/** * Cesium - https://github.com/AnalyticalGraphicsInc/cesium * * Copyright 2011-2017 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/AnalyticalGraphicsInc/cesium/blob/master/LICENSE.md for full licensing details. */ define(['exports', './when-8d13db60', './Check-70bec281', './Math-61ede240', './Cartographic-fe4be337', './BoundingSphere-775c5788'], function (exports, when, Check, _Math, Cartographic, BoundingSphere) { 'use strict'; /** * Defines functions for 2nd order polynomial functions of one variable with only real coefficients. * * @exports QuadraticRealPolynomial */ var QuadraticRealPolynomial = {}; /** * Provides the discriminant of the quadratic equation from the supplied coefficients. * * @param {Number} a The coefficient of the 2nd order monomial. * @param {Number} b The coefficient of the 1st order monomial. * @param {Number} c The coefficient of the 0th order monomial. * @returns {Number} The value of the discriminant. */ QuadraticRealPolynomial.computeDiscriminant = function(a, b, c) { //>>includeStart('debug', pragmas.debug); if (typeof a !== 'number') { throw new Check.DeveloperError('a is a required number.'); } if (typeof b !== 'number') { throw new Check.DeveloperError('b is a required number.'); } if (typeof c !== 'number') { throw new Check.DeveloperError('c is a required number.'); } //>>includeEnd('debug'); var discriminant = b * b - 4.0 * a * c; return discriminant; }; function addWithCancellationCheck(left, right, tolerance) { var difference = left + right; if ((_Math.CesiumMath.sign(left) !== _Math.CesiumMath.sign(right)) && Math.abs(difference / Math.max(Math.abs(left), Math.abs(right))) < tolerance) { return 0.0; } return difference; } /** * Provides the real valued roots of the quadratic polynomial with the provided coefficients. * * @param {Number} a The coefficient of the 2nd order monomial. * @param {Number} b The coefficient of the 1st order monomial. * @param {Number} c The coefficient of the 0th order monomial. * @returns {Number[]} The real valued roots. */ QuadraticRealPolynomial.computeRealRoots = function(a, b, c) { //>>includeStart('debug', pragmas.debug); if (typeof a !== 'number') { throw new Check.DeveloperError('a is a required number.'); } if (typeof b !== 'number') { throw new Check.DeveloperError('b is a required number.'); } if (typeof c !== 'number') { throw new Check.DeveloperError('c is a required number.'); } //>>includeEnd('debug'); var ratio; if (a === 0.0) { if (b === 0.0) { // Constant function: c = 0. return []; } // Linear function: b * x + c = 0. return [-c / b]; } else if (b === 0.0) { if (c === 0.0) { // 2nd order monomial: a * x^2 = 0. return [0.0, 0.0]; } var cMagnitude = Math.abs(c); var aMagnitude = Math.abs(a); if ((cMagnitude < aMagnitude) && (cMagnitude / aMagnitude < _Math.CesiumMath.EPSILON14)) { // c ~= 0.0. // 2nd order monomial: a * x^2 = 0. return [0.0, 0.0]; } else if ((cMagnitude > aMagnitude) && (aMagnitude / cMagnitude < _Math.CesiumMath.EPSILON14)) { // a ~= 0.0. // Constant function: c = 0. return []; } // a * x^2 + c = 0 ratio = -c / a; if (ratio < 0.0) { // Both roots are complex. return []; } // Both roots are real. var root = Math.sqrt(ratio); return [-root, root]; } else if (c === 0.0) { // a * x^2 + b * x = 0 ratio = -b / a; if (ratio < 0.0) { return [ratio, 0.0]; } return [0.0, ratio]; } // a * x^2 + b * x + c = 0 var b2 = b * b; var four_ac = 4.0 * a * c; var radicand = addWithCancellationCheck(b2, -four_ac, _Math.CesiumMath.EPSILON14); if (radicand < 0.0) { // Both roots are complex. return []; } var q = -0.5 * addWithCancellationCheck(b, _Math.CesiumMath.sign(b) * Math.sqrt(radicand), _Math.CesiumMath.EPSILON14); if (b > 0.0) { return [q / a, c / q]; } return [c / q, q / a]; }; /** * Defines functions for 3rd order polynomial functions of one variable with only real coefficients. * * @exports CubicRealPolynomial */ var CubicRealPolynomial = {}; /** * Provides the discriminant of the cubic equation from the supplied coefficients. * * @param {Number} a The coefficient of the 3rd order monomial. * @param {Number} b The coefficient of the 2nd order monomial. * @param {Number} c The coefficient of the 1st order monomial. * @param {Number} d The coefficient of the 0th order monomial. * @returns {Number} The value of the discriminant. */ CubicRealPolynomial.computeDiscriminant = function(a, b, c, d) { //>>includeStart('debug', pragmas.debug); if (typeof a !