/** * @license * Cesium - https://github.com/CesiumGS/cesium * Version 1.117 * * Copyright 2011-2022 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ import { AttributeCompression_default } from "./chunk-PS6AEMBR.js"; import { EncodedCartesian3_default } from "./chunk-AOFMPKUB.js"; import { IntersectionTests_default } from "./chunk-G7CJQKKD.js"; import { Plane_default } from "./chunk-FOZQIHZK.js"; import { IndexDatatype_default } from "./chunk-WWP3I7R5.js"; import { GeometryAttribute_default, GeometryType_default, Geometry_default, PrimitiveType_default } from "./chunk-34DGOKCO.js"; import { BoundingSphere_default, GeographicProjection_default, Intersect_default } from "./chunk-NI2R52QD.js"; import { Cartesian4_default, Matrix4_default } from "./chunk-I5TDPPC4.js"; import { ComponentDatatype_default } from "./chunk-TMMOULW3.js"; import { Cartesian2_default, Cartesian3_default, Cartographic_default, Matrix3_default } from "./chunk-C5CE4OG6.js"; import { Math_default } from "./chunk-4PHPQRSH.js"; import { defaultValue_default } from "./chunk-UCPPWV64.js"; import { Check_default, DeveloperError_default } from "./chunk-U4IMCOF5.js"; import { defined_default } from "./chunk-BDUJXBVF.js"; // packages/engine/Source/Core/barycentricCoordinates.js var scratchCartesian1 = new Cartesian3_default(); var scratchCartesian2 = new Cartesian3_default(); var scratchCartesian3 = new Cartesian3_default(); function barycentricCoordinates(point, p0, p1, p2, result) { Check_default.defined("point", point); Check_default.defined("p0", p0); Check_default.defined("p1", p1); Check_default.defined("p2", p2); if (!defined_default(result)) { result = new Cartesian3_default(); } let v02; let v12; let v22; let dot00; let dot01; let dot02; let dot11; let dot12; if (!defined_default(p0.z)) { if (Cartesian2_default.equalsEpsilon(point, p0, Math_default.EPSILON14)) { return Cartesian3_default.clone(Cartesian3_default.UNIT_X, result); } if (Cartesian2_default.equalsEpsilon(point, p1, Math_default.EPSILON14)) { return Cartesian3_default.clone(Cartesian3_default.UNIT_Y, result); } if (Cartesian2_default.equalsEpsilon(point, p2, Math_default.EPSILON14)) { return Cartesian3_default.clone(Cartesian3_default.UNIT_Z, result); } v02 = Cartesian2_default.subtract(p1, p0, scratchCartesian1); v12 = Cartesian2_default.subtract(p2, p0, scratchCartesian2); v22 = Cartesian2_default.subtract(point, p0, scratchCartesian3); dot00 = Cartesian2_default.dot(v02, v02); dot01 = Cartesian2_default.dot(v02, v12); dot02 = Cartesian2_default.dot(v02, v22); dot11 = Cartesian2_default.dot(v12, v12); dot12 = Cartesian2_default.dot(v12, v22); } else { if (Cartesian3_default.equalsEpsilon(point, p0, Math_default.EPSILON14)) { return Cartesian3_default.clone(Cartesian3_default.UNIT_X, result); } if (Cartesian3_default.equalsEpsilon(point, p1, Math_default.EPSILON14)) { return Cartesian3_default.clone(Cartesian3_default.UNIT_Y, result); } if (Cartesian3_default.equalsEpsilon(point, p2, Math_default.EPSILON14)) { return Cartesian3_default.clone(Cartesian3_default.UNIT_Z, result); } v02 = Cartesian3_default.subtract(p1, p0, scratchCartesian1); v12 = Cartesian3_default.subtract(p2, p0, scratchCartesian2); v22 = Cartesian3_default.subtract(point, p0, scratchCartesian3); dot00 = Cartesian3_default.dot(v02, v02); dot01 = Cartesian3_default.dot(v02, v12); dot02 = Cartesian3_default.dot(v02, v22); dot11 = Cartesian3_default.dot(v12, v12); dot12 = Cartesian3_default.dot(v12, v22); } result.y = dot11 * dot02 - dot01 * dot12; result.z = dot00 * dot12 - dot01 * dot02; const q = dot00 * dot11 - dot01 * dot01; if (q === 0) { return void 0; } result.y /= q; result.z /= q; result.x = 1 - result.y - result.z; return result; } var barycentricCoordinates_default = barycentricCoordinates; // packages/engine/Source/Core/Tipsify.js var Tipsify = {}; Tipsify.calculateACMR = function(options) { options = defaultValue_default(options, defaultValue_default.EMPTY_OBJECT); const indices = options.indices; let maximumIndex = options.maximumIndex; const cacheSize = defaultValue_default(options.cacheSize, 24); if (!defined_default(indices)) { throw new DeveloperError_default("indices is required."); } const numIndices = indices.length; if (numIndices < 3 || numIndices % 3 !== 0) { throw new DeveloperError_default("indices length must be a multiple of three."); } if (maximumIndex <= 0) { throw new DeveloperError_default("maximumIndex must be greater than zero."); } if (cacheSize < 3) { throw new DeveloperError_default("cacheSize must be greater than two."); } if (!defined_default(maximumIndex)) { maximumIndex = 0; let currentIndex = 0; let intoIndices = indices[currentIndex]; while (currentIndex < numIndices) { if (intoIndices > maximumIndex) { maximumIndex = intoIndices; } ++currentIndex; intoIndices = indices[currentIndex]; } } const vertexTimeStamps = []; for (let i = 0; i < maximumIndex + 1; i++) { vertexTimeStamps[i] = 0; } let s = cacheSize + 1; for (let j = 0; j < numIndices; ++j) { if (s - vertexTimeStamps[indices[j]] > cacheSize) { vertexTimeStamps[indices[j]] = s; ++s; } } return (s - cacheSize + 1) / (numIndices / 3); }; Tipsify.tipsify = function(options) { options = defaultValue_default(options, defaultValue_default.EMPTY_OBJECT); const indices = options.indices; const maximumIndex = options.maximumIndex; const cacheSize = defaultValue_default(options.cacheSize, 24); let cursor; function skipDeadEnd(vertices2, deadEnd2, indices2, maximumIndexPlusOne2) { while (deadEnd2.length >= 1) { const d = deadEnd2[deadEnd2.length - 1]; deadEnd2.splice(deadEnd2.length - 1, 1); if (vertices2[d].numLiveTriangles > 0) { return d; } } while (cursor < maximumIndexPlusOne2) { if (vertices2[cursor].numLiveTriangles > 0) { ++cursor; return cursor - 1; } ++cursor; } return -1; } function getNextVertex(indices2, cacheSize2, oneRing2, vertices2, s2, deadEnd2, maximumIndexPlusOne2) { let n = -1; let p; let m = -1; let itOneRing = 0; while (itOneRing < oneRing2.length) { const index2 = oneRing2[itOneRing]; if (vertices2[index2].numLiveTriangles) { p = 0; if (s2 - vertices2[index2].timeStamp + 2 * vertices2[index2].numLiveTriangles <= cacheSize2) { p = s2 - vertices2[index2].timeStamp; } if (p > m || m === -1) { m = p; n = index2; } } ++itOneRing; } if (n === -1) { return skipDeadEnd(vertices2, deadEnd2, indices2, maximumIndexPlusOne2); } return n; } if (!defined_default(indices)) { throw new DeveloperError_default("indices is required."); } const numIndices = indices.length; if (numIndices < 3 || numIndices % 3 !== 0) { throw new DeveloperError_default("indices length must be a multiple of three."); } if (maximumIndex <= 0) { throw new DeveloperError_default("maximumIndex must be greater than zero."); } if (cacheSize < 3) { throw new DeveloperError_default("cacheSize must be greater than two."); } let maximumIndexPlusOne = 0; let currentIndex = 0; let intoIndices = indices[currentIndex]; const endIndex = numIndices; if (defined_default(maximumIndex)) { maximumIndexPlusOne = maximumIndex + 1; } else { while (currentIndex < endIndex) { if (intoIndices > maximumIndexPlusOne) { maximumIndexPlusOne = intoIndices; } ++currentIndex; intoIndices = indices[currentIndex]; } if (maximumIndexPlusOne === -1) { return 0; } ++maximumIndexPlusOne; } const vertices = []; let i; for (i = 0; i < maximumIndexPlusOne; i++) { vertices[i] = { numLiveTriangles: 0, timeStamp: 0, vertexTriangles: [] }; } currentIndex = 0; let triangle = 0; while (currentIndex < endIndex) { vertices[indices[currentIndex]].vertexTriangles.push(triangle); ++vertices[indices[currentIndex]].numLiveTriangles; vertices[indices[currentIndex + 1]].vertexTriangles.push(triangle); ++vertices[indices[currentIndex + 1]].numLiveTriangles; vertices[indices[currentIndex + 2]].vertexTriangles.push(triangle); ++vertices[indices[currentIndex + 2]].numLiveTriangles; ++triangle; currentIndex += 3; } let f = 0; let s = cacheSize + 1; cursor = 1; let oneRing = []; const deadEnd = []; let vertex; let intoVertices; let currentOutputIndex = 0; const outputIndices = []; const numTriangles = numIndices / 3; const triangleEmitted = []; for (i = 0; i < numTriangles; i++) { triangleEmitted[i] = false; } let index; let limit; while (f !== -1) { oneRing = []; intoVertices = vertices[f]; limit = intoVertices.vertexTriangles.length; for (let k = 0; k < limit; ++k) { triangle = intoVertices.vertexTriangles[k]; if (!triangleEmitted[triangle]) { triangleEmitted[triangle] = true; currentIndex = triangle + triangle + triangle; for (let j = 0; j < 3; ++j) { index = indices[currentIndex]; oneRing.push(index); deadEnd.push(index); outputIndices[currentOutputIndex] = index; ++currentOutputIndex; vertex = vertices[index]; --vertex.numLiveTriangles; if (s - vertex.timeStamp > cacheSize) { vertex.timeStamp = s; ++s; } ++currentIndex; } } } f = getNextVertex( indices, cacheSize, oneRing, vertices, s, deadEnd, maximumIndexPlusOne ); } return outputIndices; }; var Tipsify_default = Tipsify; // packages/engine/Source/Core/GeometryPipeline.js var GeometryPipeline = {}; function addTriangle(lines, index, i0, i1, i2) { lines[index++] = i0; lines[index++] = i1; lines[index++] = i1; lines[index++] = i2; lines[index++] = i2; lines[index] = i0; } function trianglesToLines(triangles) { const count = triangles.length; const size = count / 3 * 6; const lines = IndexDatatype_default.createTypedArray(count, size); let index = 0; for (let i = 0; i < count; i += 3, index += 6) { addTriangle(lines, index, triangles[i], triangles[i + 1], triangles[i + 2]); } return lines; } function triangleStripToLines(triangles) { const count = triangles.length; if (count >= 3) { const size = (count - 2) * 6; const lines = IndexDatatype_default.createTypedArray(count, size); addTriangle(lines, 