeOf.number.lessThanOrEquals('west', west, Math.PI);
var east = rectangle.east;
Check.Check.typeOf.number.greaterThanOrEquals('east', east, -Math.PI);
Check.Check.typeOf.number.lessThanOrEquals('east', east, Math.PI);
//>>includeEnd('debug');
};
/**
* Computes the southwest corner of a rectangle.
*
* @param {Rectangle} rectangle The rectangle for which to find the corner
* @param {Cartographic} [result] The object onto which to store the result.
* @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
*/
Rectangle.southwest = function(rectangle, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('rectangle', rectangle);
//>>includeEnd('debug');
if (!when.defined(result)) {
return new Cartographic.Cartographic(rectangle.west, rectangle.south);
}
result.longitude = rectangle.west;
result.latitude = rectangle.south;
result.height = 0.0;
return result;
};
/**
* Computes the northwest corner of a rectangle.
*
* @param {Rectangle} rectangle The rectangle for which to find the corner
* @param {Cartographic} [result] The object onto which to store the result.
* @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
*/
Rectangle.northwest = function(rectangle, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('rectangle', rectangle);
//>>includeEnd('debug');
if (!when.defined(result)) {
return new Cartographic.Cartographic(rectangle.west, rectangle.north);
}
result.longitude = rectangle.west;
result.latitude = rectangle.north;
result.height = 0.0;
return result;
};
/**
* Computes the northeast corner of a rectangle.
*
* @param {Rectangle} rectangle The rectangle for which to find the corner
* @param {Cartographic} [result] The object onto which to store the result.
* @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
*/
Rectangle.northeast = function(rectangle, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('rectangle', rectangle);
//>>includeEnd('debug');
if (!when.defined(result)) {
return new Cartographic.Cartographic(rectangle.east, rectangle.north);
}
result.longitude = rectangle.east;
result.latitude = rectangle.north;
result.height = 0.0;
return result;
};
/**
* Computes the southeast corner of a rectangle.
*
* @param {Rectangle} rectangle The rectangle for which to find the corner
* @param {Cartographic} [result] The object onto which to store the result.
* @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
*/
Rectangle.southeast = function(rectangle, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('rectangle', rectangle);
//>>includeEnd('debug');
if (!when.defined(result)) {
return new Cartographic.Cartographic(rectangle.east, rectangle.south);
}
result.longitude = rectangle.east;
result.latitude = rectangle.south;
result.height = 0.0;
return result;
};
/**
* Computes the center of a rectangle.
*
* @param {Rectangle} rectangle The rectangle for which to find the center
* @param {Cartographic} [result] The object onto which to store the result.
* @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
*/
Rectangle.center = function(rectangle, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('rectangle', rectangle);
//>>includeEnd('debug');
var east = rectangle.east;
var west = rectangle.west;
if (east < west) {
east += _Math.CesiumMath.TWO_PI;
}
var longitude = _Math.CesiumMath.negativePiToPi((west + east) * 0.5);
var latitude = (rectangle.south + rectangle.north) * 0.5;
if (!when.defined(result)) {
return new Cartographic.Cartographic(longitude, latitude);
}
result.longitude = longitude;
result.latitude = latitude;
result.height = 0.0;
return result;
};
/**
* Computes the intersection of two rectangles. This function assumes that the rectangle's coordinates are
* latitude and longitude in radians and produces a correct intersection, taking into account the fact that
* the same angle can be represented with multiple values as well as the wrapping of longitude at the
* anti-meridian. For a simple intersection that ignores these factors and can be used with projected
* coordinates, see {@link Rectangle.simpleIntersection}.
*
* @param {Rectangle} rectangle On rectangle to find an intersection
* @param {Rectangle} otherRectangle Another rectangle to find an intersection
* @param {Rectangle} [result] The object onto which to store the result.
* @returns {Rectangle|undefined} The modified result parameter, a new Rectangle instance if none was provided or undefined if there is no intersection.