== 'number') { throw new Check.DeveloperError('a is a required number.'); } if (typeof b !== 'number') { throw new Check.DeveloperError('b is a required number.'); } if (typeof c !== 'number') { throw new Check.DeveloperError('c is a required number.'); } if (typeof d !== 'number') { throw new Check.DeveloperError('d is a required number.'); } //>>includeEnd('debug'); var a2 = a * a; var b2 = b * b; var c2 = c * c; var d2 = d * d; var discriminant = 18.0 * a * b * c * d + b2 * c2 - 27.0 * a2 * d2 - 4.0 * (a * c2 * c + b2 * b * d); return discriminant; }; function computeRealRoots(a, b, c, d) { var A = a; var B = b / 3.0; var C = c / 3.0; var D = d; var AC = A * C; var BD = B * D; var B2 = B * B; var C2 = C * C; var delta1 = A * C - B2; var delta2 = A * D - B * C; var delta3 = B * D - C2; var discriminant = 4.0 * delta1 * delta3 - delta2 * delta2; var temp; var temp1; if (discriminant < 0.0) { var ABar; var CBar; var DBar; if (B2 * BD >= AC * C2) { ABar = A; CBar = delta1; DBar = -2.0 * B * delta1 + A * delta2; } else { ABar = D; CBar = delta3; DBar = -D * delta2 + 2.0 * C * delta3; } var s = (DBar < 0.0) ? -1.0 : 1.0; // This is not Math.Sign()! var temp0 = -s * Math.abs(ABar) * Math.sqrt(-discriminant); temp1 = -DBar + temp0; var x = temp1 / 2.0; var p = x < 0.0 ? -Math.pow(-x, 1.0 / 3.0) : Math.pow(x, 1.0 / 3.0); var q = (temp1 === temp0) ? -p : -CBar / p; temp = (CBar <= 0.0) ? p + q : -DBar / (p * p + q * q + CBar); if (B2 * BD >= AC * C2) { return [(temp - B) / A]; } return [-D / (temp + C)]; } var CBarA = delta1; var DBarA = -2.0 * B * delta1 + A * delta2; var CBarD = delta3; var DBarD = -D * delta2 + 2.0 * C * delta3; var squareRootOfDiscriminant = Math.sqrt(discriminant); var halfSquareRootOf3 = Math.sqrt(3.0) / 2.0; var theta = Math.abs(Math.atan2(A * squareRootOfDiscriminant, -DBarA) / 3.0); temp = 2.0 * Math.sqrt(-CBarA); var cosine = Math.cos(theta); temp1 = temp * cosine; var temp3 = temp * (-cosine / 2.0 - halfSquareRootOf3 * Math.sin(theta)); var numeratorLarge = (temp1 + temp3 > 2.0 * B) ? temp1 - B : temp3 - B; var denominatorLarge = A; var root1 = numeratorLarge / denominatorLarge; theta = Math.abs(Math.atan2(D * squareRootOfDiscriminant, -DBarD) / 3.0); temp = 2.0 * Math.sqrt(-CBarD); cosine = Math.cos(theta); temp1 = temp * cosine; temp3 = temp * (-cosine / 2.0 - halfSquareRootOf3 * Math.sin(theta)); var numeratorSmall = -D; var denominatorSmall = (temp1 + temp3 < 2.0 * C) ? temp1 + C : temp3 + C; var root3 = numeratorSmall / denominatorSmall; var E = denominatorLarge * denominatorSmall; var F = -numeratorLarge * denominatorSmall - denominatorLarge * numeratorSmall; var G = numeratorLarge * numeratorSmall; var root2 = (C * F - B * G) / (-B * F + C * E); if (root1 <= root2) { if (root1 <= root3) { if (root2 <= root3) { return [root1, root2, root3]; } return [root1, root3, root2]; } return [root3, root1, root2]; } if (root1 <= root3) { return [root2, root1, root3]; } if (root2 <= root3) { return [root2, root3, root1]; } return [root3, root2, root1]; } /** * Provides the real valued roots of the cubic polynomial with the provided coefficients. * * @param {Number} a The coefficient of the 3rd order monomial. * @param {Number} b The coefficient of the 2nd order monomial. * @param {Number} c The coefficient of the 1st order monomial. * @param {Number} d The coefficient of the 0th order monomial. * @returns {Number[]} The real valued roots. */ CubicRealPolynomial.computeRealRoots = function(a, b, c, d) { //>>includeStart('debug', pragmas.debug); if (typeof a !