512 lines
19 KiB
JavaScript

/**
* @license
* Cesium - https://github.com/CesiumGS/cesium
* Version 1.117
*
* Copyright 2011-2022 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
import {
GeometryOffsetAttribute_default
} from "./chunk-S4XDCPKD.js";
import {
VertexFormat_default
} from "./chunk-4KIUON73.js";
import {
IndexDatatype_default
} from "./chunk-WWP3I7R5.js";
import {
GeometryAttributes_default
} from "./chunk-RL73GOEF.js";
import {
GeometryAttribute_default,
Geometry_default,
PrimitiveType_default
} from "./chunk-34DGOKCO.js";
import {
BoundingSphere_default
} from "./chunk-NI2R52QD.js";
import {
ComponentDatatype_default
} from "./chunk-TMMOULW3.js";
import {
Cartesian2_default,
Cartesian3_default,
Ellipsoid_default
} from "./chunk-C5CE4OG6.js";
import {
Math_default
} from "./chunk-4PHPQRSH.js";
import {
defaultValue_default
} from "./chunk-UCPPWV64.js";
import {
DeveloperError_default
} from "./chunk-U4IMCOF5.js";
import {
defined_default
} from "./chunk-BDUJXBVF.js";
// packages/engine/Source/Core/EllipsoidGeometry.js
var scratchPosition = new Cartesian3_default();
var scratchNormal = new Cartesian3_default();
var scratchTangent = new Cartesian3_default();
var scratchBitangent = new Cartesian3_default();
var scratchNormalST = new Cartesian3_default();
var defaultRadii = new Cartesian3_default(1, 1, 1);
var cos = Math.cos;
var sin = Math.sin;
function EllipsoidGeometry(options) {
options = defaultValue_default(options, defaultValue_default.EMPTY_OBJECT);
const radii = defaultValue_default(options.radii, defaultRadii);
const innerRadii = defaultValue_default(options.innerRadii, radii);
const minimumClock = defaultValue_default(options.minimumClock, 0);
const maximumClock = defaultValue_default(options.maximumClock, Math_default.TWO_PI);
const minimumCone = defaultValue_default(options.minimumCone, 0);
const maximumCone = defaultValue_default(options.maximumCone, Math_default.PI);
const stackPartitions = Math.round(defaultValue_default(options.stackPartitions, 64));
const slicePartitions = Math.round(defaultValue_default(options.slicePartitions, 64));
const vertexFormat = defaultValue_default(options.vertexFormat, VertexFormat_default.DEFAULT);
if (slicePartitions < 3) {
throw new DeveloperError_default(
"options.slicePartitions cannot be less than three."
);
}
if (stackPartitions < 3) {
throw new DeveloperError_default(
"options.stackPartitions cannot be less than three."
);
}
this._radii = Cartesian3_default.clone(radii);
this._innerRadii = Cartesian3_default.clone(innerRadii);
this._minimumClock = minimumClock;
this._maximumClock = maximumClock;
this._minimumCone = minimumCone;
this._maximumCone = maximumCone;
this._stackPartitions = stackPartitions;
this._slicePartitions = slicePartitions;
this._vertexFormat = VertexFormat_default.clone(vertexFormat);
this._offsetAttribute = options.offsetAttribute;
this._workerName = "createEllipsoidGeometry";
}
EllipsoidGeometry.packedLength = 2 * Cartesian3_default.packedLength + VertexFormat_default.packedLength + 7;
EllipsoidGeometry.pack = function(value, array, startingIndex) {
if (!defined_default(value)) {
throw new DeveloperError_default("value is required");
}
if (!defined_default(array)) {
throw new DeveloperError_default("array is required");
}
startingIndex = defaultValue_default(startingIndex, 0);
Cartesian3_default.pack(value._radii, array, startingIndex);
startingIndex += Cartesian3_default.packedLength;
Cartesian3_default.pack(value._innerRadii, array, startingIndex);
startingIndex += Cartesian3_default.packedLength;
VertexFormat_default.pack(value._vertexFormat, array, startingIndex);
startingIndex += VertexFormat_default.packedLength;
array[startingIndex++] = value._minimumClock;
array[startingIndex++] = value._maximumClock;
array[startingIndex++] = value._minimumCone;
array[startingIndex++] = value._maximumCone;
array[startingIndex++] = value._stackPartitions;
array[startingIndex++] = value._slicePartitions;
array[startingIndex] = defaultValue_default(value._offsetAttribute, -1);
return array;
};
var scratchRadii = new Cartesian3_default();