*/
Rectangle.intersection = function(rectangle, otherRectangle, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('rectangle', rectangle);
Check.Check.typeOf.object('otherRectangle', otherRectangle);
//>>includeEnd('debug');
var rectangleEast = rectangle.east;
var rectangleWest = rectangle.west;
var otherRectangleEast = otherRectangle.east;
var otherRectangleWest = otherRectangle.west;
if (rectangleEast < rectangleWest && otherRectangleEast > 0.0) {
rectangleEast += _Math.CesiumMath.TWO_PI;
} else if (otherRectangleEast < otherRectangleWest && rectangleEast > 0.0) {
otherRectangleEast += _Math.CesiumMath.TWO_PI;
}
if (rectangleEast < rectangleWest && otherRectangleWest < 0.0) {
otherRectangleWest += _Math.CesiumMath.TWO_PI;
} else if (otherRectangleEast < otherRectangleWest && rectangleWest < 0.0) {
rectangleWest += _Math.CesiumMath.TWO_PI;
}
var west = _Math.CesiumMath.negativePiToPi(Math.max(rectangleWest, otherRectangleWest));
var east = _Math.CesiumMath.negativePiToPi(Math.min(rectangleEast, otherRectangleEast));
if ((rectangle.west < rectangle.east || otherRectangle.west < otherRectangle.east) && east <= west) {
return undefined;
}
var south = Math.max(rectangle.south, otherRectangle.south);
var north = Math.min(rectangle.north, otherRectangle.north);
if (south >= north) {
return undefined;
}
if (!when.defined(result)) {
return new Rectangle(west, south, east, north);
}
result.west = west;
result.south = south;
result.east = east;
result.north = north;
return result;
};
/**
* Computes a simple intersection of two rectangles. Unlike {@link Rectangle.intersection}, this function
* does not attempt to put the angular coordinates into a consistent range or to account for crossing the
* anti-meridian. As such, it can be used for rectangles where the coordinates are not simply latitude
* and longitude (i.e. projected coordinates).
*
* @param {Rectangle} rectangle On rectangle to find an intersection
* @param {Rectangle} otherRectangle Another rectangle to find an intersection
* @param {Rectangle} [result] The object onto which to store the result.
* @returns {Rectangle|undefined} The modified result parameter, a new Rectangle instance if none was provided or undefined if there is no intersection.
*/
Rectangle.simpleIntersection = function(rectangle, otherRectangle, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('rectangle', rectangle);
Check.Check.typeOf.object('otherRectangle', otherRectangle);
//>>includeEnd('debug');
var west = Math.max(rectangle.west, otherRectangle.west);
var south = Math.max(rectangle.south, otherRectangle.south);
var east = Math.min(rectangle.east, otherRectangle.east);
var north = Math.min(rectangle.north, otherRectangle.north);
if (south >= north || west >= east) {
return undefined;
}
if (!when.defined(result)) {
return new Rectangle(west, south, east, north);
}
result.west = west;
result.south = south;
result.east = east;
result.north = north;
return result;
};
/**
* Computes a rectangle that is the union of two rectangles.
*
* @param {Rectangle} rectangle A rectangle to enclose in rectangle.
* @param {Rectangle} otherRectangle A rectangle to enclose in a rectangle.
