369 lines
14 KiB
JavaScript

/**
* @license
* Cesium - https://github.com/CesiumGS/cesium
* Version 1.117
*
* Copyright 2011-2022 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
import {
GeometryOffsetAttribute_default
} from "./chunk-S4XDCPKD.js";
import {
IndexDatatype_default
} from "./chunk-WWP3I7R5.js";
import {
GeometryAttributes_default
} from "./chunk-RL73GOEF.js";
import {
GeometryAttribute_default,
Geometry_default,
PrimitiveType_default
} from "./chunk-34DGOKCO.js";
import {
BoundingSphere_default
} from "./chunk-NI2R52QD.js";
import {
ComponentDatatype_default
} from "./chunk-TMMOULW3.js";
import {
Cartesian3_default,
Ellipsoid_default
} from "./chunk-C5CE4OG6.js";
import {
Math_default
} from "./chunk-4PHPQRSH.js";
import {
defaultValue_default
} from "./chunk-UCPPWV64.js";
import {
DeveloperError_default
} from "./chunk-U4IMCOF5.js";
import {
defined_default
} from "./chunk-BDUJXBVF.js";
// packages/engine/Source/Core/EllipsoidOutlineGeometry.js
var defaultRadii = new Cartesian3_default(1, 1, 1);
var cos = Math.cos;
var sin = Math.sin;
function EllipsoidOutlineGeometry(options) {
options = defaultValue_default(options, defaultValue_default.EMPTY_OBJECT);
const radii = defaultValue_default(options.radii, defaultRadii);
const innerRadii = defaultValue_default(options.innerRadii, radii);
const minimumClock = defaultValue_default(options.minimumClock, 0);
const maximumClock = defaultValue_default(options.maximumClock, Math_default.TWO_PI);
const minimumCone = defaultValue_default(options.minimumCone, 0);
const maximumCone = defaultValue_default(options.maximumCone, Math_default.PI);
const stackPartitions = Math.round(defaultValue_default(options.stackPartitions, 10));
const slicePartitions = Math.round(defaultValue_default(options.slicePartitions, 8));
const subdivisions = Math.round(defaultValue_default(options.subdivisions, 128));
if (stackPartitions < 1) {
throw new DeveloperError_default("options.stackPartitions cannot be less than 1");
}
if (slicePartitions < 0) {
throw new DeveloperError_default("options.slicePartitions cannot be less than 0");
}
if (subdivisions < 0) {
throw new DeveloperError_default(
"options.subdivisions must be greater than or equal to zero."
);
}
if (defined_default(options.offsetAttribute) && options.offsetAttribute === GeometryOffsetAttribute_default.TOP) {
throw new DeveloperError_default(
"GeometryOffsetAttribute.TOP is not a supported options.offsetAttribute for this geometry."
);
}
this._radii = Cartesian3_default.clone(radii);
this._innerRadii = Cartesian3_default.clone(innerRadii);
this._minimumClock = minimumClock;
this._maximumClock = maximumClock;
this._minimumCone = minimumCone;
this._maximumCone = maximumCone;
this._stackPartitions = stackPartitions;
this._slicePartitions = slicePartitions;
this._subdivisions = subdivisions;
this._offsetAttribute = options.offsetAttribute;
this._workerName = "createEllipsoidOutlineGeometry";
}
EllipsoidOutlineGeometry.packedLength = 2 * Cartesian3_default.packedLength + 8;
EllipsoidOutlineGeometry.pack = function(value, array, startingIndex) {
if (!defined_default(value)) {
throw new DeveloperError_default("value is required");
}
if (!defined_default(array)) {
throw new DeveloperError_default("array is required");
}
startingIndex = defaultValue_default(startingIndex, 0);
Cartesian3_default.pack(value._radii, array, startingIndex);
startingIndex += Cartesian3_default.packedLength;
Cartesian3_default.pack(value._innerRadii, array, startingIndex);
startingIndex += Cartesian3_default.packedLength;
array[startingIndex++] = value._minimumClock;
array[startingIndex++] = value._maximumClock;
array[startingIndex++] = value._minimumCone;
array[startingIndex++] = value._maximumCone;
array[startingIndex++] = value._stackPartitions;
array[startingIndex++] = value._slicePartitions;
array[startingIndex++] = value._subdivisions;
array[startingIndex] = defaultValue_default(value._offsetAttribute, -1);
return array;
};
var scratchRadii = new Cartesian3_default();