== 'number') { throw new Check.DeveloperError('a is a required number.'); } if (typeof b !== 'number') { throw new Check.DeveloperError('b is a required number.'); } if (typeof c !== 'number') { throw new Check.DeveloperError('c is a required number.'); } if (typeof d !== 'number') { throw new Check.DeveloperError('d is a required number.'); } //>>includeEnd('debug'); var roots; var ratio; if (a === 0.0) { // Quadratic function: b * x^2 + c * x + d = 0. return QuadraticRealPolynomial.computeRealRoots(b, c, d); } else if (b === 0.0) { if (c === 0.0) { if (d === 0.0) { // 3rd order monomial: a * x^3 = 0. return [0.0, 0.0, 0.0]; } // a * x^3 + d = 0 ratio = -d / a; var root = (ratio < 0.0) ? -Math.pow(-ratio, 1.0 / 3.0) : Math.pow(ratio, 1.0 / 3.0); return [root, root, root]; } else if (d === 0.0) { // x * (a * x^2 + c) = 0. roots = QuadraticRealPolynomial.computeRealRoots(a, 0, c); // Return the roots in ascending order. if (roots.Length === 0) { return [0.0]; } return [roots[0], 0.0, roots[1]]; } // Deflated cubic polynomial: a * x^3 + c * x + d= 0. return computeRealRoots(a, 0, c, d); } else if (c === 0.0) { if (d === 0.0) { // x^2 * (a * x + b) = 0. ratio = -b / a; if (ratio < 0.0) { return [ratio, 0.0, 0.0]; } return [0.0, 0.0, ratio]; } // a * x^3 + b * x^2 + d = 0. return computeRealRoots(a, b, 0, d); } else if (d === 0.0) { // x * (a * x^2 + b * x + c) = 0 roots = QuadraticRealPolynomial.computeRealRoots(a, b, c); // Return the roots in ascending order. if (roots.length === 0) { return [0.0]; } else if (roots[1] <= 0.0) { return [roots[0], roots[1], 0.0]; } else if (roots[0] >= 0.0) { return [0.0, roots[0], roots[1]]; } return [roots[0], 0.0, roots[1]]; } return computeRealRoots(a, b, c, d); }; /** * Defines functions for 4th order polynomial functions of one variable with only real coefficients. * * @exports QuarticRealPolynomial */ var QuarticRealPolynomial = {}; /** * Provides the discriminant of the quartic equation from the supplied coefficients. * * @param {Number} a The coefficient of the 4th order monomial. * @param {Number} b The coefficient of the 3rd order monomial. * @param {Number} c The coefficient of the 2nd order monomial. * @param {Number} d The coefficient of the 1st order monomial. * @param {Number} e The coefficient of the 0th order monomial. * @returns {Number} The value of the discriminant. */ QuarticRealPolynomial.computeDiscriminant = function(a, b, c, d, e) { //>>includeStart('debug', pragmas.debug); if (typeof a !== 'number') { throw new Check.DeveloperError('a is a required number.'); } if (typeof b !== 'number') { throw new Check.DeveloperError('b is a required number.'); } if (typeof c !== 'number') { throw new Check.DeveloperError('c is a required number.'); } if (typeof d !== 'number') { throw new Check.DeveloperError('d is a required number.'); } if (typeof e !== 'number') { throw new Check.DeveloperError('e is a required number.'); } //>>includeEnd('debug'); var a2 = a * a; var a3 = a2 * a; var b2 = b * b; var b3 = b2 * b; var c2 = c * c; var c3 = c2 * c; var d2 = d * d; var d3 = d2 * d; var e2 = e * e; var e3 = e2 * e; var discriminant = (b2 * c2 * d2 - 4.0 * b3 * d3 - 4.0 * a * c3 * d2 + 18 * a * b * c * d3 - 27.0 * a2 * d2 * d2 + 256.0 * a3 * e3) + e * (18.0 * b3 * c * d - 4.0 * b2 * c3 + 16.0 * a * c2 * c2 - 80.0 * a * b * c2 * d - 6.0 * a * b2 * d2 + 144.0 * a2 * c * d2) + e2 * (144.0 * a * b2 * c - 27.0 * b2 * b2 - 128.0 * a2 * c2 - 192.0 * a2 * b * d); return discriminant; }; function original(a3, a2, a1, a0) { var a3Squared = a3 * a3; var p = a2 - 3.0 * a3Squared / 8.0; var q = a1 - a2 * a3 / 2.0 + a3Squared * a3 / 8.0; var r = a0 - a1 * a3 / 4.0 + a2 * a3Squared / 16.0 - 3.0 * a3Squared * a3Squared / 256.0; // Find the roots of the cubic equations: h^6 + 2 p h^4 + (p^2 - 4 r) h^2 - q^2 = 0. var cubicRoots = CubicRealPolynomial.computeRealRoots(1.0, 2.0 * p, p * p - 4.0 * r, -q * q); if (cubicRoots.length > 0) { var temp = -a3 / 4.0; // Use the largest positive root. var hSquared = cubicRoots[cubicRoots.length - 1]; if (Math.abs(hSquared) < _Math.CesiumMath.EPSILON14) { // y^4 + p y^2 + r = 0. var roots = QuadraticRealPolynomial.computeRealRoots(1.0, p, r); if (roots.length === 2) { var root0 = roots[0]; var root1 = roots[1]; var y; if (root0 >= 0.0 && root1 >= 0.0) { var y0 = Math.sqrt(root0); var y1 = Math.sqrt(root1); return [temp - y1, temp - y0, temp + y0, temp + y1]; } else if (root0 >= 0.0 && root1 < 0.0) { y = Math.sqrt(root0); return [temp - y, temp + y]; } else if (root0 < 0.0 && root1 >= 0.0) { y = Math.sqrt(root1); return [temp - y, temp + y]; } } return []; } else if (hSquared > 0.0) { var h = Math.sqrt(hSquared); var m = (p + hSquared - q / h) / 2.0; var n = (p + hSquared + q / h) / 2.0; // Now solve the two quadratic factors: (y^2 + h y + m)(y^2 - h y + n); var roots1 = QuadraticRealPolynomial.computeRealRoots(1.0, h, m); var roots2 = QuadraticRealPolynomial.computeRealRoots(1.0, -h, n); if (roots1.length !== 0) { roots1[0] += temp; roots1[1] += temp; if (roots2.length !== 0) { roots2[0] += temp; roots2[1] += temp; if (roots1[1] <= roots2[0]) { return [roots1[0], roots1[1], roots2[0], roots2[1]]; } else if (roots2[1] <= roots1[0]) { return [roots2[0], roots2[1], roots1[0], roots1[1]]; } else if (roots1[0] >= roots2[0] && roots1[1] <= roots2[1]) { return [roots2[0], roots1[0], roots1[1], roots2[1]]; } else if (roots2[0] >= roots1[0] && roots2[1] <= roots1[1]) { return [roots1[0], roots2[0], roots2[1], roots1[1]]; } else if (roots1[0] > roots2[0] && roots1[0] < roots2[1]) { return [roots2[0], roots1[0], roots2[1], roots1[1]]; } return [roots1[0], roots2[0], roots1[1], roots2[1]]; } return roots1; } if (roots2.length !== 0) { roots2[0] += temp; roots2[1] += temp; return roots2; } return []; } } return []; } function neumark(a3, a2, a1, a0) { var a1Squared = a1 * a1; var a2Squared = a2 * a2; var a3Squared = a3 * a3; var p = -2.0 * a2; var q = a1 * a3 + a2Squared - 4.0 * a0; var r = a3Squared * a0 - a1 * a2 * a3 + a1Squared; var cubicRoots = CubicRealPolynomial.computeRealRoots(1.0, p, q, r); if (cubicRoots.length > 0) { // Use the most positive root var y = cubicRoots[0]; var temp = (a2 - y); var tempSquared = temp * temp; var g1 = a3 / 2.0; var h1 = temp / 2.0; var m = tempSquared - 4.0 * a0; var mError = tempSquared + 4.0 * Math.abs(a0); var n = a3Squared - 4.0 * y; var nError = a3Squared + 4.0 * Math.abs(y); var g2; var h2; if (y < 0.0 || (m * nError < n * mError)) { var squareRootOfN = Math.sqrt(n); g2 = squareRootOfN / 2.0; h2 = squareRootOfN === 0.0 ? 0.0 : (a3 * h1 - a1) / squareRootOfN; } else { var squareRootOfM = Math.sqrt(m); g2 = squareRootOfM === 0.0 ? 0.0 : (a3 * h1 - a1) / squareRootOfM; h2 = squareRootOfM / 2.0; } var G; var g; if (g1 === 0.0 && g2 === 0.0) { G = 0.0; g = 0.0; } else if (_Math.CesiumMath.sign(g1) === _Math.CesiumMath.sign(g2)) { G = g1 + g2; g = y / G; } else { g = g1 - g2; G = y / g; } var H; var h; if (h1 === 0.0 && h2 === 0.0) { H = 0.0; h = 0.0; } else if (_Math.CesiumMath.sign(h1) === _Math.CesiumMath.sign(h2)) { H = h1 + h2; h = a0 / H; } else { h = h1 - h2; H = a0 / h; } // Now solve the two quadratic factors: (y^2 + G y + H)(y^2 + g y + h); var roots1 = QuadraticRealPolynomial.computeRealRoots(1.0, G, H); var roots2 = QuadraticRealPolynomial.computeRealRoots(1.0, g, h); if (roots1.length !== 0) { if (roots2.length !== 0) { if (roots1[1] <= roots2[0]) { return [roots1[0], roots1[1], roots2[0], roots2[1]]; } else if (roots2[1] <= roots1[0]) { return [roots2[0], roots2[1], roots1[0], roots1[1]]; } else if (roots1[0] >= roots2[0] && roots1[1] <= roots2[1]) { return [roots2[0], roots1[0], roots1[1], roots2[1]]; } else if (roots2[0] >= roots1[0] && roots2[1] <= roots1[1]) { return [roots1[0], roots2[0], roots2[1], roots1[1]]; } else if (roots1[0] > roots2[0] && roots1[0] < roots2[1]) { return [roots2[0], roots1[0], roots2[1], roots1[1]]; } return [roots1[0], roots2[0], roots1[1], roots2[1]]; } return roots1; } if (roots2.length !