1262 lines
41 KiB
JavaScript

/**
* @license
* Cesium - https://github.com/CesiumGS/cesium
* Version 1.117
*
* Copyright 2011-2022 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
import {
CorridorGeometryLibrary_default
} from "./chunk-7VZNXIKG.js";
import {
CornerType_default
} from "./chunk-XWML5Y7N.js";
import "./chunk-ZWPIM77Q.js";
import "./chunk-2CSEEWHN.js";
import {
GeometryOffsetAttribute_default
} from "./chunk-S4XDCPKD.js";
import {
VertexFormat_default
} from "./chunk-4KIUON73.js";
import "./chunk-CE6GTZ4I.js";
import "./chunk-6HCAQOVK.js";
import {
PolygonPipeline_default
} from "./chunk-RR7EOKGZ.js";
import {
arrayRemoveDuplicates_default
} from "./chunk-V7JB576Q.js";
import "./chunk-CYAJYEKW.js";
import "./chunk-G7CJQKKD.js";
import "./chunk-FOZQIHZK.js";
import {
IndexDatatype_default
} from "./chunk-WWP3I7R5.js";
import {
GeometryAttributes_default
} from "./chunk-RL73GOEF.js";
import {
GeometryAttribute_default,
Geometry_default,
PrimitiveType_default
} from "./chunk-34DGOKCO.js";
import {
BoundingSphere_default
} from "./chunk-NI2R52QD.js";
import {
Rectangle_default
} from "./chunk-I5TDPPC4.js";
import {
ComponentDatatype_default
} from "./chunk-TMMOULW3.js";
import {
Cartesian3_default,
Cartographic_default,
Ellipsoid_default
} from "./chunk-C5CE4OG6.js";
import {
Math_default
} from "./chunk-4PHPQRSH.js";
import "./chunk-PEABJLCK.js";
import "./chunk-WFICTTOE.js";
import {
defaultValue_default
} from "./chunk-UCPPWV64.js";
import {
Check_default
} from "./chunk-U4IMCOF5.js";
import {
defined_default
} from "./chunk-BDUJXBVF.js";
// packages/engine/Source/Core/CorridorGeometry.js
var cartesian1 = new Cartesian3_default();
var cartesian2 = new Cartesian3_default();
var cartesian3 = new Cartesian3_default();
var cartesian4 = new Cartesian3_default();
var cartesian5 = new Cartesian3_default();
var cartesian6 = new Cartesian3_default();
var scratch1 = new Cartesian3_default();
var scratch2 = new Cartesian3_default();
function scaleToSurface(positions, ellipsoid) {
for (let i = 0; i < positions.length; i++) {
positions[i] = ellipsoid.scaleToGeodeticSurface(positions[i], positions[i]);
}
return positions;
}
function addNormals(attr, normal, left, front, back, vertexFormat) {
const normals = attr.normals;
const tangents = attr.tangents;
const bitangents = attr.bitangents;
const forward = Cartesian3_default.normalize(
Cartesian3_default.cross(left, normal, scratch1),
scratch1
);
if (vertexFormat.normal) {
CorridorGeometryLibrary_default.addAttribute(normals, normal, front, back);
}
if (vertexFormat.tangent) {
CorridorGeometryLibrary_default.addAttribute(tangents, forward, front, back);
}
if (vertexFormat.bitangent) {
CorridorGeometryLibrary_default.addAttribute(bitangents, left, front, back);
}
}
function combine(computedPositions, vertexFormat, ellipsoid) {
const positions = computedPositions.positions;
const corners = computedPositions.corners;
const endPositions = computedPositions.endPositions;
const computedLefts = computedPositions.lefts;
const computedNormals = computedPositions.normals;
const attributes = new GeometryAttributes_default();
let corner;
let leftCount = 0;
let rightCount = 0;
let i;
let indicesLength = 0;
let length;
for (i = 0; i < positions.length; i += 2) {
length = positions[i].length - 3;
leftCount += length;
indicesLength += length * 2;
rightCount += positions[i + 1].length - 3;
}
leftCount += 3;
rightCount += 3;
for (i = 0; i < corners.length; i++) {
corner = corners[i];
const leftSide = corners[i].leftPositions;
if (defined_default(leftSide)) {
length = leftSide.length;
leftCount += length;
indicesLength += length;
} else {
length = corners[i].rightPositions.length;
rightCount += length;
indicesLength += length;
}
}
const addEndPositions = defined_default(endPositions);
let endPositionLength;
if (addEndPositions) {
endPositionLength = endPositions[0].length - 3;
leftCount += endPositionLength;
rightCount += endPositionLength;
endPositionLength /= 3;
indicesLength += endPositionLength * 6;
}
const size = leftCount + rightCount;
const finalPositions = new Float64Array(size);
const normals = vertexFormat.normal ? new Float32Array(size) : void 0;
const tangents = vertexFormat.tangent ? new Float32Array(size) : void 0;
const bitangents = vertexFormat.bitangent ? new Float32Array(size) : void 0;
const attr = {
normals,
tangents,
bitangents
};
let front = 0;
let back = size - 1;
let UL, LL, UR, LR;
let normal = cartesian1;
let left = cartesian2;
let rightPos, leftPos;
const halfLength = endPositionLength / 2;