* @param {Rectangle} [result] The object onto which to store the result.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
*/
Rectangle.union = function(rectangle, otherRectangle, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('rectangle', rectangle);
Check.Check.typeOf.object('otherRectangle', otherRectangle);
//>>includeEnd('debug');
if (!when.defined(result)) {
result = new Rectangle();
}
var rectangleEast = rectangle.east;
var rectangleWest = rectangle.west;
var otherRectangleEast = otherRectangle.east;
var otherRectangleWest = otherRectangle.west;
if (rectangleEast < rectangleWest && otherRectangleEast > 0.0) {
rectangleEast += _Math.CesiumMath.TWO_PI;
} else if (otherRectangleEast < otherRectangleWest && rectangleEast > 0.0) {
otherRectangleEast += _Math.CesiumMath.TWO_PI;
}
if (rectangleEast < rectangleWest && otherRectangleWest < 0.0) {
otherRectangleWest += _Math.CesiumMath.TWO_PI;
} else if (otherRectangleEast < otherRectangleWest && rectangleWest < 0.0) {
rectangleWest += _Math.CesiumMath.TWO_PI;
}
var west = _Math.CesiumMath.convertLongitudeRange(Math.min(rectangleWest, otherRectangleWest));
var east = _Math.CesiumMath.convertLongitudeRange(Math.max(rectangleEast, otherRectangleEast));
result.west = west;
result.south = Math.min(rectangle.south, otherRectangle.south);
result.east = east;
result.north = Math.max(rectangle.north, otherRectangle.north);
return result;
};
/**
* Computes a rectangle by enlarging the provided rectangle until it contains the provided cartographic.
*
* @param {Rectangle} rectangle A rectangle to expand.
* @param {Cartographic} cartographic A cartographic to enclose in a rectangle.
* @param {Rectangle} [result] The object onto which to store the result.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if one was not provided.
*/
Rectangle.expand = function(rectangle, cartographic, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('rectangle', rectangle);
Check.Check.typeOf.object('cartographic', cartographic);
//>>includeEnd('debug');
if (!when.defined(result)) {
result = new Rectangle();
}
result.west = Math.min(rectangle.west, cartographic.longitude);
result.south = Math.min(rectangle.south, cartographic.latitude);
result.east = Math.max(rectangle.east, cartographic.longitude);
result.north = Math.max(rectangle.north, cartographic.latitude);
return result;
};
/**
* Returns true if the cartographic is on or inside the rectangle, false otherwise.
*
* @param {Rectangle} rectangle The rectangle
* @param {Cartographic} cartographic The cartographic to test.
* @returns {Boolean} true if the provided cartographic is inside the rectangle, false otherwise.
*/
Rectangle.contains = function(rectangle, cartographic) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('rectangle', rectangle);
Check.Check.typeOf.object('cartographic', cartographic);
//>>includeEnd('debug');
var longitude = cartographic.longitude;
var latitude = cartographic.latitude;
var west = rectangle.west;
var east = rectangle.east;
if (east < west) {
east += _Math.CesiumMath.TWO_PI;
if (longitude < 0.0) {
longitude += _Math.CesiumMath.TWO_PI;
}
}
return (longitude > west || _Math.CesiumMath.equalsEpsilon(longitude, west, _Math.CesiumMath.EPSILON14)) &&
(longitude < east || _Math.CesiumMath.equalsEpsilon(longitude, east, _Math.CesiumMath.EPSILON14)) &&
latitude >= rectangle.south &&
latitude <= rectangle.north;
};
var subsampleLlaScratch = new Cartographic.Cartographic();
/**
* Samples a rectangle so that it includes a list of Cartesian points suitable for passing to
* {@link BoundingSphere#fromPoints}. Sampling is necessary to account
* for rectangles that cover the poles or cross the equator.
*
* @param {Rectangle} rectangle The rectangle to subsample.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid to use.
* @param {Number} [surfaceHeight=0.0] The height of the rectangle above the ellipsoid.
* @param {Cartesian3[]} [result] The array of Cartesians onto which to store the result.
* @returns {Cartesian3[]} The modified result parameter or a new Array of Cartesians instances if none was provided.
