306 lines
10 KiB
JavaScript

/**
* @license
* Cesium - https://github.com/CesiumGS/cesium
* Version 1.117
*
* Copyright 2011-2022 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
import {
Quaternion_default
} from "./chunk-I5TDPPC4.js";
import {
Cartesian3_default,
Matrix3_default
} from "./chunk-C5CE4OG6.js";
import {
Math_default
} from "./chunk-4PHPQRSH.js";
// packages/engine/Source/Core/EllipseGeometryLibrary.js
var EllipseGeometryLibrary = {};
var rotAxis = new Cartesian3_default();
var tempVec = new Cartesian3_default();
var unitQuat = new Quaternion_default();
var rotMtx = new Matrix3_default();
function pointOnEllipsoid(theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, result) {
const azimuth = theta + rotation;
Cartesian3_default.multiplyByScalar(eastVec, Math.cos(azimuth), rotAxis);
Cartesian3_default.multiplyByScalar(northVec, Math.sin(azimuth), tempVec);
Cartesian3_default.add(rotAxis, tempVec, rotAxis);
let cosThetaSquared = Math.cos(theta);
cosThetaSquared = cosThetaSquared * cosThetaSquared;
let sinThetaSquared = Math.sin(theta);
sinThetaSquared = sinThetaSquared * sinThetaSquared;
const radius = ab / Math.sqrt(bSqr * cosThetaSquared + aSqr * sinThetaSquared);
const angle = radius / mag;
Quaternion_default.fromAxisAngle(rotAxis, angle, unitQuat);
Matrix3_default.fromQuaternion(unitQuat, rotMtx);
Matrix3_default.multiplyByVector(rotMtx, unitPos, result);
Cartesian3_default.normalize(result, result);
Cartesian3_default.multiplyByScalar(result, mag, result);
return result;
}
var scratchCartesian1 = new Cartesian3_default();
var scratchCartesian2 = new Cartesian3_default();
var scratchCartesian3 = new Cartesian3_default();
var scratchNormal = new Cartesian3_default();
EllipseGeometryLibrary.raisePositionsToHeight = function(positions, options, extrude) {
const ellipsoid = options.ellipsoid;
const height = options.height;
const extrudedHeight = options.extrudedHeight;
const size = extrude ? positions.length / 3 * 2 : positions.length / 3;
const finalPositions = new Float64Array(size * 3);
const length = positions.length;
const bottomOffset = extrude ? length : 0;
for (let i = 0; i < length; i += 3) {
const i1 = i + 1;
const i2 = i + 2;
const position = Cartesian3_default.fromArray(positions, i, scratchCartesian1);
ellipsoid.scaleToGeodeticSurface(position, position);
const extrudedPosition = Cartesian3_default.clone(position, scratchCartesian2);
const normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal);
const scaledNormal = Cartesian3_default.multiplyByScalar(
normal,
height,
scratchCartesian3
);
Cartesian3_default.add(position, scaledNormal, position);
if (extrude) {
Cartesian3_default.multiplyByScalar(normal, extrudedHeight, scaledNormal);
Cartesian3_default.add(extrudedPosition, scaledNormal, extrudedPosition);
finalPositions[i + bottomOffset] = extrudedPosition.x;
finalPositions[i1 + bottomOffset] = extrudedPosition.y;
finalPositions[i2 + bottomOffset] = extrudedPosition.z;
}
finalPositions[i] = position.x;
finalPositions[i1] = position.y;
finalPositions[i2] = position.z;
}
return finalPositions;
};
var unitPosScratch = new Cartesian3_default();
var eastVecScratch = new Cartesian3_default();
var northVecScratch = new Cartesian3_default();
EllipseGeometryLibrary.computeEllipsePositions = function(options, addFillPositions, addEdgePositions) {
const semiMinorAxis = options.semiMinorAxis;
const semiMajorAxis = options.semiMajorAxis;
const rotation = options.rotation;
const center = options.center;
const granularity = options.granularity * 8;
const aSqr = semiMinorAxis * semiMinorAxis;
const bSqr = semiMajorAxis * semiMajorAxis;
const ab = semiMajorAxis * semiMinorAxis;
const mag = Cartesian3_default.magnitude(center);
const unitPos = Cartesian3_default.normalize(center, unitPosScratch);
let eastVec = Cartesian3_default.cross(Cartesian3_default.UNIT_Z, center, eastVecScratch);
eastVec = Cartesian3_default.normalize(eastVec, eastVec);
const northVec = Cartesian3_default.cross(unitPos, eastVec, northVecScratch);
let numPts = 1 + Math.ceil(Math_default.PI_OVER_TWO / granularity);
const deltaTheta = Math_default.PI_OVER_TWO / (numPts - 1);
let theta = Math_default.PI_OVER_TWO - numPts * deltaTheta;
if (theta < 0) {
numPts -= Math.ceil(Math.abs(theta) / deltaTheta);