const indices = IndexDatatype_default.createTypedArray(size / 3, indicesLength);
let index = 0;
if (addEndPositions) {
leftPos = cartesian3;
rightPos = cartesian4;
const firstEndPositions = endPositions[0];
normal = Cartesian3_default.fromArray(computedNormals, 0, normal);
left = Cartesian3_default.fromArray(computedLefts, 0, left);
for (i = 0; i < halfLength; i++) {
leftPos = Cartesian3_default.fromArray(
firstEndPositions,
(halfLength - 1 - i) * 3,
leftPos
);
rightPos = Cartesian3_default.fromArray(
firstEndPositions,
(halfLength + i) * 3,
rightPos
);
CorridorGeometryLibrary_default.addAttribute(finalPositions, rightPos, front);
CorridorGeometryLibrary_default.addAttribute(
finalPositions,
leftPos,
void 0,
back
);
addNormals(attr, normal, left, front, back, vertexFormat);
LL = front / 3;
LR = LL + 1;
UL = (back - 2) / 3;
UR = UL - 1;
indices[index++] = UL;
indices[index++] = LL;
indices[index++] = UR;
indices[index++] = UR;
indices[index++] = LL;
indices[index++] = LR;
front += 3;
back -= 3;
}
}
let posIndex = 0;
let compIndex = 0;
let rightEdge = positions[posIndex++];
let leftEdge = positions[posIndex++];
finalPositions.set(rightEdge, front);
finalPositions.set(leftEdge, back - leftEdge.length + 1);
left = Cartesian3_default.fromArray(computedLefts, compIndex, left);
let rightNormal;
let leftNormal;
length = leftEdge.length - 3;
for (i = 0; i < length; i += 3) {
rightNormal = ellipsoid.geodeticSurfaceNormal(
Cartesian3_default.fromArray(rightEdge, i, scratch1),
scratch1
);
leftNormal = ellipsoid.geodeticSurfaceNormal(
Cartesian3_default.fromArray(leftEdge, length - i, scratch2),
scratch2
);
normal = Cartesian3_default.normalize(
Cartesian3_default.add(rightNormal, leftNormal, normal),
normal
);
addNormals(attr, normal, left, front, back, vertexFormat);
LL = front / 3;
LR = LL + 1;
UL = (back - 2) / 3;
UR = UL - 1;
indices[index++] = UL;
indices[index++] = LL;
indices[index++] = UR;
indices[index++] = UR;
indices[index++] = LL;
indices[index++] = LR;
front += 3;
back -= 3;
}
rightNormal = ellipsoid.geodeticSurfaceNormal(
Cartesian3_default.fromArray(rightEdge, length, scratch1),
scratch1
);
leftNormal = ellipsoid.geodeticSurfaceNormal(
Cartesian3_default.fromArray(leftEdge, length, scratch2),
scratch2
);
normal = Cartesian3_default.normalize(
Cartesian3_default.add(rightNormal, leftNormal, normal),
normal
);
compIndex += 3;
for (i = 0; i < corners.length; i++) {
let j;
corner = corners[i];
const l = corner.leftPositions;
const r = corner.rightPositions;
let pivot;
let start;
let outsidePoint = cartesian6;
let previousPoint = cartesian3;
let nextPoint = cartesian4;
normal = Cartesian3_default.fromArray(computedNormals, compIndex, normal);
if (defined_default(l)) {
addNormals(attr, normal, left, void 0, back, vertexFormat);
back -= 3;
pivot = LR;
start = UR;
for (j = 0; j < l.length / 3; j++) {
outsidePoint = Cartesian3_default.fromArray(l, j * 3, outsidePoint);
indices[index++] = pivot;
indices[index++] = start - j - 1;
indices[index++] = start - j;
CorridorGeometryLibrary_default.addAttribute(
finalPositions,
outsidePoint,
void 0,
back
);
previousPoint = Cartesian3_default.fromArray(
finalPositions,
(start - j - 1) * 3,
previousPoint
);
nextPoint = Cartesian3_default.fromArray(finalPositions, pivot * 3, nextPoint);
left = Cartesian3_default.normalize(
Cartesian3_default.subtract(previousPoint, nextPoint, left),
left
);
addNormals(attr, normal, left, void 0, back, vertexFormat);
back -= 3;
}
outsidePoint = Cartesian3_default.fromArray(
finalPositions,
pivot * 3,
outsidePoint
);
previousPoint = Cartesian3_default.subtract(
Cartesian3_default.fromArray(finalPositions, start * 3, previousPoint),
outsidePoint,
previousPoint
);
nextPoint = Cartesian3_default.subtract(
Cartesian3_default.fromArray(finalPositions, (start - j) * 3, nextPoint),
outsidePoint,
nextPoint
);
left = Cartesian3_default.normalize(
Cartesian3_default.add(previousPoint, nextPoint, left),
left
);
addNormals(attr, normal, left, front, void 0, vertexFormat);
front += 3;
} else {
addNormals(attr, normal, left, front, void 0, vertexFormat);
front += 3;
pivot = UR;
start = LR;
for (j = 0; j < r.length / 3; j++) {
outsidePoint = Cartesian3_default.fromArray(r, j * 3, outsidePoint);
indices[index++] = pivot;
indices[index++] = start + j;
indices[index++] = start + j + 1;
CorridorGeometryLibrary_default.addAttribute(
finalPositions,
outsidePoint,
front
);
previousPoint = Cartesian3_default.fromArray(
finalPositions,
pivot * 3,
previousPoint
);
nextPoint = Cartesian3_default.fromArray(
finalPositions,
(start + j) * 3,