== 0) { return roots2; } } return []; } /** * Provides the real valued roots of the quartic polynomial with the provided coefficients. * * @param {Number} a The coefficient of the 4th order monomial. * @param {Number} b The coefficient of the 3rd order monomial. * @param {Number} c The coefficient of the 2nd order monomial. * @param {Number} d The coefficient of the 1st order monomial. * @param {Number} e The coefficient of the 0th order monomial. * @returns {Number[]} The real valued roots. */ QuarticRealPolynomial.computeRealRoots = function(a, b, c, d, e) { //>>includeStart('debug', pragmas.debug); if (typeof a !== 'number') { throw new Check.DeveloperError('a is a required number.'); } if (typeof b !== 'number') { throw new Check.DeveloperError('b is a required number.'); } if (typeof c !== 'number') { throw new Check.DeveloperError('c is a required number.'); } if (typeof d !== 'number') { throw new Check.DeveloperError('d is a required number.'); } if (typeof e !== 'number') { throw new Check.DeveloperError('e is a required number.'); } //>>includeEnd('debug'); if (Math.abs(a) < _Math.CesiumMath.EPSILON15) { return CubicRealPolynomial.computeRealRoots(b, c, d, e); } var a3 = b / a; var a2 = c / a; var a1 = d / a; var a0 = e / a; var k = (a3 < 0.0) ? 1 : 0; k += (a2 < 0.0) ? k + 1 : k; k += (a1 < 0.0) ? k + 1 : k; k += (a0 < 0.0) ? k + 1 : k; switch (k) { case 0: return original(a3, a2, a1, a0); case 1: return neumark(a3, a2, a1, a0); case 2: return neumark(a3, a2, a1, a0); case 3: return original(a3, a2, a1, a0); case 4: return original(a3, a2, a1, a0); case 5: return neumark(a3, a2, a1, a0); case 6: return original(a3, a2, a1, a0); case 7: return original(a3, a2, a1, a0); case 8: return neumark(a3, a2, a1, a0); case 9: return original(a3, a2, a1, a0); case 10: return original(a3, a2, a1, a0); case 11: return neumark(a3, a2, a1, a0); case 12: return original(a3, a2, a1, a0); case 13: return original(a3, a2, a1, a0); case 14: return original(a3, a2, a1, a0); case 15: return original(a3, a2, a1, a0); default: return undefined; } }; /** * Represents a ray that extends infinitely from the provided origin in the provided direction. * @alias Ray * @constructor * * @param {Cartesian3} [origin=Cartesian3.ZERO] The origin of the ray. * @param {Cartesian3} [direction=Cartesian3.ZERO] The direction of the ray. */ function Ray(origin, direction) { direction = Cartographic.Cartesian3.clone(when.defaultValue(direction, Cartographic.Cartesian3.ZERO)); if (!Cartographic.Cartesian3.equals(direction, Cartographic.Cartesian3.ZERO)) { Cartographic.Cartesian3.normalize(direction, direction); } /** * The origin of the ray. * @type {Cartesian3} * @default {@link Cartesian3.ZERO} */ this.origin = Cartographic.Cartesian3.clone(when.defaultValue(origin, Cartographic.Cartesian3.ZERO)); /** * The direction of the ray. * @type {Cartesian3} */ this.direction = direction; } /** * Duplicates a Ray instance. * * @param {Ray} ray The ray to duplicate. * @param {Ray} [result] The object onto which to store the result. * @returns {Ray} The modified result parameter or a new Ray instance if one was not provided. (Returns undefined if ray is undefined) */ Ray.clone = function(ray, result) { if (!when.defined(ray)) { return undefined; } if (!when.defined(result)) { return new Ray(ray.origin, ray.direction); } result.origin = Cartographic.Cartesian3.clone(ray.origin); result.direction = Cartographic.Cartesian3.clone(ray.direction); return result; }; /** * Computes the point along the ray given by r(t) = o + t*d, * where o is the origin of the ray and d is the direction. * * @param {Ray} ray The ray. * @param {Number} t A scalar value. * @param {Cartesian3} [result] The object in which the result will be stored. * @returns {Cartesian3} The modified result parameter, or a new instance if none was provided. * * @example * //Get the first intersection point of a ray and