/** * @license * Cesium - https://github.com/CesiumGS/cesium * Version 1.117 * * Copyright 2011-2022 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ import { Quaternion_default } from "./chunk-I5TDPPC4.js"; import { Cartesian3_default, Matrix3_default } from "./chunk-C5CE4OG6.js"; import { Math_default } from "./chunk-4PHPQRSH.js"; // packages/engine/Source/Core/EllipseGeometryLibrary.js var EllipseGeometryLibrary = {}; var rotAxis = new Cartesian3_default(); var tempVec = new Cartesian3_default(); var unitQuat = new Quaternion_default(); var rotMtx = new Matrix3_default(); function pointOnEllipsoid(theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, result) { const azimuth = theta + rotation; Cartesian3_default.multiplyByScalar(eastVec, Math.cos(azimuth), rotAxis); Cartesian3_default.multiplyByScalar(northVec, Math.sin(azimuth), tempVec); Cartesian3_default.add(rotAxis, tempVec, rotAxis); let cosThetaSquared = Math.cos(theta); cosThetaSquared = cosThetaSquared * cosThetaSquared; let sinThetaSquared = Math.sin(theta); sinThetaSquared = sinThetaSquared * sinThetaSquared; const radius = ab / Math.sqrt(bSqr * cosThetaSquared + aSqr * sinThetaSquared); const angle = radius / mag; Quaternion_default.fromAxisAngle(rotAxis, angle, unitQuat); Matrix3_default.fromQuaternion(unitQuat, rotMtx); Matrix3_default.multiplyByVector(rotMtx, unitPos, result); Cartesian3_default.normalize(result, result); Cartesian3_default.multiplyByScalar(result, mag, result); return result; } var scratchCartesian1 = new Cartesian3_default(); var scratchCartesian2 = new Cartesian3_default(); var scratchCartesian3 = new Cartesian3_default(); var scratchNormal = new Cartesian3_default(); EllipseGeometryLibrary.raisePositionsToHeight = function(positions, options, extrude) { const ellipsoid = options.ellipsoid; const height = options.height; const extrudedHeight = options.extrudedHeight; const size = extrude ? positions.length / 3 * 2 : positions.length / 3; const finalPositions = new Float64Array(size * 3); const length = positions.length; const bottomOffset = extrude ? length : 0; for (let i = 0; i < length; i += 3) { const i1 = i + 1; const i2 = i + 2; const position = Cartesian3_default.fromArray(positions, i, scratchCartesian1); ellipsoid.scaleToGeodeticSurface(position, position); const extrudedPosition = Cartesian3_default.clone(position, scratchCartesian2); const normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal); const scaledNormal = Cartesian3_default.multiplyByScalar( normal, height, scratchCartesian3 ); Cartesian3_default.add(position, scaledNormal, position); if (extrude) { Cartesian3_default.multiplyByScalar(normal, extrudedHeight, scaledNormal); Cartesian3_default.add(extrudedPosition, scaledNormal, extrudedPosition); finalPositions[i + bottomOffset] = extrudedPosition.x; finalPositions[i1 + bottomOffset] = extrudedPosition.y; finalPositions[i2 + bottomOffset] = extrudedPosition.z; } finalPositions[i] = position.x; finalPositions[i1] = position.y; finalPositions[i2] = position.z; } return finalPositions; }; var unitPosScratch = new Cartesian3_default(); var eastVecScratch = new Cartesian3_default(); var northVecScratch = new Cartesian3_default(); EllipseGeometryLibrary.computeEllipsePositions = function(options, addFillPositions, addEdgePositions) { const semiMinorAxis = options.semiMinorAxis; const semiMajorAxis = options.semiMajorAxis; const rotation = options.rotation; const center = options.center; const granularity = options.granularity * 8; const aSqr = semiMinorAxis * semiMinorAxis; const bSqr = semiMajorAxis * semiMajorAxis; const ab = semiMajorAxis * semiMinorAxis; const mag = Cartesian3_default.magnitude(center); const unitPos = Cartesian3_default.normalize(center, unitPosScratch); let eastVec = Cartesian3_default.cross(Cartesian3_default.UNIT_Z, center, eastVecScratch); eastVec = Cartesian3_default.normalize(eastVec, eastVec); const northVec = Cartesian3_default.cross(unitPos, eastVec, northVecScratch); let numPts = 1 + Math.ceil(Math_default.PI_OVER_TWO / granularity); const deltaTheta = Math_default.PI_OVER_TWO / (numPts - 1); let theta = Math_default.PI_OVER_TWO - numPts * deltaTheta; if (theta < 0) { numPts -= Math.ceil(Math.abs(theta) / deltaTheta); } const