*/
Rectangle.subsample = function(rectangle, ellipsoid, surfaceHeight, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('rectangle', rectangle);
//>>includeEnd('debug');
ellipsoid = when.defaultValue(ellipsoid, Ellipsoid.WGS84);
surfaceHeight = when.defaultValue(surfaceHeight, 0.0);
if (!when.defined(result)) {
result = [];
}
var length = 0;
var north = rectangle.north;
var south = rectangle.south;
var east = rectangle.east;
var west = rectangle.west;
var lla = subsampleLlaScratch;
lla.height = surfaceHeight;
lla.longitude = west;
lla.latitude = north;
result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
length++;
lla.longitude = east;
result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
length++;
lla.latitude = south;
result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
length++;
lla.longitude = west;
result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
length++;
if (north < 0.0) {
lla.latitude = north;
} else if (south > 0.0) {
lla.latitude = south;
} else {
lla.latitude = 0.0;
}
for ( var i = 1; i < 8; ++i) {
lla.longitude = -Math.PI + i * _Math.CesiumMath.PI_OVER_TWO;
if (Rectangle.contains(rectangle, lla)) {
result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
length++;
}
}
if (lla.latitude === 0.0) {
lla.longitude = west;
result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
length++;
lla.longitude = east;
result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
length++;
}
result.length = length;
return result;
};
var scratchCartographic = new Cartographic.Cartographic();
Rectangle.prototype.contains = function(rectangle) {
return Rectangle.contains(this, Rectangle.southwest(rectangle, scratchCartographic))
&& Rectangle.contains(this, Rectangle.northwest(rectangle, scratchCartographic))
&& Rectangle.contains(this, Rectangle.southeast(rectangle, scratchCartographic))
&& Rectangle.contains(this, Rectangle.northeast(rectangle, scratchCartographic));
};
/**
* The largest possible rectangle.
*
* @type {Rectangle}
* @constant
*/
Rectangle.MAX_VALUE = Object.freeze(new Rectangle(-Math.PI, -_Math.CesiumMath.PI_OVER_TWO, Math.PI, _Math.CesiumMath.PI_OVER_TWO));
/**
* A 2D Cartesian point.
* @alias Cartesian2
* @constructor
*
* @param {Number} [x=0.0] The X component.
* @param {Number} [y=0.0] The Y component.
*
* @see Cartesian3
* @see Cartesian4
* @see Packable
*/
function Cartesian2(x, y) {
/**
* The X component.
* @type {Number}
* @default 0.0
*/
this.x = when.defaultValue(x, 0.0);
/**
* The Y component.
* @type {Number}
* @default 0.0
*/
this.y = when.defaultValue(y, 0.0);
}
/**
* Creates a Cartesian2 instance from x and y coordinates.
*
* @param {Number} x The x coordinate.
* @param {Number} y The y coordinate.
* @param {Cartesian2} [result] The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
*/
Cartesian2.fromElements = function(x, y, result) {
if (!when.defined(result)) {
return new Cartesian2(x, y);
}
result.x = x;
result.y = y;
return result;
};
/**
* Duplicates a Cartesian2 instance.
*
* @param {Cartesian2} cartesian The Cartesian to duplicate.
* @param {Cartesian2} [result] The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. (Returns undefined if cartesian is undefined)
*/
Cartesian2.clone = function(cartesian, result) {
if (!when.defined(cartesian)) {
return undefined;
}
if (!when.defined(result)) {
return new Cartesian2(cartesian.x, cartesian.y);
}
result.x = cartesian.x;
result.y = cartesian.y;
return result;
};
/**
* Creates a Cartesian2 instance from an existing Cartesian3. This simply takes the
* x and y properties of the Cartesian3 and drops z.
* @function
*
* @param {Cartesian3} cartesian The Cartesian3 instance to create a Cartesian2 instance from.
* @param {Cartesian2} [result] The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
*/
Cartesian2.fromCartesian3 = Cartesian2.clone;
/**
* Creates a Cartesian2 instance from an existing Cartesian4. This simply takes the
* x and y properties of the Cartesian4 and drops z and w.
* @function
*
* @param {Cartesian4} cartesian The Cartesian4 instance to create a Cartesian2 instance from.