var scratchInnerRadii = new Cartesian3_default();
var scratchOptions = {
radii: scratchRadii,
innerRadii: scratchInnerRadii,
minimumClock: void 0,
maximumClock: void 0,
minimumCone: void 0,
maximumCone: void 0,
stackPartitions: void 0,
slicePartitions: void 0,
subdivisions: void 0,
offsetAttribute: void 0
};
EllipsoidOutlineGeometry.unpack = function(array, startingIndex, result) {
if (!defined_default(array)) {
throw new DeveloperError_default("array is required");
}
startingIndex = defaultValue_default(startingIndex, 0);
const radii = Cartesian3_default.unpack(array, startingIndex, scratchRadii);
startingIndex += Cartesian3_default.packedLength;
const innerRadii = Cartesian3_default.unpack(array, startingIndex, scratchInnerRadii);
startingIndex += Cartesian3_default.packedLength;
const minimumClock = array[startingIndex++];
const maximumClock = array[startingIndex++];
const minimumCone = array[startingIndex++];
const maximumCone = array[startingIndex++];
const stackPartitions = array[startingIndex++];
const slicePartitions = array[startingIndex++];
const subdivisions = array[startingIndex++];
const offsetAttribute = array[startingIndex];
if (!defined_default(result)) {
scratchOptions.minimumClock = minimumClock;
scratchOptions.maximumClock = maximumClock;
scratchOptions.minimumCone = minimumCone;
scratchOptions.maximumCone = maximumCone;
scratchOptions.stackPartitions = stackPartitions;
scratchOptions.slicePartitions = slicePartitions;
scratchOptions.subdivisions = subdivisions;
scratchOptions.offsetAttribute = offsetAttribute === -1 ? void 0 : offsetAttribute;
return new EllipsoidOutlineGeometry(scratchOptions);
}
result._radii = Cartesian3_default.clone(radii, result._radii);
result._innerRadii = Cartesian3_default.clone(innerRadii, result._innerRadii);
result._minimumClock = minimumClock;
result._maximumClock = maximumClock;
result._minimumCone = minimumCone;
result._maximumCone = maximumCone;
result._stackPartitions = stackPartitions;
result._slicePartitions = slicePartitions;
result._subdivisions = subdivisions;
result._offsetAttribute = offsetAttribute === -1 ? void 0 : offsetAttribute;
return result;
};
EllipsoidOutlineGeometry.createGeometry = function(ellipsoidGeometry) {
const radii = ellipsoidGeometry._radii;
if (radii.x <= 0 || radii.y <= 0 || radii.z <= 0) {
return;
}
const innerRadii = ellipsoidGeometry._innerRadii;
if (innerRadii.x <= 0 || innerRadii.y <= 0 || innerRadii.z <= 0) {
return;
}
const minimumClock = ellipsoidGeometry._minimumClock;
const maximumClock = ellipsoidGeometry._maximumClock;
const minimumCone = ellipsoidGeometry._minimumCone;
const maximumCone = ellipsoidGeometry._maximumCone;
const subdivisions = ellipsoidGeometry._subdivisions;
const ellipsoid = Ellipsoid_default.fromCartesian3(radii);
let slicePartitions = ellipsoidGeometry._slicePartitions + 1;
let stackPartitions = ellipsoidGeometry._stackPartitions + 1;
slicePartitions = Math.round(
slicePartitions * Math.abs(maximumClock - minimumClock) / Math_default.TWO_PI
);
stackPartitions = Math.round(
stackPartitions * Math.abs(maximumCone - minimumCone) / Math_default.PI
);
if (slicePartitions < 2) {
slicePartitions = 2;
}
if (stackPartitions < 2) {
stackPartitions = 2;
}
let extraIndices = 0;
let vertexMultiplier = 1;
const hasInnerSurface = innerRadii.x !== radii.x || innerRadii.y !== radii.y || innerRadii.z !== radii.z;
let isTopOpen = false;
let isBotOpen = false;
if (hasInnerSurface) {
vertexMultiplier = 2;
if (minimumCone > 0) {
isTopOpen = true;
extraIndices += slicePartitions;
}
if (maximumCone < Math.PI) {
isBotOpen = true;
extraIndices += slicePartitions;
}
}
const vertexCount = subdivisions * vertexMultiplier * (stackPartitions + slicePartitions);
const positions = new Float64Array(vertexCount * 3);
const numIndices = 2 * (vertexCount + extraIndices - (slicePartitions + stackPartitions) * vertexMultiplier);
const indices = IndexDatatype_default.createTypedArray(vertexCount, numIndices);
let i;
let j;
let theta;
let phi;
let index = 0;