an ellipsoid. * var intersection = Cesium.IntersectionTests.rayEllipsoid(ray, ellipsoid); * var point = Cesium.Ray.getPoint(ray, intersection.start); */ Ray.getPoint = function(ray, t, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('ray', ray); Check.Check.typeOf.number('t', t); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Cartographic.Cartesian3(); } result = Cartographic.Cartesian3.multiplyByScalar(ray.direction, t, result); return Cartographic.Cartesian3.add(ray.origin, result, result); }; /** * Functions for computing the intersection between geometries such as rays, planes, triangles, and ellipsoids. * * @exports IntersectionTests * @namespace */ var IntersectionTests = {}; /** * Computes the intersection of a ray and a plane. * * @param {Ray} ray The ray. * @param {Plane} plane The plane. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The intersection point or undefined if there is no intersections. */ IntersectionTests.rayPlane = function(ray, plane, result) { //>>includeStart('debug', pragmas.debug); if (!when.defined(ray)) { throw new Check.DeveloperError('ray is required.'); } if (!when.defined(plane)) { throw new Check.DeveloperError('plane is required.'); } //>>includeEnd('debug'); if (!when.defined(result)) { result = new Cartographic.Cartesian3(); } var origin = ray.origin; var direction = ray.direction; var normal = plane.normal; var denominator = Cartographic.Cartesian3.dot(normal, direction); if (Math.abs(denominator) < _Math.CesiumMath.EPSILON15) { // Ray is parallel to plane. The ray may be in the polygon's plane. return undefined; } var t = (-plane.distance - Cartographic.Cartesian3.dot(normal, origin)) / denominator; if (t < 0) { return undefined; } result = Cartographic.Cartesian3.multiplyByScalar(direction, t, result); return Cartographic.Cartesian3.add(origin, result, result); }; var scratchEdge0 = new Cartographic.Cartesian3(); var scratchEdge1 = new Cartographic.Cartesian3(); var scratchPVec = new Cartographic.Cartesian3(); var scratchTVec = new Cartographic.Cartesian3(); var scratchQVec = new Cartographic.Cartesian3(); /** * Computes the intersection of a ray and a triangle as a parametric distance along the input ray. The result is negative when the triangle is behind the ray. * * Implements {@link https://cadxfem.org/inf/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf| * Fast Minimum Storage Ray/Triangle Intersection} by Tomas Moller and Ben Trumbore. * * @memberof IntersectionTests * * @param {Ray} ray The ray. * @param {Cartesian3} p0 The first vertex of the triangle. * @param {Cartesian3} p1 The second vertex of the triangle. * @param {Cartesian3} p2 The third vertex of the triangle. * @param {Boolean} [cullBackFaces=false] If true, will only compute an intersection with the front face of the triangle * and return undefined for intersections with the back face. * @returns {Number} The intersection as a parametric distance along the ray, or undefined if there is no intersection. */ IntersectionTests.rayTriangleParametric = function(ray, p0, p1, p2, cullBackFaces) { //>>includeStart('debug', pragmas.debug); if (!when.defined(ray)) { throw new Check.DeveloperError('ray is required.'); } if (!when.defined(p0)) { throw new Check.DeveloperError('p0 is required.'); } if (!when.defined(p1)) { throw new Check.DeveloperError('p1 is required.'); } if (!when.defined(p2)) { throw new Check.DeveloperError('p2 is required.'); } //>>includeEnd('debug'); cullBackFaces = when.defaultValue(cullBackFaces, false); var origin = ray.origin; var direction = ray.direction; var edge0 = Cartographic.Cartesian3.subtract(p1, p0, scratchEdge0); var edge1 = Cartographic.Cartesian3.subtract(p2, p0, scratchEdge1); var p = Cartographic.Cartesian3.cross(direction, edge1, scratchPVec); var det = Cartographic.Cartesian3.dot(edge0, p); var tvec; var q; var u; var v; var t; if (cullBackFaces) { if (det < _Math.CesiumMath.EPSILON6) { return undefined; } tvec = Cartographic.Cartesian3.subtract(origin, p0, scratchTVec); u = Cartographic.Cartesian3.dot(tvec, p); if (u < 0.0 || u > det) { return undefined; } q = Cartographic.Cartesian3.cross(tvec, edge0, scratchQVec); v = Cartographic.Cartesian3.dot(direction, q); if (v < 0.0 || u + v > det) { return undefined; } t = Cartographic.Cartesian3.dot(edge1, q) / det; } else { if (Math.abs(det) < _Math.CesiumMath.EPSILON6) { return undefined; } var invDet = 1.0 / det; tvec = Cartographic.Cartesian3.subtract(origin, p0, scratchTVec); u = Cartographic.Cartesian3.dot(tvec, p) * invDet; if (u < 0.0 || u > 1.0) { return undefined; } q = Cartographic.Cartesian3.cross(tvec, edge0, scratchQVec); v = Cartographic.Cartesian3.dot(direction, q) * invDet; if (v < 0.0 || u + v > 1.0) { return undefined; } t = Cartographic.Cartesian3.dot(edge1, q) * invDet; } return t; }; /** * Computes the intersection of a ray and a triangle as a Cartesian3 coordinate. * * Implements {@link https://cadxfem.org/inf/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf| * Fast Minimum Storage Ray/Triangle Intersection} by Tomas Moller and Ben Trumbore. * * @memberof IntersectionTests * * @param {Ray} ray The ray. * @param {Cartesian3} p0 The first vertex of the triangle. * @param {Cartesian3} p1 The second vertex of the triangle. * @param {Cartesian3} p2 The third vertex of the triangle. * @param {Boolean} [cullBackFaces=false] If true, will only compute an intersection with the front face of the triangle * and return undefined for intersections with the back face. * @param {Cartesian3} [result] The Cartesian3 onto which to store the result. * @returns {Cartesian3} The intersection point or undefined if there is no intersections. */ IntersectionTests.rayTriangle = function(ray, p0, p1, p2, cullBackFaces, result) { var t = IntersectionTests.rayTriangleParametric(ray, p0, p1, p2, cullBackFaces); if (!when.defined(t) || t < 0.0) { return undefined; } if (!when.defined(result)) { result = new Cartographic.Cartesian3(); } Cartographic.Cartesian3.multiplyByScalar(ray.direction, t, result); return Cartographic.Cartesian3.add(ray.origin, result, result); }; var scratchLineSegmentTriangleRay = new Ray(); /** * Computes the intersection of a line segment and a triangle. * @memberof IntersectionTests * * @param {Cartesian3} v0 The an end point of the line segment. * @param {Cartesian3} v1 The other end point of the line segment. * @param {Cartesian3} p0 The first vertex of the triangle. * @param {Cartesian3} p1 The second vertex of the triangle. * @param {Cartesian3} p2 The third vertex of the triangle. * @param {Boolean} [cullBackFaces=false] If true, will only compute an intersection with the front face of the triangle * and return undefined for intersections with the back face. * @param {Cartesian3} [result] The Cartesian3 onto which to store the result. * @returns {Cartesian3} The intersection point or undefined if there is no intersections. */ IntersectionTests.lineSegmentTriangle = function(v0, v1, p0, p1, p2, cullBackFaces, result) { //>>includeStart('debug', pragmas.debug); if (!when.defined(v0)) { throw new Check.DeveloperError('v0 is required.'); } if (!when.defined(v1)) { throw new Check.DeveloperError('v1 is required.'); } if (!when.defined(p0)) { throw new Check.DeveloperError('p0 is required.'); } if (!when.defined(p1)) { throw new Check.DeveloperError('p1 is required.'); } if (!when.defined(p2)) { throw new Check.DeveloperError('p2 is required.'); } //>>includeEnd('debug'); var ray = scratchLineSegmentTriangleRay; Cartographic.Cartesian3.clone(v0, ray.origin); Cartographic.Cartesian3.subtract(v1, v0, ray.direction); Cartographic.Cartesian3.normalize(ray.direction, ray.direction); var t = IntersectionTests.rayTriangleParametric(ray, p0, p1, p2, cullBackFaces); if (!when.defined(t) || t < 0.0 || t > Cartographic.Cartesian3.distance(v0, v1)) { return undefined; } if (!when.defined(result)) { result = new Cartographic.Cartesian3(); } Cartographic.Cartesian3.multiplyByScalar(ray.direction, t, result); return