* @param {Cartesian2} [result] The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
*/
Cartesian2.fromCartesian4 = Cartesian2.clone;
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
Cartesian2.packedLength = 2;
/**
* Stores the provided instance into the provided array.
*
* @param {Cartesian2} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
Cartesian2.pack = function(value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('value', value);
Check.Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
array[startingIndex++] = value.x;
array[startingIndex] = value.y;
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {Cartesian2} [result] The object into which to store the result.
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
*/
Cartesian2.unpack = function(array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
if (!when.defined(result)) {
result = new Cartesian2();
}
result.x = array[startingIndex++];
result.y = array[startingIndex];
return result;
};
/**
* Flattens an array of Cartesian2s into and array of components.
*
* @param {Cartesian2[]} array The array of cartesians to pack.
* @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 2 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 2) elements.
* @returns {Number[]} The packed array.
*/
Cartesian2.packArray = function(array, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('array', array);
//>>includeEnd('debug');
var length = array.length;
var resultLength = length * 2;
if (!when.defined(result)) {
result = new Array(resultLength);
} else if (!Array.isArray(result) && result.length !== resultLength) {
throw new Check.DeveloperError('If result is a typed array, it must have exactly array.length * 2 elements');
} else if (result.length !== resultLength) {
result.length = resultLength;
}
for (var i = 0; i < length; ++i) {
Cartesian2.pack(array[i], result, i * 2);
}
return result;
};
/**
* Unpacks an array of cartesian components into and array of Cartesian2s.
*
* @param {Number[]} array The array of components to unpack.
* @param {Cartesian2[]} [result] The array onto which to store the result.
* @returns {Cartesian2[]} The unpacked array.
*/
Cartesian2.unpackArray = function(array, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('array', array);
Check.Check.typeOf.number.greaterThanOrEquals('array.length', array.length, 2);
if (array.length % 2 !== 0) {
throw new Check.DeveloperError('array length must be a multiple of 2.');
}
//>>includeEnd('debug');
var length = array.length;
if (!when.defined(result)) {
result = new Array(length / 2);
} else {
result.length = length / 2;
}
for (var i = 0; i < length; i += 2) {
var index = i / 2;
result[index] = Cartesian2.unpack(array, i, result[index]);
}
return result;
};
/**
* Creates a Cartesian2 from two consecutive elements in an array.
* @function
*
* @param {Number[]} array The array whose two consecutive elements correspond to the x and y components, respectively.
* @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component.
* @param {Cartesian2} [result] The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
*
* @example
* // Create a Cartesian2 with (1.0, 2.0)
* var v = [1.0, 2.0];
* var p = Cesium.Cartesian2.fromArray(v);
*
* // Create a Cartesian2 with (1.0, 2.0) using an offset into an array
* var v2 = [0.0, 0.0, 1.0, 2.0];
* var p2 = Cesium.Cartesian2.fromArray(v2, 2);
*/
Cartesian2.fromArray = Cartesian2.unpack;
/**
* Computes the value of the maximum component for the supplied Cartesian.
*
* @param {Cartesian2} cartesian The cartesian to use.
* @returns {Number} The value of the maximum component.
*/
Cartesian2.maximumComponent = function(cartesian) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
//>>includeEnd('debug');
return Math.max(cartesian.x, cartesian.y);
};
/**
* Computes the value of the minimum component for the supplied Cartesian.
*
* @param {Cartesian2} cartesian The cartesian to use.
* @returns {Number} The value of the minimum component.
*/
Cartesian2.minimumComponent = function(cartesian) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
//>>includeEnd('debug');
return Math.min(cartesian.x, cartesian.y);
};
/**
* Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians.
*
* @param {Cartesian2} first A cartesian to compare.
* @param {Cartesian2} second A cartesian to compare.
* @param {Cartesian2} result The object into which to store the result.