nextPoint
);
left = Cartesian3_default.normalize(
Cartesian3_default.subtract(previousPoint, nextPoint, left),
left
);
addNormals(attr, normal, left, front, void 0, vertexFormat);
front += 3;
}
outsidePoint = Cartesian3_default.fromArray(
finalPositions,
pivot * 3,
outsidePoint
);
previousPoint = Cartesian3_default.subtract(
Cartesian3_default.fromArray(finalPositions, (start + j) * 3, previousPoint),
outsidePoint,
previousPoint
);
nextPoint = Cartesian3_default.subtract(
Cartesian3_default.fromArray(finalPositions, start * 3, nextPoint),
outsidePoint,
nextPoint
);
left = Cartesian3_default.normalize(
Cartesian3_default.negate(Cartesian3_default.add(nextPoint, previousPoint, left), left),
left
);
addNormals(attr, normal, left, void 0, back, vertexFormat);
back -= 3;
}
rightEdge = positions[posIndex++];
leftEdge = positions[posIndex++];
rightEdge.splice(0, 3);
leftEdge.splice(leftEdge.length - 3, 3);
finalPositions.set(rightEdge, front);
finalPositions.set(leftEdge, back - leftEdge.length + 1);
length = leftEdge.length - 3;
compIndex += 3;
left = Cartesian3_default.fromArray(computedLefts, compIndex, left);
for (j = 0; j < leftEdge.length; j += 3) {
rightNormal = ellipsoid.geodeticSurfaceNormal(
Cartesian3_default.fromArray(rightEdge, j, scratch1),
scratch1
);
leftNormal = ellipsoid.geodeticSurfaceNormal(
Cartesian3_default.fromArray(leftEdge, length - j, scratch2),
scratch2
);
normal = Cartesian3_default.normalize(
Cartesian3_default.add(rightNormal, leftNormal, normal),
normal
);
addNormals(attr, normal, left, front, back, vertexFormat);
LR = front / 3;
LL = LR - 1;
UR = (back - 2) / 3;
UL = UR + 1;
indices[index++] = UL;
indices[index++] = LL;
indices[index++] = UR;
indices[index++] = UR;
indices[index++] = LL;
indices[index++] = LR;
front += 3;
back -= 3;
}
front -= 3;
back += 3;
}
normal = Cartesian3_default.fromArray(
computedNormals,
computedNormals.length - 3,
normal
);
addNormals(attr, normal, left, front, back, vertexFormat);
if (addEndPositions) {
front += 3;
back -= 3;
leftPos = cartesian3;
rightPos = cartesian4;
const lastEndPositions = endPositions[1];
for (i = 0; i < halfLength; i++) {
leftPos = Cartesian3_default.fromArray(
lastEndPositions,
(endPositionLength - i - 1) * 3,
leftPos
);
rightPos = Cartesian3_default.fromArray(lastEndPositions, i * 3, rightPos);
CorridorGeometryLibrary_default.addAttribute(
finalPositions,
leftPos,
void 0,
back
);
CorridorGeometryLibrary_default.addAttribute(finalPositions, rightPos, front);
addNormals(attr, normal, left, front, back, vertexFormat);
LR = front / 3;
LL = LR - 1;
UR = (back - 2) / 3;
UL = UR + 1;
indices[index++] = UL;
indices[index++] = LL;
indices[index++] = UR;
indices[index++] = UR;
indices[index++] = LL;
indices[index++] = LR;
front += 3;
back -= 3;
}
}
attributes.position = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.DOUBLE,
componentsPerAttribute: 3,
values: finalPositions
});
if (vertexFormat.st) {
const st = new Float32Array(size / 3 * 2);
let rightSt;
let leftSt;
let stIndex = 0;
if (addEndPositions) {
leftCount /= 3;
rightCount /= 3;
const theta = Math.PI / (endPositionLength + 1);
leftSt = 1 / (leftCount - endPositionLength + 1);
rightSt = 1 / (rightCount - endPositionLength + 1);
let a;
const halfEndPos = endPositionLength / 2;
for (i = halfEndPos + 1; i < endPositionLength + 1; i++) {
a = Math_default.PI_OVER_TWO + theta * i;
st[stIndex++] = rightSt * (1 + Math.cos(a));
st[stIndex++] = 0.5 * (1 + Math.sin(a));
}
for (i = 1; i < rightCount - endPositionLength + 1; i++) {
st[stIndex++] = i * rightSt;
st[stIndex++] = 0;
}
for (i = endPositionLength; i > halfEndPos; i--) {
a = Math_default.PI_OVER_TWO - i * theta;
st[stIndex++] = 1 - rightSt * (1 + Math.cos(a));
st[stIndex++] = 0.5 * (1 + Math.sin(a));
}
for (i = halfEndPos; i > 0; i--) {
a = Math_default.PI_OVER_TWO - theta * i;
st[stIndex++] = 1 - leftSt * (1 + Math.cos(a));
st[stIndex++] = 0.5 * (1 + Math.sin(a));
}
for (i = leftCount - endPositionLength; i > 0; i--) {
st[stIndex++] = i * leftSt;
st[stIndex++] = 1;
}
for (i = 1; i < halfEndPos + 1; i++) {
a = Math_default.PI_OVER_TWO + theta * i;
st[stIndex++] = leftSt * (1 + Math.cos(a));
st[stIndex++] = 0.5 * (1 + Math.sin(a));
}
} else {
leftCount /= 3;
rightCount /= 3;
leftSt = 1 / (leftCount - 1);
rightSt = 1 / (rightCount - 1);
for (i = 0; i < rightCount; i++) {
st[stIndex++] = i * rightSt;
st[stIndex++] = 0;
}
for (i = leftCount; i > 0; i--) {
st[stIndex++] = (i - 1) * leftSt;
st[stIndex++] = 1;
}
}
attributes.st = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.FLOAT,