0, triangles[0], triangles[1], triangles[2]); let index = 6; for (let i = 3; i < count; ++i, index += 6) { addTriangle( lines, index, triangles[i - 1], triangles[i], triangles[i - 2] ); } return lines; } return new Uint16Array(); } function triangleFanToLines(triangles) { if (triangles.length > 0) { const count = triangles.length - 1; const size = (count - 1) * 6; const lines = IndexDatatype_default.createTypedArray(count, size); const base = triangles[0]; let index = 0; for (let i = 1; i < count; ++i, index += 6) { addTriangle(lines, index, base, triangles[i], triangles[i + 1]); } return lines; } return new Uint16Array(); } GeometryPipeline.toWireframe = function(geometry) { if (!defined_default(geometry)) { throw new DeveloperError_default("geometry is required."); } const indices = geometry.indices; if (defined_default(indices)) { switch (geometry.primitiveType) { case PrimitiveType_default.TRIANGLES: geometry.indices = trianglesToLines(indices); break; case PrimitiveType_default.TRIANGLE_STRIP: geometry.indices = triangleStripToLines(indices); break; case PrimitiveType_default.TRIANGLE_FAN: geometry.indices = triangleFanToLines(indices); break; default: throw new DeveloperError_default( "geometry.primitiveType must be TRIANGLES, TRIANGLE_STRIP, or TRIANGLE_FAN." ); } geometry.primitiveType = PrimitiveType_default.LINES; } return geometry; }; GeometryPipeline.createLineSegmentsForVectors = function(geometry, attributeName, length) { attributeName = defaultValue_default(attributeName, "normal"); if (!defined_default(geometry)) { throw new DeveloperError_default("geometry is required."); } if (!defined_default(geometry.attributes.position)) { throw new DeveloperError_default("geometry.attributes.position is required."); } if (!defined_default(geometry.attributes[attributeName])) { throw new DeveloperError_default( `geometry.attributes must have an attribute with the same name as the attributeName parameter, ${attributeName}.` ); } length = defaultValue_default(length, 1e4); const positions = geometry.attributes.position.values; const vectors = geometry.attributes[attributeName].values; const positionsLength = positions.length; const newPositions = new Float64Array(2 * positionsLength); let j = 0; for (let i = 0; i < positionsLength; i += 3) { newPositions[j++] = positions[i]; newPositions[j++] = positions[i + 1]; newPositions[j++] = positions[i + 2]; newPositions[j++] = positions[i] + vectors[i] * length; newPositions[j++] = positions[i + 1] + vectors[i + 1] * length; newPositions[j++] = positions[i + 2] + vectors[i + 2] * length; } let newBoundingSphere; const bs = geometry.boundingSphere; if (defined_default(bs)) { newBoundingSphere = new BoundingSphere_default(bs.center, bs.radius + length); } return new Geometry_default({ attributes: { position: new GeometryAttribute_default({ componentDatatype: ComponentDatatype_default.DOUBLE, componentsPerAttribute: 3, values: newPositions }) }, primitiveType: PrimitiveType_default.LINES, boundingSphere: newBoundingSphere }); }; GeometryPipeline.createAttributeLocations = function(geometry) { if (!defined_default(geometry)) { throw new DeveloperError_default("geometry is required."); } const semantics = [ "position", "positionHigh", "positionLow", // From VertexFormat.position - after 2D projection and high-precision encoding "position3DHigh", "position3DLow", "position2DHigh", "position2DLow", // From Primitive "pickColor", // From VertexFormat "normal", "st", "tangent", "bitangent", // For shadow volumes "extrudeDirection", // From compressing texture coordinates and normals "compressedAttributes" ]; const attributes = geometry.attributes; const indices = {}; let j = 0; let i; const len = semantics.length; for (i = 0; i < len; ++i) { const semantic = semantics[i]; if (defined_default(attributes[semantic])) { indices[semantic] = j++; } } for (const name in attributes) { if (attributes.hasOwnProperty(name) && !defined_default(indices[name])) { indices[name] = j++; } } return indices; }; GeometryPipeline.reorderForPreVertexCache = function(geometry) { if (!defined_default(geometry)) { throw new DeveloperError_default("geometry is required."); } const numVertices = Geometry_default.computeNumberOfVertices(geometry); const indices = geometry.indices; if (defined_default(indices)) { const indexCrossReferenceOldToNew = new Int32Array(numVertices); for (let i = 0; i < numVertices; i++) { indexCrossReferenceOldToNew[i] = -1; } const indicesIn = indices; const numIndices = indicesIn.length; const indicesOut = IndexDatatype_default.createTypedArray(numVertices, numIndices); let intoIndicesIn = 0; let intoIndicesOut = 0; let nextIndex = 0; let tempIndex; while (intoIndicesIn < numIndices) { tempIndex = indexCrossReferenceOldToNew[indicesIn[intoIndicesIn]]; if (tempIndex !== -1) { indicesOut[intoIndicesOut] = tempIndex; } else { tempIndex = indicesIn[intoIndicesIn]; indexCrossReferenceOldToNew[tempIndex] = nextIndex; indicesOut[intoIndicesOut] = nextIndex; ++nextIndex; } ++intoIndicesIn; ++intoIndicesOut; } geometry.indices = indicesOut; const attributes = geometry.attributes; for (const property in attributes) { if (attributes.hasOwnProperty(property) && defined_default(attributes[property]) && defined_default(attributes[property].values)) { const attribute = attributes[property]; const elementsIn = attribute.values; let intoElementsIn = 0; const numComponents = attribute.componentsPerAttribute; const elementsOut = ComponentDatatype_default.createTypedArray( attribute.componentDatatype, nextIndex * numComponents ); while (intoElementsIn < numVertices) { const temp = indexCrossReferenceOldToNew[intoElementsIn]; if (temp !== -1) { for (let j = 0; j < numComponents; j++) { elementsOut[numComponents * temp + j] = elementsIn[numComponents * intoElementsIn + j]; } } ++intoElementsIn; } attribute.values = elementsOut; } } } return geometry; }; GeometryPipeline.reorderForPostVertexCache = function(geometry, cacheCapacity) { if (!defined_default(geometry)) { throw new DeveloperError_default("geometry is required."); } const indices = geometry.indices; if (geometry.primitiveType === PrimitiveType_default.TRIANGLES && defined_default(indices)) { const numIndices = indices.length; let maximumIndex = 0; for (let j = 0; j < numIndices; j++) { if (indices[j] > maximumIndex) { maximumIndex = indices[j]; } } geometry.indices = Tipsify_default.tipsify({ indices, maximumIndex, cacheSize: cacheCapacity }); } return geometry; }; function copyAttributesDescriptions(attributes) { const newAttributes = {}; for (const attribute in attributes) { if (attributes.hasOwnProperty(attribute) && defined_default(attributes[attribute]) && defined_default(attributes[attribute].values)) { const attr = attributes[attribute]; newAttributes[attribute] = new GeometryAttribute_default({ componentDatatype: attr.componentDatatype, componentsPerAttribute: attr.componentsPerAttribute, normalize: attr.normalize, values: [] }); } } return newAttributes; } function copyVertex(destinationAttributes, sourceAttributes, index) { for (const attribute in sourceAttributes) { if (sourceAttributes.hasOwnProperty(attribute) && defined_default(sourceAttributes[attribute]) && defined_default(sourceAttributes[attribute].values)) { const attr = sourceAttributes[attribute]; for (let k = 0; k < attr.componentsPerAttribute; ++k) { destinationAttributes[attribute].values.push( attr.values[index * attr.componentsPerAttribute + k] ); } } } } GeometryPipeline.fitToUnsignedShortIndices = function(geometry) { if (!defined_default(geometry)) { throw new DeveloperError_default("geometry is required."); } if (defined_default(geometry.indices) && geometry.primitiveType !== PrimitiveType_default.TRIANGLES && geometry.primitiveType !== PrimitiveType_default.LINES && geometry.primitiveType !== PrimitiveType_default.POINTS) { throw new DeveloperError_default( "geometry.primitiveType must equal to PrimitiveType.TRIANGLES, PrimitiveType.LINES, or PrimitiveType.POINTS." ); } const geometries = []; const numberOfVertices = Geometry_default.computeNumberOfVertices(geometry); if (defined_default(geometry.indices) && numberOfVertices >= Math_default.SIXTY_FOUR_KILOBYTES) { let oldToNewIndex = []; let newIndices = []; let currentIndex = 0; let newAttributes = copyAttributesDescriptions(geometry.attributes); const originalIndices = geometry.indices; const numberOfIndices = originalIndices.length; let indicesPerPrimitive; if (geometry.primitiveType === PrimitiveType_default.TRIANGLES) { indicesPerPrimitive = 3; } else if (geometry.primitiveType === PrimitiveType_default.LINES) { indicesPerPrimitive = 2; } else if (geometry.primitiveType === PrimitiveType_default.POINTS) { indicesPerPrimitive = 1; } for (let j = 0; j < numberOfIndices; j += indicesPerPrimitive) { for (let k = 0; k < indicesPerPrimitive; ++k) { const x = originalIndices[j + k]; let i = oldToNewIndex[x]; if (!defined_default(i)) { i = currentIndex++; oldToNewIndex[x] = i; copyVertex(newAttributes, geometry.attributes, x); } newIndices.push(i); } if (currentIndex + indicesPerPrimitive >= Math_default.SIXTY_FOUR_KILOBYTES) { geometries.push( new Geometry_default({ attributes: newAttributes, indices: newIndices, primitiveType: geometry.primitiveType, boundingSphere: geometry.boundingSphere, boundingSphereCV: geometry.boundingSphereCV }) ); oldToNewIndex = []; newIndices = []; currentIndex = 0; newAttributes = copyAttributesDescriptions(geometry.attributes); } } if (newIndices.length !