* @returns {Cartesian2} A cartesian with the minimum components.
*/
Cartesian2.minimumByComponent = function(first, second, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('first', first);
Check.Check.typeOf.object('second', second);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = Math.min(first.x, second.x);
result.y = Math.min(first.y, second.y);
return result;
};
/**
* Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians.
*
* @param {Cartesian2} first A cartesian to compare.
* @param {Cartesian2} second A cartesian to compare.
* @param {Cartesian2} result The object into which to store the result.
* @returns {Cartesian2} A cartesian with the maximum components.
*/
Cartesian2.maximumByComponent = function(first, second, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('first', first);
Check.Check.typeOf.object('second', second);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = Math.max(first.x, second.x);
result.y = Math.max(first.y, second.y);
return result;
};
/**
* Computes the provided Cartesian's squared magnitude.
*
* @param {Cartesian2} cartesian The Cartesian instance whose squared magnitude is to be computed.
* @returns {Number} The squared magnitude.
*/
Cartesian2.magnitudeSquared = function(cartesian) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
//>>includeEnd('debug');
return cartesian.x * cartesian.x + cartesian.y * cartesian.y;
};
/**
* Computes the Cartesian's magnitude (length).
*
* @param {Cartesian2} cartesian The Cartesian instance whose magnitude is to be computed.
* @returns {Number} The magnitude.
*/
Cartesian2.magnitude = function(cartesian) {
return Math.sqrt(Cartesian2.magnitudeSquared(cartesian));
};
var distanceScratch = new Cartesian2();
/**
* Computes the distance between two points.
*
* @param {Cartesian2} left The first point to compute the distance from.
* @param {Cartesian2} right The second point to compute the distance to.
* @returns {Number} The distance between two points.
*
* @example
* // Returns 1.0
* var d = Cesium.Cartesian2.distance(new Cesium.Cartesian2(1.0, 0.0), new Cesium.Cartesian2(2.0, 0.0));
*/
Cartesian2.distance = function(left, right) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
//>>includeEnd('debug');
Cartesian2.subtract(left, right, distanceScratch);
return Cartesian2.magnitude(distanceScratch);
};
/**
* Computes the squared distance between two points. Comparing squared distances
* using this function is more efficient than comparing distances using {@link Cartesian2#distance}.
*
* @param {Cartesian2} left The first point to compute the distance from.
* @param {Cartesian2} right The second point to compute the distance to.
* @returns {Number} The distance between two points.
*
* @example
* // Returns 4.0, not 2.0
* var d = Cesium.Cartesian2.distance(new Cesium.Cartesian2(1.0, 0.0), new Cesium.Cartesian2(3.0, 0.0));
*/
Cartesian2.distanceSquared = function(left, right) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
//>>includeEnd('debug');
Cartesian2.subtract(left, right, distanceScratch);
return Cartesian2.magnitudeSquared(distanceScratch);
};
/**
* Computes the normalized form of the supplied Cartesian.
*
* @param {Cartesian2} cartesian The Cartesian to be normalized.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.normalize = function(cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var magnitude = Cartesian2.magnitude(cartesian);
result.x = cartesian.x / magnitude;
result.y = cartesian.y / magnitude;
//>>includeStart('debug', pragmas.debug);
if (isNaN(result.x) || isNaN(result.y)) {
throw new Check.DeveloperError('normalized result is not a number');
}
//>>includeEnd('debug');
return result;
};
/**
* Computes the dot (scalar) product of two Cartesians.
*
* @param {Cartesian2} left The first Cartesian.
* @param {Cartesian2} right The second Cartesian.
* @returns {Number} The dot product.
*/
Cartesian2.dot = function(left, right) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
//>>includeEnd('debug');
return left.x * right.x + left.y * right.y;
};
/**
* Computes the componentwise product of two Cartesians.
*
* @param {Cartesian2} left The first Cartesian.