componentsPerAttribute: 2,
values: st
});
}
if (vertexFormat.normal) {
attributes.normal = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.FLOAT,
componentsPerAttribute: 3,
values: attr.normals
});
}
if (vertexFormat.tangent) {
attributes.tangent = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.FLOAT,
componentsPerAttribute: 3,
values: attr.tangents
});
}
if (vertexFormat.bitangent) {
attributes.bitangent = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.FLOAT,
componentsPerAttribute: 3,
values: attr.bitangents
});
}
return {
attributes,
indices
};
}
function extrudedAttributes(attributes, vertexFormat) {
if (!vertexFormat.normal && !vertexFormat.tangent && !vertexFormat.bitangent && !vertexFormat.st) {
return attributes;
}
const positions = attributes.position.values;
let topNormals;
let topBitangents;
if (vertexFormat.normal || vertexFormat.bitangent) {
topNormals = attributes.normal.values;
topBitangents = attributes.bitangent.values;
}
const size = attributes.position.values.length / 18;
const threeSize = size * 3;
const twoSize = size * 2;
const sixSize = threeSize * 2;
let i;
if (vertexFormat.normal || vertexFormat.bitangent || vertexFormat.tangent) {
const normals = vertexFormat.normal ? new Float32Array(threeSize * 6) : void 0;
const tangents = vertexFormat.tangent ? new Float32Array(threeSize * 6) : void 0;
const bitangents = vertexFormat.bitangent ? new Float32Array(threeSize * 6) : void 0;
let topPosition = cartesian1;
let bottomPosition = cartesian2;
let previousPosition = cartesian3;
let normal = cartesian4;
let tangent = cartesian5;
let bitangent = cartesian6;
let attrIndex = sixSize;
for (i = 0; i < threeSize; i += 3) {
const attrIndexOffset = attrIndex + sixSize;
topPosition = Cartesian3_default.fromArray(positions, i, topPosition);
bottomPosition = Cartesian3_default.fromArray(
positions,
i + threeSize,
bottomPosition
);
previousPosition = Cartesian3_default.fromArray(
positions,
(i + 3) % threeSize,
previousPosition
);
bottomPosition = Cartesian3_default.subtract(
bottomPosition,
topPosition,
bottomPosition
);
previousPosition = Cartesian3_default.subtract(
previousPosition,
topPosition,
previousPosition
);
normal = Cartesian3_default.normalize(
Cartesian3_default.cross(bottomPosition, previousPosition, normal),
normal
);
if (vertexFormat.normal) {
CorridorGeometryLibrary_default.addAttribute(normals, normal, attrIndexOffset);
CorridorGeometryLibrary_default.addAttribute(
normals,
normal,
attrIndexOffset + 3
);
CorridorGeometryLibrary_default.addAttribute(normals, normal, attrIndex);
CorridorGeometryLibrary_default.addAttribute(normals, normal, attrIndex + 3);
}
if (vertexFormat.tangent || vertexFormat.bitangent) {
bitangent = Cartesian3_default.fromArray(topNormals, i, bitangent);
if (vertexFormat.bitangent) {
CorridorGeometryLibrary_default.addAttribute(
bitangents,
bitangent,
attrIndexOffset
);
CorridorGeometryLibrary_default.addAttribute(
bitangents,
bitangent,
attrIndexOffset + 3
);
CorridorGeometryLibrary_default.addAttribute(
bitangents,
bitangent,
attrIndex
);
CorridorGeometryLibrary_default.addAttribute(
bitangents,
bitangent,
attrIndex + 3
);
}
if (vertexFormat.tangent) {
tangent = Cartesian3_default.normalize(
Cartesian3_default.cross(bitangent, normal, tangent),
tangent
);
CorridorGeometryLibrary_default.addAttribute(
tangents,
tangent,
attrIndexOffset
);
CorridorGeometryLibrary_default.addAttribute(
tangents,
tangent,
attrIndexOffset + 3
);
CorridorGeometryLibrary_default.addAttribute(tangents, tangent, attrIndex);
CorridorGeometryLibrary_default.addAttribute(
tangents,
tangent,
attrIndex + 3
);
}
}
attrIndex += 6;
}
if (vertexFormat.normal) {
normals.set(topNormals);
for (i = 0; i < threeSize; i += 3) {
normals[i + threeSize] = -topNormals[i];
normals[i + threeSize + 1] = -topNormals[i + 1];
normals[i + threeSize + 2] = -topNormals[i + 2];
}
attributes.normal.values = normals;
} else {
attributes.normal = void 0;
}
if (vertexFormat.bitangent) {
bitangents.set(topBitangents);
bitangents.set(topBitangents, threeSize);
attributes.bitangent.values = bitangents;
} else {
attributes.bitangent = void 0;
}
if (vertexFormat.tangent) {
const topTangents = attributes.tangent.values;
tangents.set(topTangents);
tangents.set(topTangents, threeSize);
attributes.tangent.values = tangents;
}
}
if (vertexFormat.st) {
const topSt = attributes.st.values;
const st = new Float32Array(twoSize * 6);
st.set(topSt);
st.set(topSt, twoSize);
let index = twoSize * 2;
for (let j = 0; j < 2; j++) {
st[index++] = topSt[0];
st[index++] = topSt[1];