== 0) { geometries.push( new Geometry_default({ attributes: newAttributes, indices: newIndices, primitiveType: geometry.primitiveType, boundingSphere: geometry.boundingSphere, boundingSphereCV: geometry.boundingSphereCV }) ); } } else { geometries.push(geometry); } return geometries; }; var scratchProjectTo2DCartesian3 = new Cartesian3_default(); var scratchProjectTo2DCartographic = new Cartographic_default(); GeometryPipeline.projectTo2D = function(geometry, attributeName, attributeName3D, attributeName2D, projection) { if (!defined_default(geometry)) { throw new DeveloperError_default("geometry is required."); } if (!defined_default(attributeName)) { throw new DeveloperError_default("attributeName is required."); } if (!defined_default(attributeName3D)) { throw new DeveloperError_default("attributeName3D is required."); } if (!defined_default(attributeName2D)) { throw new DeveloperError_default("attributeName2D is required."); } if (!defined_default(geometry.attributes[attributeName])) { throw new DeveloperError_default( `geometry must have attribute matching the attributeName argument: ${attributeName}.` ); } if (geometry.attributes[attributeName].componentDatatype !== ComponentDatatype_default.DOUBLE) { throw new DeveloperError_default( "The attribute componentDatatype must be ComponentDatatype.DOUBLE." ); } const attribute = geometry.attributes[attributeName]; projection = defined_default(projection) ? projection : new GeographicProjection_default(); const ellipsoid = projection.ellipsoid; const values3D = attribute.values; const projectedValues = new Float64Array(values3D.length); let index = 0; for (let i = 0; i < values3D.length; i += 3) { const value = Cartesian3_default.fromArray( values3D, i, scratchProjectTo2DCartesian3 ); const lonLat = ellipsoid.cartesianToCartographic( value, scratchProjectTo2DCartographic ); if (!defined_default(lonLat)) { throw new DeveloperError_default( `Could not project point (${value.x}, ${value.y}, ${value.z}) to 2D.` ); } const projectedLonLat = projection.project( lonLat, scratchProjectTo2DCartesian3 ); projectedValues[index++] = projectedLonLat.x; projectedValues[index++] = projectedLonLat.y; projectedValues[index++] = projectedLonLat.z; } geometry.attributes[attributeName3D] = attribute; geometry.attributes[attributeName2D] = new GeometryAttribute_default({ componentDatatype: ComponentDatatype_default.DOUBLE, componentsPerAttribute: 3, values: projectedValues }); delete geometry.attributes[attributeName]; return geometry; }; var encodedResult = { high: 0, low: 0 }; GeometryPipeline.encodeAttribute = function(geometry, attributeName, attributeHighName, attributeLowName) { if (!defined_default(geometry)) { throw new DeveloperError_default("geometry is required."); } if (!defined_default(attributeName)) { throw new DeveloperError_default("attributeName is required."); } if (!defined_default(attributeHighName)) { throw new DeveloperError_default("attributeHighName is required."); } if (!defined_default(attributeLowName)) { throw new DeveloperError_default("attributeLowName is required."); } if (!defined_default(geometry.attributes[attributeName])) { throw new DeveloperError_default( `geometry must have attribute matching the attributeName argument: ${attributeName}.` ); } if (geometry.attributes[attributeName].componentDatatype !== ComponentDatatype_default.DOUBLE) { throw new DeveloperError_default( "The attribute componentDatatype must be ComponentDatatype.DOUBLE." ); } const attribute = geometry.attributes[attributeName]; const values = attribute.values; const length = values.length; const highValues = new Float32Array(length); const lowValues = new Float32Array(length); for (let i = 0; i < length; ++i) { EncodedCartesian3_default.encode(values[i], encodedResult); highValues[i] = encodedResult.high; lowValues[i] = encodedResult.low; } const componentsPerAttribute = attribute.componentsPerAttribute; geometry.attributes[attributeHighName] = new GeometryAttribute_default({ componentDatatype: ComponentDatatype_default.FLOAT, componentsPerAttribute, values: highValues }); geometry.attributes[attributeLowName] = new GeometryAttribute_default({ componentDatatype: ComponentDatatype_default.FLOAT, componentsPerAttribute, values: lowValues }); delete geometry.attributes[attributeName]; return geometry; }; var scratchCartesian32 = new Cartesian3_default(); function transformPoint(matrix, attribute) { if (defined_default(attribute)) { const values = attribute.values; const length = values.length; for (let i = 0; i < length; i += 3) { Cartesian3_default.unpack(values, i, scratchCartesian32); Matrix4_default.multiplyByPoint(matrix, scratchCartesian32, scratchCartesian32); Cartesian3_default.pack(scratchCartesian32, values, i); } } } function transformVector(matrix, attribute) { if (defined_default(attribute)) { const values = attribute.values; const length = values.length; for (let i = 0; i < length; i += 3) { Cartesian3_default.unpack(values, i, scratchCartesian32); Matrix3_default.multiplyByVector(matrix, scratchCartesian32, scratchCartesian32); scratchCartesian32 = Cartesian3_default.normalize( scratchCartesian32, scratchCartesian32 ); Cartesian3_default.pack(scratchCartesian32, values, i); } } } var inverseTranspose = new Matrix4_default(); var normalMatrix = new Matrix3_default(); GeometryPipeline.transformToWorldCoordinates = function(instance) { if (!defined_default(instance)) { throw new DeveloperError_default("instance is required."); } const modelMatrix = instance.modelMatrix; if (Matrix4_default.equals(modelMatrix, Matrix4_default.IDENTITY)) { return instance; } const attributes = instance.geometry.attributes; transformPoint(modelMatrix, attributes.position); transformPoint(modelMatrix, attributes.prevPosition); transformPoint(modelMatrix, attributes.nextPosition); if (defined_default(attributes.normal) || defined_default(attributes.tangent) || defined_default(attributes.bitangent)) { Matrix4_default.inverse(modelMatrix, inverseTranspose); Matrix4_default.transpose(inverseTranspose, inverseTranspose); Matrix4_default.getMatrix3(inverseTranspose, normalMatrix); transformVector(normalMatrix, attributes.normal); transformVector(normalMatrix, attributes.tangent); transformVector(normalMatrix, attributes.bitangent); } const boundingSphere = instance.geometry.boundingSphere; if (defined_default(boundingSphere)) { instance.geometry.boundingSphere = BoundingSphere_default.transform( boundingSphere, modelMatrix, boundingSphere ); } instance.modelMatrix = Matrix4_default.clone(Matrix4_default.IDENTITY); return instance; }; function findAttributesInAllGeometries(instances, propertyName) { const length = instances.length; const attributesInAllGeometries = {}; const attributes0 = instances[0][propertyName].attributes; let name; for (name in attributes0) { if (attributes0.hasOwnProperty(name) && defined_default(attributes0[name]) && defined_default(attributes0[name].values)) { const attribute = attributes0[name]; let numberOfComponents = attribute.values.length; let inAllGeometries = true; for (let i = 1; i < length; ++i) { const otherAttribute = instances[i][propertyName].attributes[name]; if (!defined_default(otherAttribute) || attribute.componentDatatype !== otherAttribute.componentDatatype || attribute.componentsPerAttribute !== otherAttribute.componentsPerAttribute || attribute.normalize !== otherAttribute.normalize) { inAllGeometries = false; break; } numberOfComponents += otherAttribute.values.length; } if (inAllGeometries) { attributesInAllGeometries[name] = new GeometryAttribute_default({ componentDatatype: attribute.componentDatatype, componentsPerAttribute: attribute.componentsPerAttribute, normalize: attribute.normalize, values: ComponentDatatype_default.createTypedArray( attribute.componentDatatype, numberOfComponents ) }); } } } return attributesInAllGeometries; } var tempScratch = new Cartesian3_default(); function combineGeometries(instances, propertyName) { const length = instances.length; let name; let i; let j; let k; const m = instances[0].modelMatrix; const haveIndices = defined_default(instances[0][propertyName].indices); const primitiveType = instances[0][propertyName].primitiveType; for (i = 1; i < length; ++i) { if (!Matrix4_default.equals(instances[i].modelMatrix, m)) { throw new DeveloperError_default("All instances must have the same modelMatrix."); } if (defined_default(instances[i][propertyName].indices) !== haveIndices) { throw new DeveloperError_default( "All instance geometries must have an indices or not have one." ); } if (instances[i][propertyName].primitiveType !