size = 2 * (numPts * (numPts + 2)); const positions = addFillPositions ? new Array(size * 3) : void 0; let positionIndex = 0; let position = scratchCartesian1; let reflectedPosition = scratchCartesian2; const outerPositionsLength = numPts * 4 * 3; let outerRightIndex = outerPositionsLength - 1; let outerLeftIndex = 0; const outerPositions = addEdgePositions ? new Array(outerPositionsLength) : void 0; let i; let j; let numInterior; let t; let interiorPosition; theta = Math_default.PI_OVER_TWO; position = pointOnEllipsoid( theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, position ); if (addFillPositions) { positions[positionIndex++] = position.x; positions[positionIndex++] = position.y; positions[positionIndex++] = position.z; } if (addEdgePositions) { outerPositions[outerRightIndex--] = position.z; outerPositions[outerRightIndex--] = position.y; outerPositions[outerRightIndex--] = position.x; } theta = Math_default.PI_OVER_TWO - deltaTheta; for (i = 1; i < numPts + 1; ++i) { position = pointOnEllipsoid( theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, position ); reflectedPosition = pointOnEllipsoid( Math.PI - theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, reflectedPosition ); if (addFillPositions) { positions[positionIndex++] = position.x; positions[positionIndex++] = position.y; positions[positionIndex++] = position.z; numInterior = 2 * i + 2; for (j = 1; j < numInterior - 1; ++j) { t = j / (numInterior - 1); interiorPosition = Cartesian3_default.lerp( position, reflectedPosition, t, scratchCartesian3 ); positions[positionIndex++] = interiorPosition.x; positions[positionIndex++] = interiorPosition.y; positions[positionIndex++] = interiorPosition.z; } positions[positionIndex++] = reflectedPosition.x; positions[positionIndex++] = reflectedPosition.y; positions[positionIndex++] = reflectedPosition.z; } if (addEdgePositions) { outerPositions[outerRightIndex--] = position.z; outerPositions[outerRightIndex--] = position.y; outerPositions[outerRightIndex--] = position.x; outerPositions[outerLeftIndex++] = reflectedPosition.x; outerPositions[outerLeftIndex++] = reflectedPosition.y; outerPositions[outerLeftIndex++] = reflectedPosition.z; } theta = Math_default.PI_OVER_TWO - (i + 1) * deltaTheta; } for (i = numPts; i > 1; --i) { theta = Math_default.PI_OVER_TWO - (i - 1) * deltaTheta; position = pointOnEllipsoid( -theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, position ); reflectedPosition = pointOnEllipsoid( theta + Math.PI, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, reflectedPosition ); if (addFillPositions) { positions[positionIndex++] = position.x; positions[positionIndex++] = position.y; positions[positionIndex++] = position.z; numInterior = 2 * (i - 1) + 2; for (j = 1; j < numInterior - 1; ++j) { t = j / (numInterior - 1); interiorPosition = Cartesian3_default.lerp( position, reflectedPosition, t, scratchCartesian3 ); positions[positionIndex++] = interiorPosition.x; positions[positionIndex++] = interiorPosition.y; positions[positionIndex++] = interiorPosition.z; } positions[positionIndex++] = reflectedPosition.x; positions[positionIndex++] = reflectedPosition.y; positions[positionIndex++] = reflectedPosition.z; } if (addEdgePositions) { outerPositions[outerRightIndex--] = position.z; outerPositions[outerRightIndex--] = position.y; outerPositions[outerRightIndex--] = position.x; outerPositions[outerLeftIndex++] = reflectedPosition.x; outerPositions[outerLeftIndex++] = reflectedPosition.y; outerPositions[outerLeftIndex++] = reflectedPosition.z; } } theta = Math_default.PI_OVER_TWO; position = pointOnEllipsoid( -theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, position ); const r = {}; if (addFillPositions) { positions[positionIndex++] = position.x; positions[positionIndex++] = position.y; positions[positionIndex++] = position.z; r.positions = positions; r.numPts = numPts; } if (addEdgePositions) { outerPositions[outerRightIndex--] = position.z; outerPositions[outerRightIndex--] = position.y; outerPositions[outerRightIndex--] = position.x; r.outerPositions = outerPositions; } return r; }; var EllipseGeometryLibrary_default = EllipseGeometryLibrary; export { EllipseGeometryLibrary_default };