}
const size = 2 * (numPts * (numPts + 2));
const positions = addFillPositions ? new Array(size * 3) : void 0;
let positionIndex = 0;
let position = scratchCartesian1;
let reflectedPosition = scratchCartesian2;
const outerPositionsLength = numPts * 4 * 3;
let outerRightIndex = outerPositionsLength - 1;
let outerLeftIndex = 0;
const outerPositions = addEdgePositions ? new Array(outerPositionsLength) : void 0;
let i;
let j;
let numInterior;
let t;
let interiorPosition;
theta = Math_default.PI_OVER_TWO;
position = pointOnEllipsoid(
theta,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
position
);
if (addFillPositions) {
positions[positionIndex++] = position.x;
positions[positionIndex++] = position.y;
positions[positionIndex++] = position.z;
}
if (addEdgePositions) {
outerPositions[outerRightIndex--] = position.z;
outerPositions[outerRightIndex--] = position.y;
outerPositions[outerRightIndex--] = position.x;
}
theta = Math_default.PI_OVER_TWO - deltaTheta;
for (i = 1; i < numPts + 1; ++i) {
position = pointOnEllipsoid(
theta,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
position
);
reflectedPosition = pointOnEllipsoid(
Math.PI - theta,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
reflectedPosition
);
if (addFillPositions) {
positions[positionIndex++] = position.x;
positions[positionIndex++] = position.y;
positions[positionIndex++] = position.z;
numInterior = 2 * i + 2;
for (j = 1; j < numInterior - 1; ++j) {
t = j / (numInterior - 1);
interiorPosition = Cartesian3_default.lerp(
position,
reflectedPosition,
t,
scratchCartesian3
);
positions[positionIndex++] = interiorPosition.x;
positions[positionIndex++] = interiorPosition.y;
positions[positionIndex++] = interiorPosition.z;
}
positions[positionIndex++] = reflectedPosition.x;
positions[positionIndex++] = reflectedPosition.y;
positions[positionIndex++] = reflectedPosition.z;
}
if (addEdgePositions) {
outerPositions[outerRightIndex--] = position.z;
outerPositions[outerRightIndex--] = position.y;
outerPositions[outerRightIndex--] = position.x;
outerPositions[outerLeftIndex++] = reflectedPosition.x;
outerPositions[outerLeftIndex++] = reflectedPosition.y;
outerPositions[outerLeftIndex++] = reflectedPosition.z;
}
theta = Math_default.PI_OVER_TWO - (i + 1) * deltaTheta;
}
for (i = numPts; i > 1; --i) {
theta = Math_default.PI_OVER_TWO - (i - 1) * deltaTheta;
position = pointOnEllipsoid(
-theta,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
position
);
reflectedPosition = pointOnEllipsoid(
theta + Math.PI,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
reflectedPosition
);
if (addFillPositions) {
positions[positionIndex++] = position.x;
positions[positionIndex++] = position.y;
positions[positionIndex++] = position.z;
numInterior = 2 * (i - 1) + 2;
for (j = 1; j < numInterior - 1; ++j) {
t = j / (numInterior - 1);
interiorPosition = Cartesian3_default.lerp(
position,
reflectedPosition,
t,
scratchCartesian3
);
positions[positionIndex++] = interiorPosition.x;
positions[positionIndex++] = interiorPosition.y;
positions[positionIndex++] = interiorPosition.z;
}
positions[positionIndex++] = reflectedPosition.x;
positions[positionIndex++] = reflectedPosition.y;
positions[positionIndex++] = reflectedPosition.z;
}
if (addEdgePositions) {
outerPositions[outerRightIndex--] = position.z;
outerPositions[outerRightIndex--] = position.y;
outerPositions[outerRightIndex--] = position.x;
outerPositions[outerLeftIndex++] = reflectedPosition.x;
outerPositions[outerLeftIndex++] = reflectedPosition.y;
outerPositions[outerLeftIndex++] = reflectedPosition.z;
}
}
theta = Math_default.PI_OVER_TWO;
position = pointOnEllipsoid(
-theta,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
position
);
const r = {};
if (addFillPositions) {
positions[positionIndex++] = position.x;
positions[positionIndex++] = position.y;
positions[positionIndex++] = position.z;
r.positions = positions;
r.numPts = numPts;
}
if (addEdgePositions) {
outerPositions[outerRightIndex--] = position.z;
outerPositions[outerRightIndex--] = position.y;
outerPositions[outerRightIndex--] = position.x;
r.outerPositions = outerPositions;
}
return r;
};
var EllipseGeometryLibrary_default = EllipseGeometryLibrary;
export {
EllipseGeometryLibrary_default
};