== primitiveType) { throw new DeveloperError_default( "All instance geometries must have the same primitiveType." ); } } const attributes = findAttributesInAllGeometries(instances, propertyName); let values; let sourceValues; let sourceValuesLength; for (name in attributes) { if (attributes.hasOwnProperty(name)) { values = attributes[name].values; k = 0; for (i = 0; i < length; ++i) { sourceValues = instances[i][propertyName].attributes[name].values; sourceValuesLength = sourceValues.length; for (j = 0; j < sourceValuesLength; ++j) { values[k++] = sourceValues[j]; } } } } let indices; if (haveIndices) { let numberOfIndices = 0; for (i = 0; i < length; ++i) { numberOfIndices += instances[i][propertyName].indices.length; } const numberOfVertices = Geometry_default.computeNumberOfVertices( new Geometry_default({ attributes, primitiveType: PrimitiveType_default.POINTS }) ); const destIndices = IndexDatatype_default.createTypedArray( numberOfVertices, numberOfIndices ); let destOffset = 0; let offset = 0; for (i = 0; i < length; ++i) { const sourceIndices = instances[i][propertyName].indices; const sourceIndicesLen = sourceIndices.length; for (k = 0; k < sourceIndicesLen; ++k) { destIndices[destOffset++] = offset + sourceIndices[k]; } offset += Geometry_default.computeNumberOfVertices(instances[i][propertyName]); } indices = destIndices; } let center = new Cartesian3_default(); let radius = 0; let bs; for (i = 0; i < length; ++i) { bs = instances[i][propertyName].boundingSphere; if (!defined_default(bs)) { center = void 0; break; } Cartesian3_default.add(bs.center, center, center); } if (defined_default(center)) { Cartesian3_default.divideByScalar(center, length, center); for (i = 0; i < length; ++i) { bs = instances[i][propertyName].boundingSphere; const tempRadius = Cartesian3_default.magnitude( Cartesian3_default.subtract(bs.center, center, tempScratch) ) + bs.radius; if (tempRadius > radius) { radius = tempRadius; } } } return new Geometry_default({ attributes, indices, primitiveType, boundingSphere: defined_default(center) ? new BoundingSphere_default(center, radius) : void 0 }); } GeometryPipeline.combineInstances = function(instances) { if (!defined_default(instances) || instances.length < 1) { throw new DeveloperError_default( "instances is required and must have length greater than zero." ); } const instanceGeometry = []; const instanceSplitGeometry = []; const length = instances.length; for (let i = 0; i < length; ++i) { const instance = instances[i]; if (defined_default(instance.geometry)) { instanceGeometry.push(instance); } else if (defined_default(instance.westHemisphereGeometry) && defined_default(instance.eastHemisphereGeometry)) { instanceSplitGeometry.push(instance); } } const geometries = []; if (instanceGeometry.length > 0) { geometries.push(combineGeometries(instanceGeometry, "geometry")); } if (instanceSplitGeometry.length > 0) { geometries.push( combineGeometries(instanceSplitGeometry, "westHemisphereGeometry") ); geometries.push( combineGeometries(instanceSplitGeometry, "eastHemisphereGeometry") ); } return geometries; }; var normal = new Cartesian3_default(); var v0 = new Cartesian3_default(); var v1 = new Cartesian3_default(); var v2 = new Cartesian3_default(); GeometryPipeline.computeNormal = function(geometry) { if (!defined_default(geometry)) { throw new DeveloperError_default("geometry is required."); } if (!defined_default(geometry.attributes.position) || !defined_default(geometry.attributes.position.values)) { throw new DeveloperError_default( "geometry.attributes.position.values is required." ); } if (!defined_default(geometry.indices)) { throw new DeveloperError_default("geometry.indices is required."); } if (geometry.indices.length < 2 || geometry.indices.length % 3 !== 0) { throw new DeveloperError_default( "geometry.indices length must be greater than 0 and be a multiple of 3." ); } if (geometry.primitiveType !== PrimitiveType_default.TRIANGLES) { throw new DeveloperError_default( "geometry.primitiveType must be PrimitiveType.TRIANGLES." ); } const indices = geometry.indices; const attributes = geometry.attributes; const vertices = attributes.position.values; const numVertices = attributes.position.values.length / 3; const numIndices = indices.length; const normalsPerVertex = new Array(numVertices); const normalsPerTriangle = new Array(numIndices / 3); const normalIndices = new Array(numIndices); let i; for (i = 0; i < numVertices; i++) { normalsPerVertex[i] = { indexOffset: 0, count: 0, currentCount: 0 }; } let j = 0; for (i = 0; i < numIndices; i += 3) { const i0 = indices[i]; const i1 = indices[i + 1]; const i2 = indices[i + 2]; const i03 = i0 * 3; const i13 = i1 * 3; const i23 = i2 * 3; v0.x = vertices[i03]; v0.y = vertices[i03 + 1]; v0.z = vertices[i03 + 2]; v1.x = vertices[i13]; v1.y = vertices[i13 + 1]; v1.z = vertices[i13 + 2]; v2.x = vertices[i23]; v2.y = vertices[i23 + 1]; v2.z = vertices[i23 + 2]; normalsPerVertex[i0].count++; normalsPerVertex[i1].count++; normalsPerVertex[i2].count++; Cartesian3_default.subtract(v1, v0, v1); Cartesian3_default.subtract(v2, v0, v2); normalsPerTriangle[j] = Cartesian3_default.cross(v1, v2, new Cartesian3_default()); j++; } let indexOffset = 0; for (i = 0; i < numVertices; i++) { normalsPerVertex[i].indexOffset += indexOffset; indexOffset += normalsPerVertex[i].count; } j = 0; let vertexNormalData; for (i = 0; i < numIndices; i += 3) { vertexNormalData = normalsPerVertex[indices[i]]; let index = vertexNormalData.indexOffset + vertexNormalData.currentCount; normalIndices[index] = j; vertexNormalData.currentCount++; vertexNormalData = normalsPerVertex[indices[i + 1]]; index = vertexNormalData.indexOffset + vertexNormalData.currentCount; normalIndices[index] = j; vertexNormalData.currentCount++; vertexNormalData = normalsPerVertex[indices[i + 2]]; index = vertexNormalData.indexOffset + vertexNormalData.currentCount; normalIndices[index] = j; vertexNormalData.currentCount++; j++; } const normalValues = new Float32Array(numVertices * 3); for (i = 0; i < numVertices; i++) { const i3 = i * 3; vertexNormalData = normalsPerVertex[i]; Cartesian3_default.clone(Cartesian3_default.ZERO, normal); if (vertexNormalData.count > 0) { for (j = 0; j < vertexNormalData.count; j++) { Cartesian3_default.add( normal, normalsPerTriangle[normalIndices[vertexNormalData.indexOffset + j]], normal ); } if (Cartesian3_default.equalsEpsilon(Cartesian3_default.ZERO, normal, Math_default.EPSILON10)) { Cartesian3_default.clone( normalsPerTriangle[normalIndices[vertexNormalData.indexOffset]], normal ); } } if (Cartesian3_default.equalsEpsilon(Cartesian3_default.ZERO, normal, Math_default.EPSILON10)) { normal.z = 1; } Cartesian3_default.normalize(normal, normal); normalValues[i3] = normal.x; normalValues[i3 + 1] = normal.y; normalValues[i3 + 2] = normal.z; } geometry.attributes.normal = new GeometryAttribute_default({ componentDatatype: ComponentDatatype_default.FLOAT, componentsPerAttribute: 3, values: normalValues }); return geometry; }; var normalScratch = new Cartesian3_default(); var normalScale = new Cartesian3_default(); var tScratch = new Cartesian3_default(); GeometryPipeline.computeTangentAndBitangent = function(geometry) { if (!defined_default(geometry)) { throw new DeveloperError_default("geometry is required."); } const attributes = geometry.attributes; const indices = geometry.indices; if (!defined_default(attributes.position) || !defined_default(attributes.position.values)) { throw new DeveloperError_default( "geometry.attributes.position.values is required." ); } if (!defined_default(attributes.normal) || !defined_default(attributes.normal.values)) { throw new DeveloperError_default("geometry.attributes.normal.values is required."); } if (!defined_default(attributes.st) || !defined_default(attributes.st.values)) { throw new DeveloperError_default("geometry.attributes.st.values is required."); } if (!defined_default(indices)) { throw new DeveloperError_default("geometry.indices is required."); } if (indices.length < 2 || indices.length % 3 !== 0) { throw new DeveloperError_default( "geometry.indices length must be greater than 0 and be a multiple of 3." ); } if (geometry.primitiveType !== PrimitiveType_default.TRIANGLES) { throw new DeveloperError_default( "geometry.primitiveType must be PrimitiveType.TRIANGLES." ); } const vertices = geometry.attributes.position.values; const normals = geometry.attributes.normal.values; const st = geometry.attributes.st.values; const numVertices = geometry.attributes.position.values.length / 3; const numIndices = indices.length; const tan1 = new Array(numVertices * 3); let i; for (i = 0; i < tan1.length; i++) { tan1[i] = 0; } let i03; let i13; let i23; for (i = 0; i < numIndices; i += 3) { const i0 = indices[i]; const i1 = indices[i + 1]; const i2 = indices[i + 2]; i03 = i0 * 3; i13 = i1 * 3; i23 = i2 * 3; const i02 = i0 * 2; const i12 = i1 * 2; const i22 = i2 * 2; const ux = vertices[i03]; const uy = vertices[i03 + 1]; const uz = vertices[i03 + 2]; const wx = st[i02]; const wy = st[i02 + 1]; const t1 = st[i12 + 1] - wy; const t2 = st[i22 + 1] - wy; const r = 1 / ((st[i12] - wx) * t2 - (st[i22] - wx) * t1); const sdirx = (t2 * (vertices[i13] - ux) - t1 * (vertices[i23] - ux)) * r; const sdiry = (t2 * (vertices[i13 + 1] - uy) - t1 * (vertices[i23 + 1] - uy)) * r; const sdirz = (t2 * (vertices[i13 + 2] - uz) - t1 * (vertices[i23 + 2] - uz)) * r; tan1[i03] += sdirx; tan1[i03 + 1] += sdiry; tan1[i03 + 2] += sdirz; tan1[i13] += sdirx; tan1[i13 + 1] += sdiry; tan1[i13 + 2] += sdirz; tan1[i23] += sdirx; tan1[i23 + 1] += sdiry; tan1[i23 + 2] += sdirz; } const tangentValues = new Float32Array(numVertices * 3); const bitangentValues = new Float32Array(numVertices * 3); for (i = 0; i < numVertices; i++) { i03 = i * 3; i13 = i03 + 1; i23 = i03 + 2; const n = Cartesian3_default.fromArray(normals, i03, normalScratch); const t = Cartesian3_default.fromArray(tan1, i03, tScratch); const scalar = Cartesian3_default.dot(n, t); Cartesian3_default.multiplyByScalar(n, scalar, normalScale); Cartesian3_default.normalize(Cartesian3_default.subtract(t, normalScale, t), t); tangentValues[i03] = t.x; tangentValues[i13] = t.y; tangentValues[i23] = t.z; Cartesian3_default.normalize(Cartesian3_default.cross(n, t, t), t); bitangentValues[i03] = t.x; bitangentValues[i13] = t.y; bitangentValues[i23] = t.z; } geometry.attributes.tangent = new GeometryAttribute_default({ componentDatatype: ComponentDatatype_default.FLOAT, componentsPerAttribute: 3, values: tangentValues }); geometry.attributes.bitangent = new GeometryAttribute_default({ componentDatatype: ComponentDatatype_default.FLOAT, componentsPerAttribute: 3, values: bitangentValues }); return geometry; }; var scratchCartesian22 = new Cartesian2_default(); var toEncode1 = new Cartesian3_default(); var toEncode2 = new Cartesian3_default(); var toEncode3 = new Cartesian3_default(); var encodeResult2 = new Cartesian2_default(); GeometryPipeline.compressVertices = function(geometry) { if (!defined_default(geometry)) { throw new DeveloperError_default("geometry is required."); } const extrudeAttribute = geometry.attributes.extrudeDirection; let i; let numVertices; if (defined_default(extrudeAttribute)) { const