Agriculture-front-end/dist/CesiumUnminified/Workers/chunk-7VZNXIKG.js

477 lines
16 KiB
JavaScript

/**
* @license
* Cesium - https://github.com/CesiumGS/cesium
* Version 1.117
*
* Copyright 2011-2022 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
import {
CornerType_default,
PolylineVolumeGeometryLibrary_default
} from "./chunk-XWML5Y7N.js";
import {
PolylinePipeline_default
} from "./chunk-ZWPIM77Q.js";
import {
Quaternion_default
} from "./chunk-I5TDPPC4.js";
import {
Cartesian3_default,
Matrix3_default
} from "./chunk-C5CE4OG6.js";
import {
Math_default
} from "./chunk-4PHPQRSH.js";
import {
defined_default
} from "./chunk-BDUJXBVF.js";
// packages/engine/Source/Core/CorridorGeometryLibrary.js
var CorridorGeometryLibrary = {};
var scratch1 = new Cartesian3_default();
var scratch2 = new Cartesian3_default();
var scratch3 = new Cartesian3_default();
var scratch4 = new Cartesian3_default();
var scaleArray2 = [new Cartesian3_default(), new Cartesian3_default()];
var cartesian1 = new Cartesian3_default();
var cartesian2 = new Cartesian3_default();
var cartesian3 = new Cartesian3_default();
var cartesian4 = new Cartesian3_default();
var cartesian5 = new Cartesian3_default();
var cartesian6 = new Cartesian3_default();
var cartesian7 = new Cartesian3_default();
var cartesian8 = new Cartesian3_default();
var cartesian9 = new Cartesian3_default();
var cartesian10 = new Cartesian3_default();
var quaterion = new Quaternion_default();
var rotMatrix = new Matrix3_default();
function computeRoundCorner(cornerPoint, startPoint, endPoint, cornerType, leftIsOutside) {
const angle = Cartesian3_default.angleBetween(
Cartesian3_default.subtract(startPoint, cornerPoint, scratch1),
Cartesian3_default.subtract(endPoint, cornerPoint, scratch2)
);
const granularity = cornerType === CornerType_default.BEVELED ? 1 : Math.ceil(angle / Math_default.toRadians(5)) + 1;
const size = granularity * 3;
const array = new Array(size);
array[size - 3] = endPoint.x;
array[size - 2] = endPoint.y;
array[size - 1] = endPoint.z;
let m;
if (leftIsOutside) {
m = Matrix3_default.fromQuaternion(
Quaternion_default.fromAxisAngle(
Cartesian3_default.negate(cornerPoint, scratch1),
angle / granularity,
quaterion
),
rotMatrix
);
} else {
m = Matrix3_default.fromQuaternion(
Quaternion_default.fromAxisAngle(cornerPoint, angle / granularity, quaterion),
rotMatrix
);
}
let index = 0;
startPoint = Cartesian3_default.clone(startPoint, scratch1);
for (let i = 0; i < granularity; i++) {
startPoint = Matrix3_default.multiplyByVector(m, startPoint, startPoint);
array[index++] = startPoint.x;
array[index++] = startPoint.y;
array[index++] = startPoint.z;
}
return array;
}
function addEndCaps(calculatedPositions) {
let cornerPoint = cartesian1;
let startPoint = cartesian2;
let endPoint = cartesian3;
let leftEdge = calculatedPositions[1];
startPoint = Cartesian3_default.fromArray(
calculatedPositions[1],
leftEdge.length - 3,
startPoint
);
endPoint = Cartesian3_default.fromArray(calculatedPositions[0], 0, endPoint);
cornerPoint = Cartesian3_default.midpoint(startPoint, endPoint, cornerPoint);
const firstEndCap = computeRoundCorner(
cornerPoint,
startPoint,
endPoint,
CornerType_default.ROUNDED,
false
);
const length = calculatedPositions.length - 1;
const rightEdge = calculatedPositions[length - 1];
leftEdge = calculatedPositions[length];
startPoint = Cartesian3_default.fromArray(
rightEdge,
rightEdge.length - 3,
startPoint
);
endPoint = Cartesian3_default.fromArray(leftEdge, 0, endPoint);
cornerPoint = Cartesian3_default.midpoint(startPoint, endPoint, cornerPoint);
const lastEndCap = computeRoundCorner(
cornerPoint,
startPoint,
endPoint,
CornerType_default.ROUNDED,
false
);
return [firstEndCap, lastEndCap];
}
function computeMiteredCorner(position, leftCornerDirection, lastPoint, leftIsOutside) {
let cornerPoint = scratch1;
if (leftIsOutside) {
cornerPoint = Cartesian3_default.add(position, leftCornerDirection, cornerPoint);
} else {
leftCornerDirection = Cartesian3_default.negate(
leftCornerDirection,
leftCornerDirection
);
cornerPoint = Cartesian3_default.add(position, leftCornerDirection, cornerPoint);
}
return [
cornerPoint.x,
cornerPoint.y,
cornerPoint.z,
lastPoint.x,
lastPoint.y,
lastPoint.z
];
}
function addShiftedPositions(positions, left, scalar, calculatedPositions) {