for (i = 2; i < twoSize; i += 2) {
const s = topSt[i];
const t = topSt[i + 1];
st[index++] = s;
st[index++] = t;
st[index++] = s;
st[index++] = t;
}
st[index++] = topSt[0];
st[index++] = topSt[1];
}
attributes.st.values = st;
}
return attributes;
}
function addWallPositions(positions, index, wallPositions) {
wallPositions[index++] = positions[0];
wallPositions[index++] = positions[1];
wallPositions[index++] = positions[2];
for (let i = 3; i < positions.length; i += 3) {
const x = positions[i];
const y = positions[i + 1];
const z = positions[i + 2];
wallPositions[index++] = x;
wallPositions[index++] = y;
wallPositions[index++] = z;
wallPositions[index++] = x;
wallPositions[index++] = y;
wallPositions[index++] = z;
}
wallPositions[index++] = positions[0];
wallPositions[index++] = positions[1];
wallPositions[index++] = positions[2];
return wallPositions;
}
function computePositionsExtruded(params, vertexFormat) {
const topVertexFormat = new VertexFormat_default({
position: vertexFormat.position,
normal: vertexFormat.normal || vertexFormat.bitangent || params.shadowVolume,
tangent: vertexFormat.tangent,
bitangent: vertexFormat.normal || vertexFormat.bitangent,
st: vertexFormat.st
});
const ellipsoid = params.ellipsoid;
const computedPositions = CorridorGeometryLibrary_default.computePositions(params);
const attr = combine(computedPositions, topVertexFormat, ellipsoid);
const height = params.height;
const extrudedHeight = params.extrudedHeight;
let attributes = attr.attributes;
const indices = attr.indices;
let positions = attributes.position.values;
let length = positions.length;
const newPositions = new Float64Array(length * 6);
let extrudedPositions = new Float64Array(length);
extrudedPositions.set(positions);
let wallPositions = new Float64Array(length * 4);
positions = PolygonPipeline_default.scaleToGeodeticHeight(
positions,
height,
ellipsoid
);
wallPositions = addWallPositions(positions, 0, wallPositions);
extrudedPositions = PolygonPipeline_default.scaleToGeodeticHeight(
extrudedPositions,
extrudedHeight,
ellipsoid
);
wallPositions = addWallPositions(
extrudedPositions,
length * 2,
wallPositions
);
newPositions.set(positions);
newPositions.set(extrudedPositions, length);
newPositions.set(wallPositions, length * 2);
attributes.position.values = newPositions;
attributes = extrudedAttributes(attributes, vertexFormat);
let i;
const size = length / 3;
if (params.shadowVolume) {
const topNormals = attributes.normal.values;
length = topNormals.length;
let extrudeNormals = new Float32Array(length * 6);
for (i = 0; i < length; i++) {
topNormals[i] = -topNormals[i];
}
extrudeNormals.set(topNormals, length);
extrudeNormals = addWallPositions(topNormals, length * 4, extrudeNormals);
attributes.extrudeDirection = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.FLOAT,
componentsPerAttribute: 3,
values: extrudeNormals
});
if (!vertexFormat.normal) {
attributes.normal = void 0;
}
}
if (defined_default(params.offsetAttribute)) {
let applyOffset = new Uint8Array(size * 6);
if (params.offsetAttribute === GeometryOffsetAttribute_default.TOP) {
applyOffset = applyOffset.fill(1, 0, size).fill(1, size * 2, size * 4);
} else {
const applyOffsetValue = params.offsetAttribute === GeometryOffsetAttribute_default.NONE ? 0 : 1;
applyOffset = applyOffset.fill(applyOffsetValue);
}
attributes.applyOffset = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.UNSIGNED_BYTE,
componentsPerAttribute: 1,
values: applyOffset
});
}
const iLength = indices.length;
const twoSize = size + size;
const newIndices = IndexDatatype_default.createTypedArray(
newPositions.length / 3,
iLength * 2 + twoSize * 3
);
newIndices.set(indices);
let index = iLength;
for (i = 0; i < iLength; i += 3) {
const v0 = indices[i];
const v1 = indices[i + 1];
const v2 = indices[i + 2];
newIndices[index++] = v2 + size;
newIndices[index++] = v1 + size;
newIndices[index++] = v0 + size;
}
let UL, LL, UR, LR;
for (i = 0; i < twoSize; i += 2) {
UL = i + twoSize;
LL = UL + twoSize;
UR = UL + 1;
LR = LL + 1;
newIndices[index++] = UL;
newIndices[index++] = LL;
newIndices[index++] = UR;
newIndices[index++] = UR;
newIndices[index++] = LL;
newIndices[index++] = LR;
}
return {
attributes,
indices: newIndices
};
}
var scratchCartesian1 = new Cartesian3_default();
var scratchCartesian2 = new Cartesian3_default();
var scratchCartographic = new Cartographic_default();
function computeOffsetPoints(position1, position2, ellipsoid, halfWidth, min, max) {
const direction = Cartesian3_default.subtract(
position2,
position1,
scratchCartesian1