extrudeDirections = extrudeAttribute.values; numVertices = extrudeDirections.length / 3; const compressedDirections = new Float32Array(numVertices * 2); let i2 = 0; for (i = 0; i < numVertices; ++i) { Cartesian3_default.fromArray(extrudeDirections, i * 3, toEncode1); if (Cartesian3_default.equals(toEncode1, Cartesian3_default.ZERO)) { i2 += 2; continue; } encodeResult2 = AttributeCompression_default.octEncodeInRange( toEncode1, 65535, encodeResult2 ); compressedDirections[i2++] = encodeResult2.x; compressedDirections[i2++] = encodeResult2.y; } geometry.attributes.compressedAttributes = new GeometryAttribute_default({ componentDatatype: ComponentDatatype_default.FLOAT, componentsPerAttribute: 2, values: compressedDirections }); delete geometry.attributes.extrudeDirection; return geometry; } const normalAttribute = geometry.attributes.normal; const stAttribute = geometry.attributes.st; const hasNormal = defined_default(normalAttribute); const hasSt = defined_default(stAttribute); if (!hasNormal && !hasSt) { return geometry; } const tangentAttribute = geometry.attributes.tangent; const bitangentAttribute = geometry.attributes.bitangent; const hasTangent = defined_default(tangentAttribute); const hasBitangent = defined_default(bitangentAttribute); let normals; let st; let tangents; let bitangents; if (hasNormal) { normals = normalAttribute.values; } if (hasSt) { st = stAttribute.values; } if (hasTangent) { tangents = tangentAttribute.values; } if (hasBitangent) { bitangents = bitangentAttribute.values; } const length = hasNormal ? normals.length : st.length; const numComponents = hasNormal ? 3 : 2; numVertices = length / numComponents; let compressedLength = numVertices; let numCompressedComponents = hasSt && hasNormal ? 2 : 1; numCompressedComponents += hasTangent || hasBitangent ? 1 : 0; compressedLength *= numCompressedComponents; const compressedAttributes = new Float32Array(compressedLength); let normalIndex = 0; for (i = 0; i < numVertices; ++i) { if (hasSt) { Cartesian2_default.fromArray(st, i * 2, scratchCartesian22); compressedAttributes[normalIndex++] = AttributeCompression_default.compressTextureCoordinates(scratchCartesian22); } const index = i * 3; if (hasNormal && defined_default(tangents) && defined_default(bitangents)) { Cartesian3_default.fromArray(normals, index, toEncode1); Cartesian3_default.fromArray(tangents, index, toEncode2); Cartesian3_default.fromArray(bitangents, index, toEncode3); AttributeCompression_default.octPack( toEncode1, toEncode2, toEncode3, scratchCartesian22 ); compressedAttributes[normalIndex++] = scratchCartesian22.x; compressedAttributes[normalIndex++] = scratchCartesian22.y; } else { if (hasNormal) { Cartesian3_default.fromArray(normals, index, toEncode1); compressedAttributes[normalIndex++] = AttributeCompression_default.octEncodeFloat(toEncode1); } if (hasTangent) { Cartesian3_default.fromArray(tangents, index, toEncode1); compressedAttributes[normalIndex++] = AttributeCompression_default.octEncodeFloat(toEncode1); } if (hasBitangent) { Cartesian3_default.fromArray(bitangents, index, toEncode1); compressedAttributes[normalIndex++] = AttributeCompression_default.octEncodeFloat(toEncode1); } } } geometry.attributes.compressedAttributes = new GeometryAttribute_default({ componentDatatype: ComponentDatatype_default.FLOAT, componentsPerAttribute: numCompressedComponents, values: compressedAttributes }); if (hasNormal) { delete geometry.attributes.normal; } if (hasSt) { delete geometry.attributes.st; } if (hasBitangent) { delete geometry.attributes.bitangent; } if (hasTangent) { delete geometry.attributes.tangent; } return geometry; }; function indexTriangles(geometry) { if (defined_default(geometry.indices)) { return geometry; } const numberOfVertices = Geometry_default.computeNumberOfVertices(geometry); if (numberOfVertices < 3) { throw new DeveloperError_default("The number of vertices must be at least three."); } if (numberOfVertices % 3 !== 0) { throw new DeveloperError_default( "The number of vertices must be a multiple of three." ); } const indices = IndexDatatype_default.createTypedArray( numberOfVertices, numberOfVertices ); for (let i = 0; i < numberOfVertices; ++i) { indices[i] = i; } geometry.indices = indices; return geometry; } function indexTriangleFan(geometry) { const numberOfVertices = Geometry_default.computeNumberOfVertices(geometry); if (numberOfVertices < 3) { throw new DeveloperError_default("The number of vertices must be at least three."); } const indices = IndexDatatype_default.createTypedArray( numberOfVertices, (numberOfVertices - 2) * 3 ); indices[0] = 1; indices[1] = 0; indices[2] = 2; let indicesIndex = 3; for (let i = 3; i < numberOfVertices; ++i) { indices[indicesIndex++] = i - 1; indices[indicesIndex++] = 0; indices[indicesIndex++] = i; } geometry.indices = indices; geometry.primitiveType = PrimitiveType_default.TRIANGLES; return geometry; } function indexTriangleStrip(geometry) { const numberOfVertices = Geometry_default.computeNumberOfVertices(geometry); if (numberOfVertices < 3) { throw new DeveloperError_default("The number of vertices must be at least 3."); } const indices = IndexDatatype_default.createTypedArray( numberOfVertices, (numberOfVertices - 2) * 3 ); indices[0] = 0; indices[1] = 1; indices[2] = 2; if (numberOfVertices > 3) { indices[3] = 0; indices[4] = 2; indices[5] = 3; } let indicesIndex = 6; for (let i = 3; i < numberOfVertices - 1; i += 2) { indices[indicesIndex++] = i; indices[indicesIndex++] = i - 1; indices[indicesIndex++] = i + 1; if (i + 2 < numberOfVertices) { indices[indicesIndex++] = i; indices[indicesIndex++] = i + 1; indices[indicesIndex++] = i + 2; } } geometry.indices = indices; geometry.primitiveType = PrimitiveType_default.TRIANGLES; return geometry; } function indexLines(geometry) { if (defined_default(geometry.indices)) { return geometry; } const numberOfVertices = Geometry_default.computeNumberOfVertices(geometry); if (numberOfVertices < 2) { throw new DeveloperError_default("The number of vertices must be at least two."); } if (numberOfVertices % 2 !== 0) { throw new DeveloperError_default("The number of vertices must be a multiple of 2."); } const indices = IndexDatatype_default.createTypedArray( numberOfVertices, numberOfVertices ); for (let i = 0; i < numberOfVertices; ++i) { indices[i] = i; } geometry.indices = indices; return geometry; } function indexLineStrip(geometry) { const numberOfVertices = Geometry_default.computeNumberOfVertices(geometry); if (numberOfVertices < 2) { throw new DeveloperError_default("The number of vertices must be at least two."); } const indices = IndexDatatype_default.createTypedArray( numberOfVertices, (numberOfVertices - 1) * 2 ); indices[0] = 0; indices[1] = 1; let indicesIndex = 2; for (let i = 2; i < numberOfVertices; ++i) { indices[indicesIndex++] = i - 1; indices[indicesIndex++] = i; } geometry.indices = indices; geometry.primitiveType = PrimitiveType_default.LINES; return geometry; } function indexLineLoop(geometry) { const numberOfVertices = Geometry_default.computeNumberOfVertices(geometry); if (numberOfVertices < 2) { throw new DeveloperError_default("The number of vertices must be at least two."); } const indices = IndexDatatype_default.createTypedArray( numberOfVertices, numberOfVertices * 2 ); indices[0] = 0; indices[1] = 1; let indicesIndex = 2; for (let i = 2; i < numberOfVertices; ++i) { indices[indicesIndex++] = i - 1; indices[indicesIndex++] = i; } indices[indicesIndex++] = numberOfVertices - 1; indices[indicesIndex] = 0; geometry.indices = indices; geometry.primitiveType = PrimitiveType_default.LINES; return geometry; } function indexPrimitive(geometry) { switch (geometry.primitiveType) { case PrimitiveType_default.TRIANGLE_FAN: return indexTriangleFan(geometry); case PrimitiveType_default.TRIANGLE_STRIP: return indexTriangleStrip(geometry); case PrimitiveType_default.TRIANGLES: return indexTriangles(geometry); case PrimitiveType_default.LINE_STRIP: return indexLineStrip(geometry); case PrimitiveType_default.LINE_LOOP: return indexLineLoop(geometry); case PrimitiveType_default.LINES: return indexLines(geometry); } return geometry; } function offsetPointFromXZPlane(p, isBehind) { if (Math.abs(p.y) < Math_default.EPSILON6) { if (isBehind) { p.y = -Math_default.EPSILON6; } else { p.y = Math_default.EPSILON6; } } } function offsetTriangleFromXZPlane(p0, p1, p2) { if (p0.y !== 0 && p1.y !== 0 && p2.y !== 0) { offsetPointFromXZPlane(p0, p0.y < 0); offsetPointFromXZPlane(p1, p1.y < 0); offsetPointFromXZPlane(p2, p2.y < 0); return; } const p0y = Math.abs(p0.y); const p1y = Math.abs(p1.y); const p2y = Math.abs(p2.y); let sign; if (p0y > p1y) { if (p0y > p2y) { sign = Math_default.sign(p0.y); } else { sign = Math_default.sign(p2.y); } } else if (p1y > p2y) { sign = Math_default.sign(p1.y); } else { sign = Math_default.sign(p2.y); } const isBehind = sign < 0; offsetPointFromXZPlane(p0, isBehind); offsetPointFromXZPlane(p1, isBehind); offsetPointFromXZPlane(p2, isBehind); } var c3 = new Cartesian3_default(); function getXZIntersectionOffsetPoints(p, p1, u12, v12) { Cartesian3_default.add( p, Cartesian3_default.multiplyByScalar( Cartesian3_default.subtract(p1, p, c3), p.y / (p.y - p1.y), c3 ), u12 ); Cartesian3_default.clone(u12, v12); offsetPointFromXZPlane(u12, true); offsetPointFromXZPlane(v12, false); } var u1 = new Cartesian3_default(); var u2 = new Cartesian3_default(); var q1 = new Cartesian3_default(); var q2 = new Cartesian3_default(); var splitTriangleResult = { positions: new Array(7), indices: new Array(3 * 3) }; function splitTriangle(p0, p1, p2) { if (p0.x >= 0 || p1.x >= 0 || p2.x >= 0) { return void 0; } offsetTriangleFromXZPlane(p0, p1, p2); const p0Behind = p0.y < 0; const p1Behind = p1.y < 0; const p2Behind = p2.y < 0; let numBehind = 0; numBehind += p0Behind ? 