const rightPositions = new Array(positions.length);
const leftPositions = new Array(positions.length);
const scaledLeft = Cartesian3_default.multiplyByScalar(left, scalar, scratch1);
const scaledRight = Cartesian3_default.negate(scaledLeft, scratch2);
let rightIndex = 0;
let leftIndex = positions.length - 1;
for (let i = 0; i < positions.length; i += 3) {
const pos = Cartesian3_default.fromArray(positions, i, scratch3);
const rightPos = Cartesian3_default.add(pos, scaledRight, scratch4);
rightPositions[rightIndex++] = rightPos.x;
rightPositions[rightIndex++] = rightPos.y;
rightPositions[rightIndex++] = rightPos.z;
const leftPos = Cartesian3_default.add(pos, scaledLeft, scratch4);
leftPositions[leftIndex--] = leftPos.z;
leftPositions[leftIndex--] = leftPos.y;
leftPositions[leftIndex--] = leftPos.x;
}
calculatedPositions.push(rightPositions, leftPositions);
return calculatedPositions;
}
CorridorGeometryLibrary.addAttribute = function(attribute, value, front, back) {
const x = value.x;
const y = value.y;
const z = value.z;
if (defined_default(front)) {
attribute[front] = x;
attribute[front + 1] = y;
attribute[front + 2] = z;
}
if (defined_default(back)) {
attribute[back] = z;
attribute[back - 1] = y;
attribute[back - 2] = x;
}
};
var scratchForwardProjection = new Cartesian3_default();
var scratchBackwardProjection = new Cartesian3_default();
CorridorGeometryLibrary.computePositions = function(params) {
const granularity = params.granularity;
const positions = params.positions;
const ellipsoid = params.ellipsoid;
const width = params.width / 2;
const cornerType = params.cornerType;
const saveAttributes = params.saveAttributes;
let normal = cartesian1;
let forward = cartesian2;
let backward = cartesian3;
let left = cartesian4;
let cornerDirection = cartesian5;
let startPoint = cartesian6;
let previousPos = cartesian7;
let rightPos = cartesian8;
let leftPos = cartesian9;
let center = cartesian10;
let calculatedPositions = [];
const calculatedLefts = saveAttributes ? [] : void 0;
const calculatedNormals = saveAttributes ? [] : void 0;
let position = positions[0];
let nextPosition = positions[1];
forward = Cartesian3_default.normalize(
Cartesian3_default.subtract(nextPosition, position, forward),
forward
);
normal = ellipsoid.geodeticSurfaceNormal(position, normal);
left = Cartesian3_default.normalize(Cartesian3_default.cross(normal, forward, left), left);
if (saveAttributes) {
calculatedLefts.push(left.x, left.y, left.z);
calculatedNormals.push(normal.x, normal.y, normal.z);
}
previousPos = Cartesian3_default.clone(position, previousPos);
position = nextPosition;
backward = Cartesian3_default.negate(forward, backward);
let subdividedPositions;
const corners = [];
let i;
const length = positions.length;
for (i = 1; i < length - 1; i++) {
normal = ellipsoid.geodeticSurfaceNormal(position, normal);
nextPosition = positions[i + 1];
forward = Cartesian3_default.normalize(
Cartesian3_default.subtract(nextPosition, position, forward),
forward
);
cornerDirection = Cartesian3_default.normalize(
Cartesian3_default.add(forward, backward, cornerDirection),
cornerDirection
);
const forwardProjection = Cartesian3_default.multiplyByScalar(
normal,
Cartesian3_default.dot(forward, normal),
scratchForwardProjection
);
Cartesian3_default.subtract(forward, forwardProjection, forwardProjection);
Cartesian3_default.normalize(forwardProjection, forwardProjection);
const backwardProjection = Cartesian3_default.multiplyByScalar(
normal,
Cartesian3_default.dot(backward, normal),
scratchBackwardProjection
);
Cartesian3_default.subtract(backward, backwardProjection, backwardProjection);
Cartesian3_default.normalize(backwardProjection, backwardProjection);
const doCorner = !Math_default.equalsEpsilon(
Math.abs(Cartesian3_default.dot(forwardProjection, backwardProjection)),
1,
Math_default.EPSILON7
);
if (doCorner) {
cornerDirection = Cartesian3_default.cross(
cornerDirection,
normal,
cornerDirection
);
cornerDirection = Cartesian3_default.cross(
normal,
cornerDirection,
cornerDirection
);
cornerDirection = Cartesian3_default.normalize(cornerDirection, cornerDirection);
const scalar = width / Math.max(
0.25,
Cartesian3_default.magnitude(
Cartesian3_default.cross(cornerDirection, backward, scratch1)
)
);
const leftIsOutside = PolylineVolumeGeometryLibrary_default.angleIsGreaterThanPi(
forward,
backward,