);
Cartesian3_default.normalize(direction, direction);
const normal = ellipsoid.geodeticSurfaceNormal(position1, scratchCartesian2);
const offsetDirection = Cartesian3_default.cross(
direction,
normal,
scratchCartesian1
);
Cartesian3_default.multiplyByScalar(offsetDirection, halfWidth, offsetDirection);
let minLat = min.latitude;
let minLon = min.longitude;
let maxLat = max.latitude;
let maxLon = max.longitude;
Cartesian3_default.add(position1, offsetDirection, scratchCartesian2);
ellipsoid.cartesianToCartographic(scratchCartesian2, scratchCartographic);
let lat = scratchCartographic.latitude;
let lon = scratchCartographic.longitude;
minLat = Math.min(minLat, lat);
minLon = Math.min(minLon, lon);
maxLat = Math.max(maxLat, lat);
maxLon = Math.max(maxLon, lon);
Cartesian3_default.subtract(position1, offsetDirection, scratchCartesian2);
ellipsoid.cartesianToCartographic(scratchCartesian2, scratchCartographic);
lat = scratchCartographic.latitude;
lon = scratchCartographic.longitude;
minLat = Math.min(minLat, lat);
minLon = Math.min(minLon, lon);
maxLat = Math.max(maxLat, lat);
maxLon = Math.max(maxLon, lon);
min.latitude = minLat;
min.longitude = minLon;
max.latitude = maxLat;
max.longitude = maxLon;
}
var scratchCartesianOffset = new Cartesian3_default();
var scratchCartesianEnds = new Cartesian3_default();
var scratchCartographicMin = new Cartographic_default();
var scratchCartographicMax = new Cartographic_default();
function computeRectangle(positions, ellipsoid, width, cornerType, result) {
positions = scaleToSurface(positions, ellipsoid);
const cleanPositions = arrayRemoveDuplicates_default(
positions,
Cartesian3_default.equalsEpsilon
);
const length = cleanPositions.length;
if (length < 2 || width <= 0) {
return new Rectangle_default();
}
const halfWidth = width * 0.5;
scratchCartographicMin.latitude = Number.POSITIVE_INFINITY;
scratchCartographicMin.longitude = Number.POSITIVE_INFINITY;
scratchCartographicMax.latitude = Number.NEGATIVE_INFINITY;
scratchCartographicMax.longitude = Number.NEGATIVE_INFINITY;
let lat, lon;
if (cornerType === CornerType_default.ROUNDED) {
const first = cleanPositions[0];
Cartesian3_default.subtract(first, cleanPositions[1], scratchCartesianOffset);
Cartesian3_default.normalize(scratchCartesianOffset, scratchCartesianOffset);
Cartesian3_default.multiplyByScalar(
scratchCartesianOffset,
halfWidth,
scratchCartesianOffset
);
Cartesian3_default.add(first, scratchCartesianOffset, scratchCartesianEnds);
ellipsoid.cartesianToCartographic(
scratchCartesianEnds,
scratchCartographic
);
lat = scratchCartographic.latitude;
lon = scratchCartographic.longitude;
scratchCartographicMin.latitude = Math.min(
scratchCartographicMin.latitude,
lat
);
scratchCartographicMin.longitude = Math.min(
scratchCartographicMin.longitude,
lon
);
scratchCartographicMax.latitude = Math.max(
scratchCartographicMax.latitude,
lat
);
scratchCartographicMax.longitude = Math.max(
scratchCartographicMax.longitude,
lon
);
}
for (let i = 0; i < length - 1; ++i) {
computeOffsetPoints(
cleanPositions[i],
cleanPositions[i + 1],
ellipsoid,
halfWidth,
scratchCartographicMin,
scratchCartographicMax
);
}
const last = cleanPositions[length - 1];
Cartesian3_default.subtract(last, cleanPositions[length - 2], scratchCartesianOffset);
Cartesian3_default.normalize(scratchCartesianOffset, scratchCartesianOffset);
Cartesian3_default.multiplyByScalar(
scratchCartesianOffset,
halfWidth,
scratchCartesianOffset
);
Cartesian3_default.add(last, scratchCartesianOffset, scratchCartesianEnds);
computeOffsetPoints(
last,
scratchCartesianEnds,
ellipsoid,
halfWidth,
scratchCartographicMin,
scratchCartographicMax
);
if (cornerType === CornerType_default.ROUNDED) {
ellipsoid.cartesianToCartographic(
scratchCartesianEnds,
scratchCartographic
);
lat = scratchCartographic.latitude;
lon = scratchCartographic.longitude;
scratchCartographicMin.latitude = Math.min(
scratchCartographicMin.latitude,
lat
);
scratchCartographicMin.longitude = Math.min(
scratchCartographicMin.longitude,
lon
);
scratchCartographicMax.latitude = Math.max(
scratchCartographicMax.latitude,
lat
);
scratchCartographicMax.longitude = Math.max(
scratchCartographicMax.longitude,
lon
);
}
const rectangle = defined_default(result) ? result : new Rectangle_default();
rectangle.north = scratchCartographicMax.latitude;
rectangle.south = scratchCartographicMin.latitude;
rectangle.east = scratchCartographicMax.longitude;
rectangle.west = scratchCartographicMin.longitude;
return rectangle;
}
function CorridorGeometry(options) {