1 : 0; numBehind += p1Behind ? 1 : 0; numBehind += p2Behind ? 1 : 0; const indices = splitTriangleResult.indices; if (numBehind === 1) { indices[1] = 3; indices[2] = 4; indices[5] = 6; indices[7] = 6; indices[8] = 5; if (p0Behind) { getXZIntersectionOffsetPoints(p0, p1, u1, q1); getXZIntersectionOffsetPoints(p0, p2, u2, q2); indices[0] = 0; indices[3] = 1; indices[4] = 2; indices[6] = 1; } else if (p1Behind) { getXZIntersectionOffsetPoints(p1, p2, u1, q1); getXZIntersectionOffsetPoints(p1, p0, u2, q2); indices[0] = 1; indices[3] = 2; indices[4] = 0; indices[6] = 2; } else if (p2Behind) { getXZIntersectionOffsetPoints(p2, p0, u1, q1); getXZIntersectionOffsetPoints(p2, p1, u2, q2); indices[0] = 2; indices[3] = 0; indices[4] = 1; indices[6] = 0; } } else if (numBehind === 2) { indices[2] = 4; indices[4] = 4; indices[5] = 3; indices[7] = 5; indices[8] = 6; if (!p0Behind) { getXZIntersectionOffsetPoints(p0, p1, u1, q1); getXZIntersectionOffsetPoints(p0, p2, u2, q2); indices[0] = 1; indices[1] = 2; indices[3] = 1; indices[6] = 0; } else if (!p1Behind) { getXZIntersectionOffsetPoints(p1, p2, u1, q1); getXZIntersectionOffsetPoints(p1, p0, u2, q2); indices[0] = 2; indices[1] = 0; indices[3] = 2; indices[6] = 1; } else if (!p2Behind) { getXZIntersectionOffsetPoints(p2, p0, u1, q1); getXZIntersectionOffsetPoints(p2, p1, u2, q2); indices[0] = 0; indices[1] = 1; indices[3] = 0; indices[6] = 2; } } const positions = splitTriangleResult.positions; positions[0] = p0; positions[1] = p1; positions[2] = p2; positions.length = 3; if (numBehind === 1 || numBehind === 2) { positions[3] = u1; positions[4] = u2; positions[5] = q1; positions[6] = q2; positions.length = 7; } return splitTriangleResult; } function updateGeometryAfterSplit(geometry, computeBoundingSphere) { const attributes = geometry.attributes; if (attributes.position.values.length === 0) { return void 0; } for (const property in attributes) { if (attributes.hasOwnProperty(property) && defined_default(attributes[property]) && defined_default(attributes[property].values)) { const attribute = attributes[property]; attribute.values = ComponentDatatype_default.createTypedArray( attribute.componentDatatype, attribute.values ); } } const numberOfVertices = Geometry_default.computeNumberOfVertices(geometry); geometry.indices = IndexDatatype_default.createTypedArray( numberOfVertices, geometry.indices ); if (computeBoundingSphere) { geometry.boundingSphere = BoundingSphere_default.fromVertices( attributes.position.values ); } return geometry; } function copyGeometryForSplit(geometry) { const attributes = geometry.attributes; const copiedAttributes = {}; for (const property in attributes) { if (attributes.hasOwnProperty(property) && defined_default(attributes[property]) && defined_default(attributes[property].values)) { const attribute = attributes[property]; copiedAttributes[property] = new GeometryAttribute_default({ componentDatatype: attribute.componentDatatype, componentsPerAttribute: attribute.componentsPerAttribute, normalize: attribute.normalize, values: [] }); } } return new Geometry_default({ attributes: copiedAttributes, indices: [], primitiveType: geometry.primitiveType }); } function updateInstanceAfterSplit(instance, westGeometry, eastGeometry) { const computeBoundingSphere = defined_default(instance.geometry.boundingSphere); westGeometry = updateGeometryAfterSplit(westGeometry, computeBoundingSphere); eastGeometry = updateGeometryAfterSplit(eastGeometry, computeBoundingSphere); if (defined_default(eastGeometry) && !defined_default(westGeometry)) { instance.geometry = eastGeometry; } else if (!defined_default(eastGeometry) && defined_default(westGeometry)) { instance.geometry = westGeometry; } else { instance.westHemisphereGeometry = westGeometry; instance.eastHemisphereGeometry = eastGeometry; instance.geometry = void 0; } } function generateBarycentricInterpolateFunction(CartesianType, numberOfComponents) { const v0Scratch = new CartesianType(); const v1Scratch = new CartesianType(); const v2Scratch = new CartesianType(); return function(i0, i1, i2, coords, sourceValues, currentValues, insertedIndex, normalize) { const v02 = CartesianType.fromArray( sourceValues, i0 * numberOfComponents, v0Scratch ); const v12 = CartesianType.fromArray( sourceValues, i1 * numberOfComponents, v1Scratch ); const v22 = CartesianType.fromArray( sourceValues, i2 * numberOfComponents, v2Scratch ); CartesianType.multiplyByScalar(v02, coords.x, v02); CartesianType.multiplyByScalar(v12, coords.y, v12); CartesianType.multiplyByScalar(v22, coords.z, v22); const value = CartesianType.add(v02, v12, v02); CartesianType.add(value, v22, value); if (normalize) { CartesianType.normalize(value, value); } CartesianType.pack( value, currentValues, insertedIndex * numberOfComponents ); }; } var interpolateAndPackCartesian4 = generateBarycentricInterpolateFunction( Cartesian4_default, 4 ); var interpolateAndPackCartesian3 = generateBarycentricInterpolateFunction( Cartesian3_default, 3 ); var interpolateAndPackCartesian2 = generateBarycentricInterpolateFunction( Cartesian2_default, 2 ); var interpolateAndPackBoolean = function(i0, i1, i2, coords, sourceValues, currentValues, insertedIndex) { const v12 = sourceValues[i0] * coords.x; const v22 = sourceValues[i1] * coords.y; const v3 = sourceValues[i2] * coords.z; currentValues[insertedIndex] = v12 + v22 + v3 > Math_default.EPSILON6 ? 1 : 0; }; var p0Scratch = new Cartesian3_default(); var p1Scratch = new Cartesian3_default(); var p2Scratch = new Cartesian3_default(); var barycentricScratch = new Cartesian3_default(); function computeTriangleAttributes(i0, i1, i2, point, positions, normals, tangents, bitangents, texCoords, extrudeDirections, applyOffset, currentAttributes, customAttributeNames, customAttributesLength, allAttributes, insertedIndex) { if (!defined_default(normals) && !defined_default(tangents) && !defined_default(bitangents) && !defined_default(texCoords) && !defined_default(extrudeDirections) && customAttributesLength === 0) { return; } const p0 = Cartesian3_default.fromArray(positions, i0 * 3, p0Scratch); const p1 = Cartesian3_default.fromArray(positions, i1 * 3, p1Scratch); const p2 = Cartesian3_default.fromArray(positions, i2 * 3, p2Scratch); const coords = barycentricCoordinates_default(point, p0, p1, p2, barycentricScratch); if (!defined_default(coords)) { return; } if (defined_default(normals)) { interpolateAndPackCartesian3( i0, i1, i2, coords, normals, currentAttributes.normal.values, insertedIndex, true ); } if (defined_default(extrudeDirections)) { const d0 = Cartesian3_default.fromArray(extrudeDirections, i0 * 3, p0Scratch); const d1 = Cartesian3_default.fromArray(extrudeDirections, i1 * 3, p1Scratch); const d2 = Cartesian3_default.fromArray(extrudeDirections, i2 * 3, p2Scratch); Cartesian3_default.multiplyByScalar(d0, coords.x, d0); Cartesian3_default.multiplyByScalar(d1, coords.y, d1); Cartesian3_default.multiplyByScalar(d2, coords.z, d2); let direction; if (!Cartesian3_default.equals(d0, Cartesian3_default.ZERO) || !Cartesian3_default.equals(d1, Cartesian3_default.ZERO) || !Cartesian3_default.equals(d2, Cartesian3_default.ZERO)) { direction = Cartesian3_default.add(d0, d1, d0); Cartesian3_default.add(direction, d2, direction); Cartesian3_default.normalize(direction, direction); } else { direction = p0Scratch; direction.x = 0; direction.y = 0; direction.z = 0; } Cartesian3_default.pack( direction, currentAttributes.extrudeDirection.values, insertedIndex * 3 ); } if (defined_default(applyOffset)) { interpolateAndPackBoolean( i0, i1, i2, coords, applyOffset, currentAttributes.applyOffset.values, insertedIndex ); } if (defined_default(tangents)) { interpolateAndPackCartesian3( i0, i1, i2, coords, tangents, currentAttributes.tangent.values, insertedIndex, true ); } if (defined_default(bitangents)) { interpolateAndPackCartesian3( i0, i1, i2, coords, bitangents, currentAttributes.bitangent.values, insertedIndex, true ); } if (defined_default(texCoords)) { interpolateAndPackCartesian2( i0, i1, i2, coords, texCoords, currentAttributes.st.values, insertedIndex ); } if (customAttributesLength > 0) { for (let i = 0; i < customAttributesLength; i++) { const attributeName = customAttributeNames[i]; genericInterpolate( i0, i1, i2, coords, insertedIndex, allAttributes[attributeName], currentAttributes[attributeName] ); } } } function genericInterpolate(i0, i1, i2, coords, insertedIndex, sourceAttribute, currentAttribute) { const componentsPerAttribute = sourceAttribute.componentsPerAttribute; const sourceValues = sourceAttribute.values; const currentValues = currentAttribute.values; switch (componentsPerAttribute) { case 4: interpolateAndPackCartesian4( i0, i1, i2, coords, sourceValues, currentValues, insertedIndex, false ); break; case 3: interpolateAndPackCartesian3( i0, i1, i2, coords, sourceValues, currentValues, insertedIndex, false ); break; case 2: interpolateAndPackCartesian2( i0, i1, i2, coords, sourceValues, currentValues, insertedIndex, false ); break; default: currentValues[insertedIndex] = sourceValues[i0] * coords.x + sourceValues[i1] * coords.y + sourceValues[i2] * coords.z; } } function insertSplitPoint(currentAttributes, currentIndices, currentIndexMap, indices, currentIndex, point) { const insertIndex = currentAttributes.position.values.length / 3; if (currentIndex !