var scratchInnerRadii = new Cartesian3_default();
var scratchVertexFormat = new VertexFormat_default();
var scratchOptions = {
radii: scratchRadii,
innerRadii: scratchInnerRadii,
vertexFormat: scratchVertexFormat,
minimumClock: void 0,
maximumClock: void 0,
minimumCone: void 0,
maximumCone: void 0,
stackPartitions: void 0,
slicePartitions: void 0,
offsetAttribute: void 0
};
EllipsoidGeometry.unpack = function(array, startingIndex, result) {
if (!defined_default(array)) {
throw new DeveloperError_default("array is required");
}
startingIndex = defaultValue_default(startingIndex, 0);
const radii = Cartesian3_default.unpack(array, startingIndex, scratchRadii);
startingIndex += Cartesian3_default.packedLength;
const innerRadii = Cartesian3_default.unpack(array, startingIndex, scratchInnerRadii);
startingIndex += Cartesian3_default.packedLength;
const vertexFormat = VertexFormat_default.unpack(
array,
startingIndex,
scratchVertexFormat
);
startingIndex += VertexFormat_default.packedLength;
const minimumClock = array[startingIndex++];
const maximumClock = array[startingIndex++];
const minimumCone = array[startingIndex++];
const maximumCone = array[startingIndex++];
const stackPartitions = array[startingIndex++];
const slicePartitions = array[startingIndex++];
const offsetAttribute = array[startingIndex];
if (!defined_default(result)) {
scratchOptions.minimumClock = minimumClock;
scratchOptions.maximumClock = maximumClock;
scratchOptions.minimumCone = minimumCone;
scratchOptions.maximumCone = maximumCone;
scratchOptions.stackPartitions = stackPartitions;
scratchOptions.slicePartitions = slicePartitions;
scratchOptions.offsetAttribute = offsetAttribute === -1 ? void 0 : offsetAttribute;
return new EllipsoidGeometry(scratchOptions);
}
result._radii = Cartesian3_default.clone(radii, result._radii);
result._innerRadii = Cartesian3_default.clone(innerRadii, result._innerRadii);
result._vertexFormat = VertexFormat_default.clone(vertexFormat, result._vertexFormat);
result._minimumClock = minimumClock;
result._maximumClock = maximumClock;
result._minimumCone = minimumCone;
result._maximumCone = maximumCone;
result._stackPartitions = stackPartitions;
result._slicePartitions = slicePartitions;
result._offsetAttribute = offsetAttribute === -1 ? void 0 : offsetAttribute;
return result;
};
EllipsoidGeometry.createGeometry = function(ellipsoidGeometry) {
const radii = ellipsoidGeometry._radii;
if (radii.x <= 0 || radii.y <= 0 || radii.z <= 0) {
return;
}
const innerRadii = ellipsoidGeometry._innerRadii;
if (innerRadii.x <= 0 || innerRadii.y <= 0 || innerRadii.z <= 0) {
return;
}
const minimumClock = ellipsoidGeometry._minimumClock;
const maximumClock = ellipsoidGeometry._maximumClock;
const minimumCone = ellipsoidGeometry._minimumCone;
const maximumCone = ellipsoidGeometry._maximumCone;
const vertexFormat = ellipsoidGeometry._vertexFormat;
let slicePartitions = ellipsoidGeometry._slicePartitions + 1;
let stackPartitions = ellipsoidGeometry._stackPartitions + 1;
slicePartitions = Math.round(
slicePartitions * Math.abs(maximumClock - minimumClock) / Math_default.TWO_PI
);
stackPartitions = Math.round(
stackPartitions * Math.abs(maximumCone - minimumCone) / Math_default.PI
);
if (slicePartitions < 2) {
slicePartitions = 2;
}
if (stackPartitions < 2) {
stackPartitions = 2;
}
let i;
let j;
let index = 0;
const phis = [minimumCone];
const thetas = [minimumClock];
for (i = 0; i < stackPartitions; i++) {
phis.push(
minimumCone + i * (maximumCone - minimumCone) / (stackPartitions - 1)
);
}
phis.push(maximumCone);
for (j = 0; j < slicePartitions; j++) {
thetas.push(
minimumClock + j * (maximumClock - minimumClock) / (slicePartitions - 1)
);
}
thetas.push(maximumClock);
const numPhis = phis.length;
const numThetas = thetas.length;
let extraIndices = 0;
let vertexMultiplier = 1;
const hasInnerSurface = innerRadii.x !== radii.x || innerRadii.y !== radii.y || innerRadii.z !== radii.z;
let isTopOpen = false;
let isBotOpen = false;
let isClockOpen = false;
if (hasInnerSurface) {
vertexMultiplier = 2;
if (minimumCone > 0) {
