/** * @license * Cesium - https://github.com/CesiumGS/cesium * Version 1.117 * * Copyright 2011-2022 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ import { GeometryOffsetAttribute_default } from "./chunk-S4XDCPKD.js"; import { IndexDatatype_default } from "./chunk-WWP3I7R5.js"; import { GeometryAttributes_default } from "./chunk-RL73GOEF.js"; import { GeometryAttribute_default, Geometry_default, PrimitiveType_default } from "./chunk-34DGOKCO.js"; import { BoundingSphere_default } from "./chunk-NI2R52QD.js"; import { ComponentDatatype_default } from "./chunk-TMMOULW3.js"; import { Cartesian3_default, Ellipsoid_default } from "./chunk-C5CE4OG6.js"; import { Math_default } from "./chunk-4PHPQRSH.js"; import { defaultValue_default } from "./chunk-UCPPWV64.js"; import { DeveloperError_default } from "./chunk-U4IMCOF5.js"; import { defined_default } from "./chunk-BDUJXBVF.js"; // packages/engine/Source/Core/EllipsoidOutlineGeometry.js var defaultRadii = new Cartesian3_default(1, 1, 1); var cos = Math.cos; var sin = Math.sin; function EllipsoidOutlineGeometry(options) { options = defaultValue_default(options, defaultValue_default.EMPTY_OBJECT); const radii = defaultValue_default(options.radii, defaultRadii); const innerRadii = defaultValue_default(options.innerRadii, radii); const minimumClock = defaultValue_default(options.minimumClock, 0); const maximumClock = defaultValue_default(options.maximumClock, Math_default.TWO_PI); const minimumCone = defaultValue_default(options.minimumCone, 0); const maximumCone = defaultValue_default(options.maximumCone, Math_default.PI); const stackPartitions = Math.round(defaultValue_default(options.stackPartitions, 10)); const slicePartitions = Math.round(defaultValue_default(options.slicePartitions, 8)); const subdivisions = Math.round(defaultValue_default(options.subdivisions, 128)); if (stackPartitions < 1) { throw new DeveloperError_default("options.stackPartitions cannot be less than 1"); } if (slicePartitions < 0) { throw new DeveloperError_default("options.slicePartitions cannot be less than 0"); } if (subdivisions < 0) { throw new DeveloperError_default( "options.subdivisions must be greater than or equal to zero." ); } if (defined_default(options.offsetAttribute) && options.offsetAttribute === GeometryOffsetAttribute_default.TOP) { throw new DeveloperError_default( "GeometryOffsetAttribute.TOP is not a supported options.offsetAttribute for this geometry." ); } this._radii = Cartesian3_default.clone(radii); this._innerRadii = Cartesian3_default.clone(innerRadii); this._minimumClock = minimumClock; this._maximumClock = maximumClock; this._minimumCone = minimumCone; this._maximumCone = maximumCone; this._stackPartitions = stackPartitions; this._slicePartitions = slicePartitions; this._subdivisions = subdivisions; this._offsetAttribute = options.offsetAttribute; this._workerName = "createEllipsoidOutlineGeometry"; } EllipsoidOutlineGeometry.packedLength = 2 * Cartesian3_default.packedLength + 8; EllipsoidOutlineGeometry.pack = function(value, array, startingIndex) { if (!defined_default(value)) { throw new DeveloperError_default("value is required"); } if (!defined_default(array)) { throw new DeveloperError_default("array is required"); } startingIndex = defaultValue_default(startingIndex, 0); Cartesian3_default.pack(value._radii, array, startingIndex); startingIndex += Cartesian3_default.packedLength; Cartesian3_default.pack(value._innerRadii, array, startingIndex); startingIndex += Cartesian3_default.packedLength; array[startingIndex++] = value._minimumClock; array[startingIndex++] = value._maximumClock; array[startingIndex++] = value._minimumCone; array[startingIndex++] = value._maximumCone; array[startingIndex++] = value._stackPartitions; array[startingIndex++] = value._slicePartitions; array[startingIndex++] = value._subdivisions; array[startingIndex] = defaultValue_default(value._offsetAttribute, -1); return array; }; var scratchRadii = new Cartesian3_default(); var scratchInnerRadii = new Cartesian3_default(); var scratchOptions = { radii: scratchRadii, innerRadii: scratchInnerRadii, minimumClock: void 0, maximumClock: void 0, minimumCone: void 0, maximumCone: void 0, stackPartitions: void 0, slicePartitions: void 0, subdivisions: void 0, offsetAttribute: void 0 }; EllipsoidOutlineGeometry.unpack = function(array, startingIndex, result) { if (!defined_default(array)) { throw new DeveloperError_default("array is required"); } startingIndex = defaultValue_default(startingIndex, 0); const radii = Cartesian3_default.unpack(array, startingIndex, scratchRadii); startingIndex += Cartesian3_default.packedLength; const innerRadii = Cartesian3_default.unpack(array, startingIndex, scratchInnerRadii); startingIndex += Cartesian3_default.packedLength; const minimumClock = array[startingIndex++]; const maximumClock = array[startingIndex++]; const minimumCone = array[startingIndex++]; const maximumCone = array[startingIndex++]; const stackPartitions = array[startingIndex++]; const slicePartitions = array[startingIndex++]; const subdivisions = array[startingIndex++]; const offsetAttribute = array[startingIndex]; if (!defined_default(result)) { scratchOptions.minimumClock = minimumClock; scratchOptions.maximumClock = maximumClock; scratchOptions.minimumCone = minimumCone; scratchOptions.maximumCone = maximumCone; scratchOptions.stackPartitions = stackPartitions; scratchOptions.slicePartitions = slicePartitions; scratchOptions.subdivisions = subdivisions; scratchOptions.offsetAttribute = offsetAttribute === -1 ? void 0 : offsetAttribute; return new EllipsoidOutlineGeometry(scratchOptions); } result._radii = Cartesian3_default.clone(radii, result._radii); result._innerRadii = Cartesian3_default.clone(innerRadii, result._innerRadii); result._minimumClock = minimumClock; result._maximumClock = maximumClock; result._minimumCone = minimumCone; result._maximumCone = maximumCone; result._stackPartitions = stackPartitions; result._slicePartitions = slicePartitions; result._subdivisions = subdivisions; result._offsetAttribute = offsetAttribute === -1 ? void 0 : offsetAttribute; return result; }; EllipsoidOutlineGeometry.createGeometry = function(ellipsoidGeometry) { const radii = ellipsoidGeometry._radii; if (radii.x <= 0 || radii.y <= 0 || radii.z <= 0) { return; } const innerRadii = ellipsoidGeometry._innerRadii; if (innerRadii.x <= 0 || innerRadii.y <= 0 || innerRadii.z <= 0) { return; } const minimumClock = ellipsoidGeometry._minimumClock; const maximumClock = ellipsoidGeometry._maximumClock; const minimumCone = ellipsoidGeometry._minimumCone; const maximumCone = ellipsoidGeometry._maximumCone; const subdivisions = ellipsoidGeometry._subdivisions; const ellipsoid = Ellipsoid_default.fromCartesian3(radii); let slicePartitions = ellipsoidGeometry._slicePartitions + 1; let stackPartitions = ellipsoidGeometry._stackPartitions + 1; slicePartitions = Math.round( slicePartitions * Math.abs(maximumClock - minimumClock) / Math_default.TWO_PI ); stackPartitions = Math.round( stackPartitions * Math.abs(maximumCone - minimumCone) / Math_default.PI ); if (slicePartitions < 2) { slicePartitions = 2; } if (stackPartitions < 2) { stackPartitions = 2; } let extraIndices = 0; let vertexMultiplier = 1; const hasInnerSurface = innerRadii.x !== radii.x || innerRadii.y !== radii.y || innerRadii.z !== radii.z; let isTopOpen = false; let isBotOpen = false; if (hasInnerSurface) { vertexMultiplier = 2; if (minimumCone > 0) { isTopOpen = true; extraIndices += slicePartitions; } if (maximumCone < Math.PI) { isBotOpen = true; extraIndices += slicePartitions; } } const vertexCount = subdivisions * vertexMultiplier * (stackPartitions + slicePartitions); const positions = new Float64Array(vertexCount * 3); const numIndices = 2 * (vertexCount + extraIndices - (slicePartitions + stackPartitions) * vertexMultiplier); const indices = IndexDatatype_default.createTypedArray(vertexCount, numIndices); let i; let j; let theta; let phi; let index = 0; const sinPhi = new Array(stackPartitions); const cosPhi = new Array(stackPartitions); for (i = 0; i < stackPartitions; i++) { phi = minimumCone + i * (maximumCone - minimumCone) / (stackPartitions - 