== -1) { const prevIndex = indices[currentIndex]; const newIndex = currentIndexMap[prevIndex]; if (newIndex === -1) { currentIndexMap[prevIndex] = insertIndex; currentAttributes.position.values.push(point.x, point.y, point.z); currentIndices.push(insertIndex); return insertIndex; } currentIndices.push(newIndex); return newIndex; } currentAttributes.position.values.push(point.x, point.y, point.z); currentIndices.push(insertIndex); return insertIndex; } var NAMED_ATTRIBUTES = { position: true, normal: true, bitangent: true, tangent: true, st: true, extrudeDirection: true, applyOffset: true }; function splitLongitudeTriangles(instance) { const geometry = instance.geometry; const attributes = geometry.attributes; const positions = attributes.position.values; const normals = defined_default(attributes.normal) ? attributes.normal.values : void 0; const bitangents = defined_default(attributes.bitangent) ? attributes.bitangent.values : void 0; const tangents = defined_default(attributes.tangent) ? attributes.tangent.values : void 0; const texCoords = defined_default(attributes.st) ? attributes.st.values : void 0; const extrudeDirections = defined_default(attributes.extrudeDirection) ? attributes.extrudeDirection.values : void 0; const applyOffset = defined_default(attributes.applyOffset) ? attributes.applyOffset.values : void 0; const indices = geometry.indices; const customAttributeNames = []; for (const attributeName in attributes) { if (attributes.hasOwnProperty(attributeName) && !NAMED_ATTRIBUTES[attributeName] && defined_default(attributes[attributeName])) { customAttributeNames.push(attributeName); } } const customAttributesLength = customAttributeNames.length; const eastGeometry = copyGeometryForSplit(geometry); const westGeometry = copyGeometryForSplit(geometry); let currentAttributes; let currentIndices; let currentIndexMap; let insertedIndex; let i; const westGeometryIndexMap = []; westGeometryIndexMap.length = positions.length / 3; const eastGeometryIndexMap = []; eastGeometryIndexMap.length = positions.length / 3; for (i = 0; i < westGeometryIndexMap.length; ++i) { westGeometryIndexMap[i] = -1; eastGeometryIndexMap[i] = -1; } const len = indices.length; for (i = 0; i < len; i += 3) { const i0 = indices[i]; const i1 = indices[i + 1]; const i2 = indices[i + 2]; let p0 = Cartesian3_default.fromArray(positions, i0 * 3); let p1 = Cartesian3_default.fromArray(positions, i1 * 3); let p2 = Cartesian3_default.fromArray(positions, i2 * 3); const result = splitTriangle(p0, p1, p2); if (defined_default(result) && result.positions.length > 3) { const resultPositions = result.positions; const resultIndices = result.indices; const resultLength = resultIndices.length; for (let j = 0; j < resultLength; ++j) { const resultIndex = resultIndices[j]; const point = resultPositions[resultIndex]; if (point.y < 0) { currentAttributes = westGeometry.attributes; currentIndices = westGeometry.indices; currentIndexMap = westGeometryIndexMap; } else { currentAttributes = eastGeometry.attributes; currentIndices = eastGeometry.indices; currentIndexMap = eastGeometryIndexMap; } insertedIndex = insertSplitPoint( currentAttributes, currentIndices, currentIndexMap, indices, resultIndex < 3 ? i + resultIndex : -1, point ); computeTriangleAttributes( i0, i1, i2, point, positions, normals, tangents, bitangents, texCoords, extrudeDirections, applyOffset, currentAttributes, customAttributeNames, customAttributesLength, attributes, insertedIndex ); } } else { if (defined_default(result)) { p0 = result.positions[0]; p1 = result.positions[1]; p2 = result.positions[2]; } if (p0.y < 0) { currentAttributes = westGeometry.attributes; currentIndices = westGeometry.indices; currentIndexMap = westGeometryIndexMap; } else { currentAttributes = eastGeometry.attributes; currentIndices = eastGeometry.indices; currentIndexMap = eastGeometryIndexMap; } insertedIndex = insertSplitPoint( currentAttributes, currentIndices, currentIndexMap, indices, i, p0 ); computeTriangleAttributes( i0, i1, i2, p0, positions, normals, tangents, bitangents, texCoords, extrudeDirections, applyOffset, currentAttributes, customAttributeNames, customAttributesLength, attributes, insertedIndex ); insertedIndex = insertSplitPoint( currentAttributes, currentIndices, currentIndexMap, indices, i + 1, p1 ); computeTriangleAttributes( i0, i1, i2, p1, positions, normals, tangents, bitangents, texCoords, extrudeDirections, applyOffset, currentAttributes, customAttributeNames, customAttributesLength, attributes, insertedIndex ); insertedIndex = insertSplitPoint( currentAttributes, currentIndices, currentIndexMap, indices, i + 2, p2 ); computeTriangleAttributes( i0, i1, i2, p2, positions, normals, tangents, bitangents, texCoords, extrudeDirections, applyOffset, currentAttributes, customAttributeNames, customAttributesLength, attributes, insertedIndex ); } } updateInstanceAfterSplit(instance, westGeometry, eastGeometry); } var xzPlane = Plane_default.fromPointNormal(Cartesian3_default.ZERO, Cartesian3_default.UNIT_Y); var offsetScratch = new Cartesian3_default(); var offsetPointScratch = new Cartesian3_default(); function computeLineAttributes(i0, i1, point, positions, insertIndex, currentAttributes, applyOffset) { if (!defined_default(applyOffset)) { return; } const p0 = Cartesian3_default.fromArray(positions, i0 * 3, p0Scratch); if (Cartesian3_default.equalsEpsilon(p0, point, Math_default.EPSILON10)) { currentAttributes.applyOffset.values[insertIndex] = applyOffset[i0]; } else { currentAttributes.applyOffset.values[insertIndex] = applyOffset[i1]; } } function splitLongitudeLines(instance) { const geometry = instance.geometry; const attributes = geometry.attributes; const positions = attributes.position.values; const applyOffset = defined_default(attributes.applyOffset) ? attributes.applyOffset.values : void 0; const indices = geometry.indices; const eastGeometry = copyGeometryForSplit(geometry); const westGeometry = copyGeometryForSplit(geometry); let i; const length = indices.length; const westGeometryIndexMap = []; westGeometryIndexMap.length = positions.length / 3; const eastGeometryIndexMap = []; eastGeometryIndexMap.length = positions.length / 3; for (i = 0; i < westGeometryIndexMap.length; ++i) { westGeometryIndexMap[i] = -1; eastGeometryIndexMap[i] = -1; } for (i = 0; i < length; i += 2) { const i0 = indices[i]; const i1 = indices[i + 1]; const p0 = Cartesian3_default.fromArray(positions, i0 * 3, p0Scratch); const p1 = Cartesian3_default.fromArray(positions, i1 * 3, p1Scratch); let insertIndex; if (Math.abs(p0.y) < Math_default.EPSILON6) { if (p0.y < 0) { p0.y = -Math_default.EPSILON6; } else { p0.y = Math_default.EPSILON6; } } if (Math.abs(p1.y) < Math_default.EPSILON6) { if (p1.y < 0) { p1.y = -Math_default.EPSILON6; } else { p1.y = Math_default.EPSILON6; } } let p0Attributes = eastGeometry.attributes; let p0Indices = eastGeometry.indices; let p0IndexMap = eastGeometryIndexMap; let p1Attributes = westGeometry.attributes; let p1Indices = westGeometry.indices; let p1IndexMap = westGeometryIndexMap; const intersection = IntersectionTests_default.lineSegmentPlane( p0, p1, xzPlane, p2Scratch ); if (defined_default(intersection)) { const offset = Cartesian3_default.multiplyByScalar( Cartesian3_default.UNIT_Y, 5 * Math_default.EPSILON9, offsetScratch ); if (p0.y < 0) { Cartesian3_default.negate(offset, offset); p0Attributes = westGeometry.attributes; p0Indices = westGeometry.indices; p0IndexMap = westGeometryIndexMap; p1Attributes = eastGeometry.attributes; p1Indices = eastGeometry.indices; p1IndexMap = eastGeometryIndexMap; } const offsetPoint = Cartesian3_default.add( intersection, offset, offsetPointScratch ); insertIndex = insertSplitPoint( p0Attributes, p0Indices, p0IndexMap, indices, i, p0 ); computeLineAttributes( i0, i1, p0, positions, insertIndex, p0Attributes, applyOffset ); insertIndex = insertSplitPoint( p0Attributes, p0Indices, p0IndexMap, indices, -1, offsetPoint ); computeLineAttributes( i0, i1, offsetPoint, positions, insertIndex, p0Attributes, applyOffset ); Cartesian3_default.negate(offset, offset); Cartesian3_default.add(intersection, offset, offsetPoint); insertIndex = insertSplitPoint( p1Attributes, p1Indices, p1IndexMap, indices, -1, offsetPoint ); computeLineAttributes( i0, i1, offsetPoint, positions, insertIndex, p1Attributes, applyOffset ); insertIndex = insertSplitPoint( p1Attributes, p1Indices, p1IndexMap, indices, i + 1, p1 ); computeLineAttributes( i0, i1, p1, positions, insertIndex, p1Attributes, applyOffset ); } else { let currentAttributes; let currentIndices; let currentIndexMap; if (p0.y < 0) { currentAttributes = westGeometry.attributes; currentIndices = westGeometry.indices; currentIndexMap = westGeometryIndexMap; } else { currentAttributes = eastGeometry.attributes; currentIndices = eastGeometry.indices; currentIndexMap = eastGeometryIndexMap; } insertIndex = insertSplitPoint( currentAttributes, currentIndices, currentIndexMap, indices, i, p0 ); computeLineAttributes( i0, i1, p0, positions, insertIndex, currentAttributes, applyOffset ); insertIndex = insertSplitPoint( currentAttributes, currentIndices, currentIndexMap, indices, i + 1, p1 ); computeLineAttributes( i0, i1, p1, positions, insertIndex, currentAttributes, applyOffset ); } } updateInstanceAfterSplit(instance, westGeometry, eastGeometry); } var cartesian2Scratch0 = new Cartesian2_default(); var cartesian2Scratch1 = new Cartesian2_default(); var cartesian3Scratch0 = new Cartesian3_default(); var cartesian3Scratch2 = new Cartesian3_default(); var cartesian3Scratch3 = new Cartesian3_default(); var cartesian3Scratch4 = new Cartesian3_default(); var cartesian3Scratch5 = new Cartesian3_default(); var cartesian3Scratch6 = new Cartesian3_default(); var cartesian4Scratch0 = new Cartesian4_default(); function updateAdjacencyAfterSplit(geometry) { const attributes = geometry.attributes; const positions = attributes.position.values; const prevPositions = attributes.prevPosition.values; const nextPositions = attributes.nextPosition.values; const length = positions.length; for (let j = 0; j < length; j += 3) { const