isTopOpen = true;
extraIndices += slicePartitions - 1;
}
if (maximumCone < Math.PI) {
isBotOpen = true;
extraIndices += slicePartitions - 1;
}
if ((maximumClock - minimumClock) % Math_default.TWO_PI) {
isClockOpen = true;
extraIndices += (stackPartitions - 1) * 2 + 1;
} else {
extraIndices += 1;
}
}
const vertexCount = numThetas * numPhis * vertexMultiplier;
const positions = new Float64Array(vertexCount * 3);
const isInner = new Array(vertexCount).fill(false);
const negateNormal = new Array(vertexCount).fill(false);
const indexCount = slicePartitions * stackPartitions * vertexMultiplier;
const numIndices = 6 * (indexCount + extraIndices + 1 - (slicePartitions + stackPartitions) * vertexMultiplier);
const indices = IndexDatatype_default.createTypedArray(indexCount, numIndices);
const normals = vertexFormat.normal ? new Float32Array(vertexCount * 3) : void 0;
const tangents = vertexFormat.tangent ? new Float32Array(vertexCount * 3) : void 0;
const bitangents = vertexFormat.bitangent ? new Float32Array(vertexCount * 3) : void 0;
const st = vertexFormat.st ? new Float32Array(vertexCount * 2) : void 0;
const sinPhi = new Array(numPhis);
const cosPhi = new Array(numPhis);
for (i = 0; i < numPhis; i++) {
sinPhi[i] = sin(phis[i]);
cosPhi[i] = cos(phis[i]);
}
const sinTheta = new Array(numThetas);
const cosTheta = new Array(numThetas);
for (j = 0; j < numThetas; j++) {
cosTheta[j] = cos(thetas[j]);
sinTheta[j] = sin(thetas[j]);
}
for (i = 0; i < numPhis; i++) {
for (j = 0; j < numThetas; j++) {
positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
positions[index++] = radii.z * cosPhi[i];
}
}
let vertexIndex = vertexCount / 2;
if (hasInnerSurface) {
for (i = 0; i < numPhis; i++) {
for (j = 0; j < numThetas; j++) {
positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
positions[index++] = innerRadii.z * cosPhi[i];
isInner[vertexIndex] = true;
if (i > 0 && i !== numPhis - 1 && j !== 0 && j !== numThetas - 1) {
negateNormal[vertexIndex] = true;
}
vertexIndex++;
}
}
}
index = 0;
let topOffset;
let bottomOffset;
for (i = 1; i < numPhis - 2; i++) {
topOffset = i * numThetas;
bottomOffset = (i + 1) * numThetas;
for (j = 1; j < numThetas - 2; j++) {
indices[index++] = bottomOffset + j;
indices[index++] = bottomOffset + j + 1;
indices[index++] = topOffset + j + 1;
indices[index++] = bottomOffset + j;
indices[index++] = topOffset + j + 1;
indices[index++] = topOffset + j;
}
}
if (hasInnerSurface) {
const offset = numPhis * numThetas;
for (i = 1; i < numPhis - 2; i++) {
topOffset = offset + i * numThetas;
bottomOffset = offset + (i + 1) * numThetas;
for (j = 1; j < numThetas - 2; j++) {
indices[index++] = bottomOffset + j;
indices[index++] = topOffset + j;
indices[index++] = topOffset + j + 1;
indices[index++] = bottomOffset + j;
indices[index++] = topOffset + j + 1;
indices[index++] = bottomOffset + j + 1;
}
}
}
let outerOffset;
let innerOffset;
if (hasInnerSurface) {
if (isTopOpen) {
innerOffset = numPhis * numThetas;
for (i = 1; i < numThetas - 2; i++) {
indices[index++] = i;
indices[index++] = i + 1;
indices[index++] = innerOffset + i + 1;
indices[index++] = i;
indices[index++] = innerOffset + i + 1;
indices[index++] = innerOffset + i;
}
}
if (isBotOpen) {
outerOffset = numPhis * numThetas - numThetas;
innerOffset = numPhis * numThetas * vertexMultiplier - numThetas;
for (i = 1; i < numThetas - 2; i++) {
indices[index++] = outerOffset + i + 1;
indices[index++] = outerOffset + i;
indices[index++] = innerOffset + i;
indices[index++] = outerOffset + i + 1;
indices[index++] = innerOffset + i;
indices[index++] = innerOffset + i + 1;
}
}
}
if (isClockOpen) {
for (i = 1; i < numPhis - 2; i++) {
innerOffset = numThetas * numPhis + numThetas * i;
outerOffset = numThetas * i;
indices[index++] = innerOffset;
indices[index++] = outerOffset + numThetas;
indices[index++] = outerOffset;
indices[index++] = innerOffset;
indices[index++] = innerOffset + numThetas;
indices[index++] = outerOffset + numThetas;
}
for (i = 1; i < numPhis - 2; i++) {
innerOffset = numThetas * numPhis + numThetas * (i + 1) - 1;