1); sinPhi[i] = sin(phi); cosPhi[i] = cos(phi); } const sinTheta = new Array(subdivisions); const cosTheta = new Array(subdivisions); for (i = 0; i < subdivisions; i++) { theta = minimumClock + i * (maximumClock - minimumClock) / (subdivisions - 1); sinTheta[i] = sin(theta); cosTheta[i] = cos(theta); } for (i = 0; i < stackPartitions; i++) { for (j = 0; j < subdivisions; j++) { positions[index++] = radii.x * sinPhi[i] * cosTheta[j]; positions[index++] = radii.y * sinPhi[i] * sinTheta[j]; positions[index++] = radii.z * cosPhi[i]; } } if (hasInnerSurface) { for (i = 0; i < stackPartitions; i++) { for (j = 0; j < subdivisions; j++) { positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j]; positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j]; positions[index++] = innerRadii.z * cosPhi[i]; } } } sinPhi.length = subdivisions; cosPhi.length = subdivisions; for (i = 0; i < subdivisions; i++) { phi = minimumCone + i * (maximumCone - minimumCone) / (subdivisions - 1); sinPhi[i] = sin(phi); cosPhi[i] = cos(phi); } sinTheta.length = slicePartitions; cosTheta.length = slicePartitions; for (i = 0; i < slicePartitions; i++) { theta = minimumClock + i * (maximumClock - minimumClock) / (slicePartitions - 1); sinTheta[i] = sin(theta); cosTheta[i] = cos(theta); } for (i = 0; i < subdivisions; i++) { for (j = 0; j < slicePartitions; j++) { positions[index++] = radii.x * sinPhi[i] * cosTheta[j]; positions[index++] = radii.y * sinPhi[i] * sinTheta[j]; positions[index++] = radii.z * cosPhi[i]; } } if (hasInnerSurface) { for (i = 0; i < subdivisions; i++) { for (j = 0; j < slicePartitions; j++) { positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j]; positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j]; positions[index++] = innerRadii.z * cosPhi[i]; } } } index = 0; for (i = 0; i < stackPartitions * vertexMultiplier; i++) { const topOffset = i * subdivisions; for (j = 0; j < subdivisions - 1; j++) { indices[index++] = topOffset + j; indices[index++] = topOffset + j + 1; } } let offset = stackPartitions * subdivisions * vertexMultiplier; for (i = 0; i < slicePartitions; i++) { for (j = 0; j < subdivisions - 1; j++) { indices[index++] = offset + i + j * slicePartitions; indices[index++] = offset + i + (j + 1) * slicePartitions; } } if (hasInnerSurface) { offset = stackPartitions * subdivisions * vertexMultiplier + slicePartitions * subdivisions; for (i = 0; i < slicePartitions; i++) { for (j = 0; j < subdivisions - 1; j++) { indices[index++] = offset + i + j * slicePartitions; indices[index++] = offset + i + (j + 1) * slicePartitions; } } } if (hasInnerSurface) { let outerOffset = stackPartitions * subdivisions * vertexMultiplier; let innerOffset = outerOffset + subdivisions * slicePartitions; if (isTopOpen) { for (i = 0; i < slicePartitions; i++) { indices[index++] = outerOffset + i; indices[index++] = innerOffset + i; } } if (isBotOpen) { outerOffset += subdivisions * slicePartitions - slicePartitions; innerOffset += subdivisions * slicePartitions - slicePartitions; for (i = 0; i < slicePartitions; i++) { indices[index++] = outerOffset + i; indices[index++] = innerOffset + i; } } } const attributes = new GeometryAttributes_default({ position: new GeometryAttribute_default({ componentDatatype: ComponentDatatype_default.DOUBLE, componentsPerAttribute: 3, values: positions }) }); if (defined_default(ellipsoidGeometry._offsetAttribute)) { const length = positions.length; const offsetValue = ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute_default.NONE ? 0 : 1; const applyOffset = new Uint8Array(length / 3).fill(offsetValue); attributes.applyOffset = new GeometryAttribute_default({ componentDatatype: ComponentDatatype_default.UNSIGNED_BYTE, componentsPerAttribute: 1, values: applyOffset }); } return new Geometry_default({ attributes, indices, primitiveType: PrimitiveType_default.LINES, boundingSphere: BoundingSphere_default.fromEllipsoid(ellipsoid), offsetAttribute: ellipsoidGeometry._offsetAttribute }); }; var EllipsoidOutlineGeometry_default = EllipsoidOutlineGeometry; export { EllipsoidOutlineGeometry_default };