options = defaultValue_default(options, defaultValue_default.EMPTY_OBJECT);
const positions = options.positions;
const width = options.width;
Check_default.defined("options.positions", positions);
Check_default.defined("options.width", width);
const height = defaultValue_default(options.height, 0);
const extrudedHeight = defaultValue_default(options.extrudedHeight, height);
this._positions = positions;
this._ellipsoid = Ellipsoid_default.clone(
defaultValue_default(options.ellipsoid, Ellipsoid_default.WGS84)
);
this._vertexFormat = VertexFormat_default.clone(
defaultValue_default(options.vertexFormat, VertexFormat_default.DEFAULT)
);
this._width = width;
this._height = Math.max(height, extrudedHeight);
this._extrudedHeight = Math.min(height, extrudedHeight);
this._cornerType = defaultValue_default(options.cornerType, CornerType_default.ROUNDED);
this._granularity = defaultValue_default(
options.granularity,
Math_default.RADIANS_PER_DEGREE
);
this._shadowVolume = defaultValue_default(options.shadowVolume, false);
this._workerName = "createCorridorGeometry";
this._offsetAttribute = options.offsetAttribute;
this._rectangle = void 0;
this.packedLength = 1 + positions.length * Cartesian3_default.packedLength + Ellipsoid_default.packedLength + VertexFormat_default.packedLength + 7;
}
CorridorGeometry.pack = function(value, array, startingIndex) {
Check_default.defined("value", value);
Check_default.defined("array", array);
startingIndex = defaultValue_default(startingIndex, 0);
const positions = value._positions;
const length = positions.length;
array[startingIndex++] = length;
for (let i = 0; i < length; ++i, startingIndex += Cartesian3_default.packedLength) {
Cartesian3_default.pack(positions[i], array, startingIndex);
}
Ellipsoid_default.pack(value._ellipsoid, array, startingIndex);
startingIndex += Ellipsoid_default.packedLength;
VertexFormat_default.pack(value._vertexFormat, array, startingIndex);
startingIndex += VertexFormat_default.packedLength;
array[startingIndex++] = value._width;
array[startingIndex++] = value._height;
array[startingIndex++] = value._extrudedHeight;
array[startingIndex++] = value._cornerType;
array[startingIndex++] = value._granularity;
array[startingIndex++] = value._shadowVolume ? 1 : 0;
array[startingIndex] = defaultValue_default(value._offsetAttribute, -1);
return array;
};
var scratchEllipsoid = Ellipsoid_default.clone(Ellipsoid_default.UNIT_SPHERE);
var scratchVertexFormat = new VertexFormat_default();
var scratchOptions = {
positions: void 0,
ellipsoid: scratchEllipsoid,
vertexFormat: scratchVertexFormat,
width: void 0,
height: void 0,
extrudedHeight: void 0,
cornerType: void 0,
granularity: void 0,
shadowVolume: void 0,
offsetAttribute: void 0
};
CorridorGeometry.unpack = function(array, startingIndex, result) {
Check_default.defined("array", array);
startingIndex = defaultValue_default(startingIndex, 0);
const length = array[startingIndex++];
const positions = new Array(length);
for (let i = 0; i < length; ++i, startingIndex += Cartesian3_default.packedLength) {
positions[i] = Cartesian3_default.unpack(array, startingIndex);
}
const ellipsoid = Ellipsoid_default.unpack(array, startingIndex, scratchEllipsoid);
startingIndex += Ellipsoid_default.packedLength;
const vertexFormat = VertexFormat_default.unpack(
array,
startingIndex,
scratchVertexFormat
);
startingIndex += VertexFormat_default.packedLength;
const width = array[startingIndex++];
const height = array[startingIndex++];
const extrudedHeight = array[startingIndex++];
const cornerType = array[startingIndex++];
const granularity = array[startingIndex++];
const shadowVolume = array[startingIndex++] === 1;
const offsetAttribute = array[startingIndex];
if (!defined_default(result)) {
scratchOptions.positions = positions;
scratchOptions.width = width;
scratchOptions.height = height;
scratchOptions.extrudedHeight = extrudedHeight;
scratchOptions.cornerType = cornerType;
scratchOptions.granularity = granularity;
scratchOptions.shadowVolume = shadowVolume;
scratchOptions.offsetAttribute = offsetAttribute === -1 ? void 0 : offsetAttribute;
return new CorridorGeometry(scratchOptions);
}
result._positions = positions;
result._ellipsoid = Ellipsoid_default.clone(ellipsoid, result._ellipsoid);
result._vertexFormat = VertexFormat_default.clone(vertexFormat, result._vertexFormat);
result._width = width;
result._height = height;
result._extrudedHeight = extrudedHeight;
result._cornerType = cornerType;
result._granularity = granularity;
result._shadowVolume = shadowVolume;