outerOffset = numThetas * (i + 1) - 1;
indices[index++] = outerOffset + numThetas;
indices[index++] = innerOffset;
indices[index++] = outerOffset;
indices[index++] = outerOffset + numThetas;
indices[index++] = innerOffset + numThetas;
indices[index++] = innerOffset;
}
}
const attributes = new GeometryAttributes_default();
if (vertexFormat.position) {
attributes.position = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.DOUBLE,
componentsPerAttribute: 3,
values: positions
});
}
let stIndex = 0;
let normalIndex = 0;
let tangentIndex = 0;
let bitangentIndex = 0;
const vertexCountHalf = vertexCount / 2;
let ellipsoid;
const ellipsoidOuter = Ellipsoid_default.fromCartesian3(radii);
const ellipsoidInner = Ellipsoid_default.fromCartesian3(innerRadii);
if (vertexFormat.st || vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent) {
for (i = 0; i < vertexCount; i++) {
ellipsoid = isInner[i] ? ellipsoidInner : ellipsoidOuter;
const position = Cartesian3_default.fromArray(positions, i * 3, scratchPosition);
const normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal);
if (negateNormal[i]) {
Cartesian3_default.negate(normal, normal);
}
if (vertexFormat.st) {
const normalST = Cartesian2_default.negate(normal, scratchNormalST);
st[stIndex++] = Math.atan2(normalST.y, normalST.x) / Math_default.TWO_PI + 0.5;
st[stIndex++] = Math.asin(normal.z) / Math.PI + 0.5;
}
if (vertexFormat.normal) {
normals[normalIndex++] = normal.x;
normals[normalIndex++] = normal.y;
normals[normalIndex++] = normal.z;
}
if (vertexFormat.tangent || vertexFormat.bitangent) {
const tangent = scratchTangent;
let tangetOffset = 0;
let unit;
if (isInner[i]) {
tangetOffset = vertexCountHalf;
}
if (!isTopOpen && i >= tangetOffset && i < tangetOffset + numThetas * 2) {
unit = Cartesian3_default.UNIT_X;
} else {
unit = Cartesian3_default.UNIT_Z;
}
Cartesian3_default.cross(unit, normal, tangent);
Cartesian3_default.normalize(tangent, tangent);
if (vertexFormat.tangent) {
tangents[tangentIndex++] = tangent.x;
tangents[tangentIndex++] = tangent.y;
tangents[tangentIndex++] = tangent.z;
}
if (vertexFormat.bitangent) {
const bitangent = Cartesian3_default.cross(normal, tangent, scratchBitangent);
Cartesian3_default.normalize(bitangent, bitangent);
bitangents[bitangentIndex++] = bitangent.x;
bitangents[bitangentIndex++] = bitangent.y;
bitangents[bitangentIndex++] = bitangent.z;
}
}
}
if (vertexFormat.st) {
attributes.st = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.FLOAT,
componentsPerAttribute: 2,
values: st
});
}
if (vertexFormat.normal) {
attributes.normal = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.FLOAT,
componentsPerAttribute: 3,
values: normals
});
}
if (vertexFormat.tangent) {
attributes.tangent = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.FLOAT,
componentsPerAttribute: 3,
values: tangents
});
}
if (vertexFormat.bitangent) {
attributes.bitangent = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.FLOAT,
componentsPerAttribute: 3,
values: bitangents
});
}
}
if (defined_default(ellipsoidGeometry._offsetAttribute)) {
const length = positions.length;
const offsetValue = ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute_default.NONE ? 0 : 1;
const applyOffset = new Uint8Array(length / 3).fill(offsetValue);
attributes.applyOffset = new GeometryAttribute_default({
componentDatatype: ComponentDatatype_default.UNSIGNED_BYTE,
componentsPerAttribute: 1,
values: applyOffset
});
}
return new Geometry_default({
attributes,
indices,
primitiveType: PrimitiveType_default.TRIANGLES,
boundingSphere: BoundingSphere_default.fromEllipsoid(ellipsoidOuter),
offsetAttribute: ellipsoidGeometry._offsetAttribute
});
};
var unitEllipsoidGeometry;
EllipsoidGeometry.getUnitEllipsoid = function() {
if (!defined_default(unitEllipsoidGeometry)) {
unitEllipsoidGeometry = EllipsoidGeometry.createGeometry(
new EllipsoidGeometry({
radii: new Cartesian3_default(1, 1, 1),
vertexFormat: VertexFormat_default.POSITION_ONLY
})
);
}
return unitEllipsoidGeometry;
};
var EllipsoidGeometry_default = EllipsoidGeometry;
export {
EllipsoidGeometry_default
};