position,
ellipsoid
);
cornerDirection = Cartesian3_default.multiplyByScalar(
cornerDirection,
scalar,
cornerDirection
);
if (leftIsOutside) {
rightPos = Cartesian3_default.add(position, cornerDirection, rightPos);
center = Cartesian3_default.add(
rightPos,
Cartesian3_default.multiplyByScalar(left, width, center),
center
);
leftPos = Cartesian3_default.add(
rightPos,
Cartesian3_default.multiplyByScalar(left, width * 2, leftPos),
leftPos
);
scaleArray2[0] = Cartesian3_default.clone(previousPos, scaleArray2[0]);
scaleArray2[1] = Cartesian3_default.clone(center, scaleArray2[1]);
subdividedPositions = PolylinePipeline_default.generateArc({
positions: scaleArray2,
granularity,
ellipsoid
});
calculatedPositions = addShiftedPositions(
subdividedPositions,
left,
width,
calculatedPositions
);
if (saveAttributes) {
calculatedLefts.push(left.x, left.y, left.z);
calculatedNormals.push(normal.x, normal.y, normal.z);
}
startPoint = Cartesian3_default.clone(leftPos, startPoint);
left = Cartesian3_default.normalize(
Cartesian3_default.cross(normal, forward, left),
left
);
leftPos = Cartesian3_default.add(
rightPos,
Cartesian3_default.multiplyByScalar(left, width * 2, leftPos),
leftPos
);
previousPos = Cartesian3_default.add(
rightPos,
Cartesian3_default.multiplyByScalar(left, width, previousPos),
previousPos
);
if (cornerType === CornerType_default.ROUNDED || cornerType === CornerType_default.BEVELED) {
corners.push({
leftPositions: computeRoundCorner(
rightPos,
startPoint,
leftPos,
cornerType,
leftIsOutside
)
});
} else {
corners.push({
leftPositions: computeMiteredCorner(
position,
Cartesian3_default.negate(cornerDirection, cornerDirection),
leftPos,
leftIsOutside
)
});
}
} else {
leftPos = Cartesian3_default.add(position, cornerDirection, leftPos);
center = Cartesian3_default.add(
leftPos,
Cartesian3_default.negate(
Cartesian3_default.multiplyByScalar(left, width, center),
center
),
center
);
rightPos = Cartesian3_default.add(
leftPos,
Cartesian3_default.negate(
Cartesian3_default.multiplyByScalar(left, width * 2, rightPos),
rightPos
),
rightPos
);
scaleArray2[0] = Cartesian3_default.clone(previousPos, scaleArray2[0]);
scaleArray2[1] = Cartesian3_default.clone(center, scaleArray2[1]);
subdividedPositions = PolylinePipeline_default.generateArc({
positions: scaleArray2,
granularity,
ellipsoid
});
calculatedPositions = addShiftedPositions(
subdividedPositions,
left,
width,
calculatedPositions
);
if (saveAttributes) {
calculatedLefts.push(left.x, left.y, left.z);
calculatedNormals.push(normal.x, normal.y, normal.z);
}
startPoint = Cartesian3_default.clone(rightPos, startPoint);
left = Cartesian3_default.normalize(
Cartesian3_default.cross(normal, forward, left),
left
);
rightPos = Cartesian3_default.add(
leftPos,
Cartesian3_default.negate(
Cartesian3_default.multiplyByScalar(left, width * 2, rightPos),
rightPos
),
rightPos
);
previousPos = Cartesian3_default.add(
leftPos,
Cartesian3_default.negate(
Cartesian3_default.multiplyByScalar(left, width, previousPos),
previousPos
),
previousPos
);
if (cornerType === CornerType_default.ROUNDED || cornerType === CornerType_default.BEVELED) {
corners.push({
rightPositions: computeRoundCorner(
leftPos,
startPoint,
rightPos,
cornerType,
leftIsOutside
)
});
} else {
corners.push({
rightPositions: computeMiteredCorner(
position,
cornerDirection,
rightPos,
leftIsOutside
)
});
}
}
backward = Cartesian3_default.negate(forward, backward);
}
position = nextPosition;
}
normal = ellipsoid.geodeticSurfaceNormal(position, normal);
scaleArray2[0] = Cartesian3_default.clone(previousPos, scaleArray2[0]);
scaleArray2[1] = Cartesian3_default.clone(position, scaleArray2[1]);
subdividedPositions = PolylinePipeline_default.generateArc({
positions: scaleArray2,
granularity,
ellipsoid
});
calculatedPositions = addShiftedPositions(
subdividedPositions,
left,
width,
calculatedPositions
);
if (saveAttributes) {
calculatedLefts.push(left.x, left.y, left.z);
calculatedNormals.push(normal.x, normal.y, normal.z);
}
let endPositions;
if (cornerType === CornerType_default.ROUNDED) {
endPositions = addEndCaps(calculatedPositions);
}
return {
positions: calculatedPositions,
corners,
lefts: calculatedLefts,
normals: calculatedNormals,
endPositions
};
};
var CorridorGeometryLibrary_default = CorridorGeometryLibrary;
export {
CorridorGeometryLibrary_default
};