* @param {Cartesian2} right The second Cartesian.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.multiplyComponents = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = left.x * right.x;
result.y = left.y * right.y;
return result;
};
/**
* Computes the componentwise quotient of two Cartesians.
*
* @param {Cartesian2} left The first Cartesian.
* @param {Cartesian2} right The second Cartesian.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.divideComponents = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = left.x / right.x;
result.y = left.y / right.y;
return result;
};
/**
* Computes the componentwise sum of two Cartesians.
*
* @param {Cartesian2} left The first Cartesian.
* @param {Cartesian2} right The second Cartesian.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.add = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = left.x + right.x;
result.y = left.y + right.y;
return result;
};
/**
* Computes the componentwise difference of two Cartesians.
*
* @param {Cartesian2} left The first Cartesian.
* @param {Cartesian2} right The second Cartesian.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.subtract = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = left.x - right.x;
result.y = left.y - right.y;
return result;
};
/**
* Multiplies the provided Cartesian componentwise by the provided scalar.
*
* @param {Cartesian2} cartesian The Cartesian to be scaled.
* @param {Number} scalar The scalar to multiply with.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.multiplyByScalar = function(cartesian, scalar, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.number('scalar', scalar);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = cartesian.x * scalar;
result.y = cartesian.y * scalar;
return result;
};
/**
* Divides the provided Cartesian componentwise by the provided scalar.
*
* @param {Cartesian2} cartesian The Cartesian to be divided.
* @param {Number} scalar The scalar to divide by.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.divideByScalar = function(cartesian, scalar, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.number('scalar', scalar);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = cartesian.x / scalar;
result.y = cartesian.y / scalar;
return result;
};
/**
* Negates the provided Cartesian.
*
* @param {Cartesian2} cartesian The Cartesian to be negated.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.negate = function(cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = -cartesian.x;
result.y = -cartesian.y;
return result;
};
/**
* Computes the absolute value of the provided Cartesian.
*
* @param {Cartesian2} cartesian The Cartesian whose absolute value is to be computed.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.abs = function(cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = Math.abs(cartesian.x);
result.y = Math.abs(cartesian.y);
return result;
};
var lerpScratch = new Cartesian2();
/**
* Computes the linear interpolation or extrapolation at t using the provided cartesians.
*
* @param {Cartesian2} start The value corresponding to t at 0.0.
* @param {Cartesian2} end The value corresponding to t at 1.0.
* @param {Number} t The point along t at which to interpolate.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Cartesian2.lerp = function(start, end, t, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('start', start);
Check.Check.typeOf.object('end', end);
Check.Check.typeOf.number('t', t);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
Cartesian2.multiplyByScalar(end, t, lerpScratch);
result = Cartesian2.multiplyByScalar(start, 1.0 - t, result);
return Cartesian2.add(lerpScratch, result, result);
};
var angleBetweenScratch = new Cartesian2();
var angleBetweenScratch2 = new Cartesian2();
/**
* Returns the angle, in radians, between the provided Cartesians.
*
* @param {Cartesian2} left The first Cartesian.
* @param {Cartesian2} right The second Cartesian.
* @returns {Number} The angle between the Cartesians.
*/
Cartesian2.angleBetween = function(left, right) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
//>>includeEnd('debug');
Cartesian2.normalize(left, angleBetweenScratch);
Cartesian2.normalize(right, angleBetweenScratch2);
return _Math.CesiumMath.acosClamped(Cartesian2.dot(angleBetweenScratch, angleBetweenScratch2));
};
var mostOrthogonalAxisScratch = new Cartesian2();
/**
* Returns the axis that is most orthogonal to the provided Cartesian.
*
* @param {Cartesian2} cartesian The Cartesian on which to find the most orthogonal axis.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The most orthogonal axis.