const sinPhi = new Array(stackPartitions);
const cosPhi = new Array(stackPartitions);
for (i = 0; i < stackPartitions; i++) {
phi = minimumCone + i * (maximumCone - minimumCone) / (stackPartitions - 1);
sinPhi[i] = sin(phi);
cosPhi[i] = cos(phi);
}
const sinTheta = new Array(subdivisions);
const cosTheta = new Array(subdivisions);
for (i = 0; i < subdivisions; i++) {
theta = minimumClock + i * (maximumClock - minimumClock) / (subdivisions - 1);
sinTheta[i] = sin(theta);
cosTheta[i] = cos(theta);
}
for (i = 0; i < stackPartitions; i++) {
for (j = 0; j < subdivisions; j++) {
positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
positions[index++] = radii.z * cosPhi[i];
}
}
if (hasInnerSurface) {
for (i = 0; i < stackPartitions; i++) {
for (j = 0; j < subdivisions; j++) {
positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
positions[index++] = innerRadii.z * cosPhi[i];
}
}
}
sinPhi.length = subdivisions;
cosPhi.length = subdivisions;
for (i = 0; i < subdivisions; i++) {
phi = minimumCone + i * (maximumCone - minimumCone) / (subdivisions - 1);
sinPhi[i] = sin(phi);
cosPhi[i] = cos(phi);
}
sinTheta.length = slicePartitions;
cosTheta.length = slicePartitions;
for (i = 0; i < slicePartitions; i++) {
theta = minimumClock + i * (maximumClock - minimumClock) / (slicePartitions - 1);
sinTheta[i] = sin(theta);
cosTheta[i] = cos(theta);
}
for (i = 0; i < subdivisions; i++) {
for (j = 0; j < slicePartitions; j++) {
positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
positions[index++] = radii.z * cosPhi[i];
}
}
if (hasInnerSurface) {
for (i = 0; i < subdivisions; i++) {
for (j = 0; j < slicePartitions; j++) {
positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
positions[index++] = innerRadii.z * cosPhi[i];
}
}
}
index = 0;
for (i = 0; i < stackPartitions * vertexMultiplier; i++) {
const topOffset = i * subdivisions;
for (j = 0; j < subdivisions - 1; j++) {
indices[index++] = topOffset + j;
indices[index++] = topOffset + j + 1;
}
}
let offset = stackPartitions * subdivisions * vertexMultiplier;
for (i = 0; i < slicePartitions; i++) {
for (j = 0; j < subdivisions - 1; j++) {
indices[index++] = offset + i + j * slicePartitions;
indices[index++] = offset + i + (j + 1) * slicePartitions;
}
}
if (hasInnerSurface) {
offset = stackPartitions * subdivisions * vertexMultiplier + slicePartitions * subdivisions;
for (i = 0; i < slicePartitions; i++) {
for (j = 0; j < subdivisions - 1; j++) {
indices[index++] = offset + i + j * slicePartitions;
indices[index++] = offset + i + (j + 1) * slicePartitions;
}
}
}
if (hasInnerSurface) {
let outerOffset = stackPartitions * subdivisions * vertexMultiplier;
let innerOffset = outerOffset + subdivisions * slicePartitions;
if (isTopOpen) {
for (i = 0; i < slicePartitions; i++) {
indices[index++] = outerOffset + i;
indices[index++] = innerOffset + i;
}
}
if (isBotOpen) {
outerOffset += subdivisions * slicePartitions - slicePartitions;
innerOffset += subdivisions * slicePartitions - slicePartitions;
for (i = 0; i < slicePartitions; i++) {
indices[index++] = outerOffset + i;
indices[index++] = innerOffset + i;
}
}
}
const attributes = new GeometryAttributes_default({
position: new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.DOUBLE,
componentsPerAttribute: 3,
values: positions
})
});
if (defined_default(ellipsoidGeometry._offsetAttribute)) {
const length = positions.length;
const offsetValue = ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute_default.NONE ? 0 : 1;
const applyOffset = new Uint8Array(length / 3).fill(offsetValue);
attributes.applyOffset = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.UNSIGNED_BYTE,
componentsPerAttribute: 1,
values: applyOffset
});
}
return new Geometry_default({
attributes,
indices,
primitiveType: PrimitiveType_default.LINES,
boundingSphere: BoundingSphere_default.fromEllipsoid(ellipsoid),
offsetAttribute: ellipsoidGeometry._offsetAttribute
});
};
var EllipsoidOutlineGeometry_default = EllipsoidOutlineGeometry;
export {
EllipsoidOutlineGeometry_default
};