position = Cartesian3_default.unpack(positions, j, cartesian3Scratch0); if (position.x > 0) { continue; } const prevPosition = Cartesian3_default.unpack( prevPositions, j, cartesian3Scratch2 ); if (position.y < 0 && prevPosition.y > 0 || position.y > 0 && prevPosition.y < 0) { if (j - 3 > 0) { prevPositions[j] = positions[j - 3]; prevPositions[j + 1] = positions[j - 2]; prevPositions[j + 2] = positions[j - 1]; } else { Cartesian3_default.pack(position, prevPositions, j); } } const nextPosition = Cartesian3_default.unpack( nextPositions, j, cartesian3Scratch3 ); if (position.y < 0 && nextPosition.y > 0 || position.y > 0 && nextPosition.y < 0) { if (j + 3 < length) { nextPositions[j] = positions[j + 3]; nextPositions[j + 1] = positions[j + 4]; nextPositions[j + 2] = positions[j + 5]; } else { Cartesian3_default.pack(position, nextPositions, j); } } } } var offsetScalar = 5 * Math_default.EPSILON9; var coplanarOffset = Math_default.EPSILON6; function splitLongitudePolyline(instance) { const geometry = instance.geometry; const attributes = geometry.attributes; const positions = attributes.position.values; const prevPositions = attributes.prevPosition.values; const nextPositions = attributes.nextPosition.values; const expandAndWidths = attributes.expandAndWidth.values; const texCoords = defined_default(attributes.st) ? attributes.st.values : void 0; const colors = defined_default(attributes.color) ? attributes.color.values : void 0; const eastGeometry = copyGeometryForSplit(geometry); const westGeometry = copyGeometryForSplit(geometry); let i; let j; let index; let intersectionFound = false; const length = positions.length / 3; for (i = 0; i < length; i += 4) { const i0 = i; const i2 = i + 2; const p0 = Cartesian3_default.fromArray(positions, i0 * 3, cartesian3Scratch0); const p2 = Cartesian3_default.fromArray(positions, i2 * 3, cartesian3Scratch2); if (Math.abs(p0.y) < coplanarOffset) { p0.y = coplanarOffset * (p2.y < 0 ? -1 : 1); positions[i * 3 + 1] = p0.y; positions[(i + 1) * 3 + 1] = p0.y; for (j = i0 * 3; j < i0 * 3 + 4 * 3; j += 3) { prevPositions[j] = positions[i * 3]; prevPositions[j + 1] = positions[i * 3 + 1]; prevPositions[j + 2] = positions[i * 3 + 2]; } } if (Math.abs(p2.y) < coplanarOffset) { p2.y = coplanarOffset * (p0.y < 0 ? -1 : 1); positions[(i + 2) * 3 + 1] = p2.y; positions[(i + 3) * 3 + 1] = p2.y; for (j = i0 * 3; j < i0 * 3 + 4 * 3; j += 3) { nextPositions[j] = positions[(i + 2) * 3]; nextPositions[j + 1] = positions[(i + 2) * 3 + 1]; nextPositions[j + 2] = positions[(i + 2) * 3 + 2]; } } let p0Attributes = eastGeometry.attributes; let p0Indices = eastGeometry.indices; let p2Attributes = westGeometry.attributes; let p2Indices = westGeometry.indices; const intersection = IntersectionTests_default.lineSegmentPlane( p0, p2, xzPlane, cartesian3Scratch4 ); if (defined_default(intersection)) { intersectionFound = true; const offset = Cartesian3_default.multiplyByScalar( Cartesian3_default.UNIT_Y, offsetScalar, cartesian3Scratch5 ); if (p0.y < 0) { Cartesian3_default.negate(offset, offset); p0Attributes = westGeometry.attributes; p0Indices = westGeometry.indices; p2Attributes = eastGeometry.attributes; p2Indices = eastGeometry.indices; } const offsetPoint = Cartesian3_default.add( intersection, offset, cartesian3Scratch6 ); p0Attributes.position.values.push(p0.x, p0.y, p0.z, p0.x, p0.y, p0.z); p0Attributes.position.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p0Attributes.position.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p0Attributes.prevPosition.values.push( prevPositions[i0 * 3], prevPositions[i0 * 3 + 1], prevPositions[i0 * 3 + 2] ); p0Attributes.prevPosition.values.push( prevPositions[i0 * 3 + 3], prevPositions[i0 * 3 + 4], prevPositions[i0 * 3 + 5] ); p0Attributes.prevPosition.values.push(p0.x, p0.y, p0.z, p0.x, p0.y, p0.z); p0Attributes.nextPosition.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p0Attributes.nextPosition.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p0Attributes.nextPosition.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p0Attributes.nextPosition.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); Cartesian3_default.negate(offset, offset); Cartesian3_default.add(intersection, offset, offsetPoint); p2Attributes.position.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p2Attributes.position.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p2Attributes.position.values.push(p2.x, p2.y, p2.z, p2.x, p2.y, p2.z); p2Attributes.prevPosition.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p2Attributes.prevPosition.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p2Attributes.prevPosition.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p2Attributes.prevPosition.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p2Attributes.nextPosition.values.push(p2.x, p2.y, p2.z, p2.x, p2.y, p2.z); p2Attributes.nextPosition.values.push( nextPositions[i2 * 3], nextPositions[i2 * 3 + 1], nextPositions[i2 * 3 + 2] ); p2Attributes.nextPosition.values.push( nextPositions[i2 * 3 + 3], nextPositions[i2 * 3 + 4], nextPositions[i2 * 3 + 5] ); const ew0 = Cartesian2_default.fromArray( expandAndWidths, i0 * 2, cartesian2Scratch0 ); const width = Math.abs(ew0.y); p0Attributes.expandAndWidth.values.push(-1, width, 1, width); p0Attributes.expandAndWidth.values.push(-1, -width, 1, -width); p2Attributes.expandAndWidth.values.push(-1, width, 1, width); p2Attributes.expandAndWidth.values.push(-1, -width, 1, -width); let t = Cartesian3_default.magnitudeSquared( Cartesian3_default.subtract(intersection, p0, cartesian3Scratch3) ); t /= Cartesian3_default.magnitudeSquared( Cartesian3_default.subtract(p2, p0, cartesian3Scratch3) ); if (defined_default(colors)) { const c0 = Cartesian4_default.fromArray(colors, i0 * 4, cartesian4Scratch0); const c2 = Cartesian4_default.fromArray(colors, i2 * 4, cartesian4Scratch0); const r = Math_default.lerp(c0.x, c2.x, t); const g = Math_default.lerp(c0.y, c2.y, t); const b = Math_default.lerp(c0.z, c2.z, t); const a = Math_default.lerp(c0.w, c2.w, t); for (j = i0 * 4; j < i0 * 4 + 2 * 4; ++j) { p0Attributes.color.values.push(colors[j]); } p0Attributes.color.values.push(r, g, b, a); p0Attributes.color.values.push(r, g, b, a); p2Attributes.color.values.push(r, g, b, a); p2Attributes.color.values.push(r, g, b, a); for (j = i2 * 4; j < i2 * 4 + 2 * 4; ++j) { p2Attributes.color.values.push(colors[j]); } } if (defined_default(texCoords)) { const s0 = Cartesian2_default.fromArray(texCoords, i0 * 2, cartesian2Scratch0); const s3 = Cartesian2_default.fromArray( texCoords, (i + 3) * 2, cartesian2Scratch1 ); const sx = Math_default.lerp(s0.x, s3.x, t); for (j = i0 * 2; j < i0 * 2 + 2 * 2; ++j) { p0Attributes.st.values.push(texCoords[j]); } p0Attributes.st.values.push(sx, s0.y); p0Attributes.st.values.push(sx, s3.y); p2Attributes.st.values.push(sx, s0.y); p2Attributes.st.values.push(sx, s3.y); for (j = i2 * 2; j < i2 * 2 + 2 * 2; ++j) { p2Attributes.st.values.push(texCoords[j]); } } index = p0Attributes.position.values.length / 3 - 4; p0Indices.push(index, index + 2, index + 1); p0Indices.push(index + 1, index + 2, index + 3); index = p2Attributes.position.values.length / 3 - 4; p2Indices.push(index, index + 2, index + 1); p2Indices.push(index + 1, index + 2, index + 3); } else { let currentAttributes; let currentIndices; if (p0.y < 0) { currentAttributes = westGeometry.attributes; currentIndices = westGeometry.indices; } else { currentAttributes = eastGeometry.attributes; currentIndices = eastGeometry.indices; } currentAttributes.position.values.push(p0.x, p0.y, p0.z); currentAttributes.position.values.push(p0.x, p0.y, p0.z); currentAttributes.position.values.push(p2.x, p2.y, p2.z); currentAttributes.position.values.push(p2.x, p2.y, p2.z); for (j = i * 3; j < i * 3 + 4 * 3; ++j) { currentAttributes.prevPosition.values.push(prevPositions[j]); currentAttributes.nextPosition.values.push(nextPositions[j]); } for (j = i * 2; j < i * 2 + 4 * 2; ++j) { currentAttributes.expandAndWidth.values.push(expandAndWidths[j]); if (defined_default(texCoords)) { currentAttributes.st.values.push(texCoords[j]); } } if (defined_default(colors)) { for (j = i * 4; j < i * 4 + 4 * 4; ++j) { currentAttributes.color.values.push(colors[j]); } } index = currentAttributes.position.values.length / 3 - 4; currentIndices.push(index, index + 2, index + 1); currentIndices.push(index + 1, index + 2, index + 3); } } if (intersectionFound) { updateAdjacencyAfterSplit(westGeometry); updateAdjacencyAfterSplit(eastGeometry); } updateInstanceAfterSplit(instance, westGeometry, eastGeometry); } GeometryPipeline.splitLongitude = function(instance) { if (!defined_default(instance)) { throw new DeveloperError_default("instance is required."); } const geometry = instance.geometry; const boundingSphere = geometry.boundingSphere; if (defined_default(boundingSphere)) { const minX = boundingSphere.center.x - boundingSphere.radius; if (minX > 0 || BoundingSphere_default.intersectPlane(boundingSphere, Plane_default.ORIGIN_ZX_PLANE) !== Intersect_default.INTERSECTING) { return instance; } } if (geometry.geometryType !== GeometryType_default.NONE) { switch (geometry.geometryType) { case GeometryType_default.POLYLINES: splitLongitudePolyline(instance); break; case GeometryType_default.TRIANGLES: splitLongitudeTriangles(instance); break; case GeometryType_default.LINES: splitLongitudeLines(instance); break; } } else { indexPrimitive(geometry); if (geometry.primitiveType === PrimitiveType_default.TRIANGLES) { splitLongitudeTriangles(instance); } else if (geometry.primitiveType === PrimitiveType_default.LINES) { splitLongitudeLines(instance); } } return instance; }; var GeometryPipeline_default = GeometryPipeline; export { GeometryPipeline_default };