result._offsetAttribute = offsetAttribute === -1 ? void 0 : offsetAttribute;
return result;
};
CorridorGeometry.computeRectangle = function(options, result) {
options = defaultValue_default(options, defaultValue_default.EMPTY_OBJECT);
const positions = options.positions;
const width = options.width;
Check_default.defined("options.positions", positions);
Check_default.defined("options.width", width);
const ellipsoid = defaultValue_default(options.ellipsoid, Ellipsoid_default.WGS84);
const cornerType = defaultValue_default(options.cornerType, CornerType_default.ROUNDED);
return computeRectangle(positions, ellipsoid, width, cornerType, result);
};
CorridorGeometry.createGeometry = function(corridorGeometry) {
let positions = corridorGeometry._positions;
const width = corridorGeometry._width;
const ellipsoid = corridorGeometry._ellipsoid;
positions = scaleToSurface(positions, ellipsoid);
const cleanPositions = arrayRemoveDuplicates_default(
positions,
Cartesian3_default.equalsEpsilon
);
if (cleanPositions.length < 2 || width <= 0) {
return;
}
const height = corridorGeometry._height;
const extrudedHeight = corridorGeometry._extrudedHeight;
const extrude = !Math_default.equalsEpsilon(
height,
extrudedHeight,
0,
Math_default.EPSILON2
);
const vertexFormat = corridorGeometry._vertexFormat;
const params = {
ellipsoid,
positions: cleanPositions,
width,
cornerType: corridorGeometry._cornerType,
granularity: corridorGeometry._granularity,
saveAttributes: true
};
let attr;
if (extrude) {
params.height = height;
params.extrudedHeight = extrudedHeight;
params.shadowVolume = corridorGeometry._shadowVolume;
params.offsetAttribute = corridorGeometry._offsetAttribute;
attr = computePositionsExtruded(params, vertexFormat);
} else {
const computedPositions = CorridorGeometryLibrary_default.computePositions(params);
attr = combine(computedPositions, vertexFormat, ellipsoid);
attr.attributes.position.values = PolygonPipeline_default.scaleToGeodeticHeight(
attr.attributes.position.values,
height,
ellipsoid
);
if (defined_default(corridorGeometry._offsetAttribute)) {
const applyOffsetValue = corridorGeometry._offsetAttribute === GeometryOffsetAttribute_default.NONE ? 0 : 1;
const length = attr.attributes.position.values.length;
const applyOffset = new Uint8Array(length / 3).fill(applyOffsetValue);
attr.attributes.applyOffset = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.UNSIGNED_BYTE,
componentsPerAttribute: 1,
values: applyOffset
});
}
}
const attributes = attr.attributes;
const boundingSphere = BoundingSphere_default.fromVertices(
attributes.position.values,
void 0,
3
);
if (!vertexFormat.position) {
attr.attributes.position.values = void 0;
}
return new Geometry_default({
attributes,
indices: attr.indices,
primitiveType: PrimitiveType_default.TRIANGLES,
boundingSphere,
offsetAttribute: corridorGeometry._offsetAttribute
});
};
CorridorGeometry.createShadowVolume = function(corridorGeometry, minHeightFunc, maxHeightFunc) {
const granularity = corridorGeometry._granularity;
const ellipsoid = corridorGeometry._ellipsoid;
const minHeight = minHeightFunc(granularity, ellipsoid);
const maxHeight = maxHeightFunc(granularity, ellipsoid);
return new CorridorGeometry({
positions: corridorGeometry._positions,
width: corridorGeometry._width,
cornerType: corridorGeometry._cornerType,
ellipsoid,
granularity,
extrudedHeight: minHeight,
height: maxHeight,
vertexFormat: VertexFormat_default.POSITION_ONLY,
shadowVolume: true
});
};
Object.defineProperties(CorridorGeometry.prototype, {
/**
* @private
*/
rectangle: {
get: function() {
if (!defined_default(this._rectangle)) {
this._rectangle = computeRectangle(
this._positions,
this._ellipsoid,
this._width,
this._cornerType
);
}
return this._rectangle;
}
},
/**
* For remapping texture coordinates when rendering CorridorGeometries as GroundPrimitives.
*
* Corridors don't support stRotation,
* so just return the corners of the original system.
* @private
*/
textureCoordinateRotationPoints: {
get: function() {
return [0, 0, 0, 1, 1, 0];
}
}
});
var CorridorGeometry_default = CorridorGeometry;
// packages/engine/Source/Workers/createCorridorGeometry.js
function createCorridorGeometry(corridorGeometry, offset) {
if (defined_default(offset)) {
corridorGeometry = CorridorGeometry_default.unpack(corridorGeometry, offset);
}
corridorGeometry._ellipsoid = Ellipsoid_default.clone(corridorGeometry._ellipsoid);
return CorridorGeometry_default.createGeometry(corridorGeometry);
}
var createCorridorGeometry_default = createCorridorGeometry;
export {
createCorridorGeometry_default as default
};