*/
Cartesian2.mostOrthogonalAxis = function(cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var f = Cartesian2.normalize(cartesian, mostOrthogonalAxisScratch);
Cartesian2.abs(f, f);
if (f.x <= f.y) {
result = Cartesian2.clone(Cartesian2.UNIT_X, result);
} else {
result = Cartesian2.clone(Cartesian2.UNIT_Y, result);
}
return result;
};
/**
* Compares the provided Cartesians componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {Cartesian2} [left] The first Cartesian.
* @param {Cartesian2} [right] The second Cartesian.
* @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
*/
Cartesian2.equals = function(left, right) {
return (left === right) ||
((when.defined(left)) &&
(when.defined(right)) &&
(left.x === right.x) &&
(left.y === right.y));
};
/**
* @private
*/
Cartesian2.equalsArray = function(cartesian, array, offset) {
return cartesian.x === array[offset] &&
cartesian.y === array[offset + 1];
};
/**
* Compares the provided Cartesians componentwise and returns
* <code>true</code> if they pass an absolute or relative tolerance test,
* <code>false</code> otherwise.
*
* @param {Cartesian2} [left] The first Cartesian.
* @param {Cartesian2} [right] The second Cartesian.
* @param {Number} relativeEpsilon The relative epsilon tolerance to use for equality testing.
* @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
* @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise.
*/
Cartesian2.equalsEpsilon = function(left, right, relativeEpsilon, absoluteEpsilon) {
return (left === right) ||
(when.defined(left) &&
when.defined(right) &&
_Math.CesiumMath.equalsEpsilon(left.x, right.x, relativeEpsilon, absoluteEpsilon) &&
_Math.CesiumMath.equalsEpsilon(left.y, right.y, relativeEpsilon, absoluteEpsilon));
};
/**
* An immutable Cartesian2 instance initialized to (0.0, 0.0).
*
* @type {Cartesian2}
* @constant
*/
Cartesian2.ZERO = Object.freeze(new Cartesian2(0.0, 0.0));
/**
* An immutable Cartesian2 instance initialized to (1.0, 0.0).
*
* @type {Cartesian2}
* @constant
*/
Cartesian2.UNIT_X = Object.freeze(new Cartesian2(1.0, 0.0));
/**
* An immutable Cartesian2 instance initialized to (0.0, 1.0).
*
* @type {Cartesian2}
* @constant
*/
Cartesian2.UNIT_Y = Object.freeze(new Cartesian2(0.0, 1.0));
/**
* Duplicates this Cartesian2 instance.
*
* @param {Cartesian2} [result] The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
*/
Cartesian2.prototype.clone = function(result) {
return Cartesian2.clone(this, result);
};
/**
* Compares this Cartesian against the provided Cartesian componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {Cartesian2} [right] The right hand side Cartesian.
* @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
*/
Cartesian2.prototype.equals = function(right) {
return Cartesian2.equals(this, right);
};
/**
* Compares this Cartesian against the provided Cartesian componentwise and returns
* <code>true</code> if they pass an absolute or relative tolerance test,
* <code>false</code> otherwise.
*
* @param {Cartesian2} [right] The right hand side Cartesian.
* @param {Number} relativeEpsilon The relative epsilon tolerance to use for equality testing.
* @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
* @returns {Boolean} <code>true</code> if they are within the provided epsilon, <code>false</code> otherwise.
*/
Cartesian2.prototype.equalsEpsilon = function(right, relativeEpsilon, absoluteEpsilon) {
return Cartesian2.equalsEpsilon(this, right, relativeEpsilon, absoluteEpsilon);
};
/**
* Creates a string representing this Cartesian in the format '(x, y)'.
*
* @returns {String} A string representing the provided Cartesian in the format '(x, y)'.
*/
Cartesian2.prototype.toString = function() {
return '(' + this.x + ', ' + this.y + ')';
};
exports.Cartesian2 = Cartesian2;
exports.Ellipsoid = Ellipsoid;
exports.Rectangle = Rectangle;
});