Cartographic.Cartesian3.add(ray.origin, result, result); }; function solveQuadratic(a, b, c, result) { var det = b * b - 4.0 * a * c; if (det < 0.0) { return undefined; } else if (det > 0.0) { var denom = 1.0 / (2.0 * a); var disc = Math.sqrt(det); var root0 = (-b + disc) * denom; var root1 = (-b - disc) * denom; if (root0 < root1) { result.root0 = root0; result.root1 = root1; } else { result.root0 = root1; result.root1 = root0; } return result; } var root = -b / (2.0 * a); if (root === 0.0) { return undefined; } result.root0 = result.root1 = root; return result; } var raySphereRoots = { root0 : 0.0, root1 : 0.0 }; function raySphere(ray, sphere, result) { if (!when.defined(result)) { result = new BoundingSphere.Interval(); } var origin = ray.origin; var direction = ray.direction; var center = sphere.center; var radiusSquared = sphere.radius * sphere.radius; var diff = Cartographic.Cartesian3.subtract(origin, center, scratchPVec); var a = Cartographic.Cartesian3.dot(direction, direction); var b = 2.0 * Cartographic.Cartesian3.dot(direction, diff); var c = Cartographic.Cartesian3.magnitudeSquared(diff) - radiusSquared; var roots = solveQuadratic(a, b, c, raySphereRoots); if (!when.defined(roots)) { return undefined; } result.start = roots.root0; result.stop = roots.root1; return result; } /** * Computes the intersection points of a ray with a sphere. * @memberof IntersectionTests * * @param {Ray} ray The ray. * @param {BoundingSphere} sphere The sphere. * @param {Interval} [result] The result onto which to store the result. * @returns {Interval} The interval containing scalar points along the ray or undefined if there are no intersections. */ IntersectionTests.raySphere = function(ray, sphere, result) { //>>includeStart('debug', pragmas.debug); if (!when.defined(ray)) { throw new Check.DeveloperError('ray is required.'); } if (!when.defined(sphere)) { throw new Check.DeveloperError('sphere is required.'); } //>>includeEnd('debug'); result = raySphere(ray, sphere, result); if (!when.defined(result) || result.stop < 0.0) { return undefined; } result.start = Math.max(result.start, 0.0); return result; }; var scratchLineSegmentRay = new Ray(); /** * Computes the intersection points of a line segment with a sphere. * @memberof IntersectionTests * * @param {Cartesian3} p0 An end point of the line segment. * @param {Cartesian3} p1 The other end point of the line segment. * @param {BoundingSphere} sphere The sphere. * @param {Interval} [result] The result onto which to store the result. * @returns {Interval} The interval containing scalar points along the ray or undefined if there are no intersections. */ IntersectionTests.lineSegmentSphere = function(p0, p1, sphere, result) { //>>includeStart('debug', pragmas.debug); if (!when.defined(p0)) { throw new Check.DeveloperError('p0 is required.'); } if (!when.defined(p1)) { throw new Check.DeveloperError('p1 is required.'); } if (!when.defined(sphere)) { throw new Check.DeveloperError('sphere is required.'); } //>>includeEnd('debug'); var ray = scratchLineSegmentRay; Cartographic.Cartesian3.clone(p0, ray.origin); var direction = Cartographic.Cartesian3.subtract(p1, p0, ray.direction); var maxT = Cartographic.Cartesian3.magnitude(direction); Cartographic.Cartesian3.normalize(direction, direction); result = raySphere(ray, sphere, result); if (!when.defined(result) || result.stop < 0.0 || result.start > maxT) { return undefined; } result.start = Math.max(result.start, 0.0); result.stop = Math.min(result.stop, maxT); return result; }; var scratchQ = new Cartographic.Cartesian3(); var scratchW = new Cartographic.Cartesian3(); /** * Computes the intersection points of a ray with an ellipsoid. * * @param {Ray} ray The ray. * @param {Ellipsoid} ellipsoid The ellipsoid. * @returns {Interval} The interval containing scalar points along the ray or undefined if there are no intersections. */ IntersectionTests.rayEllipsoid = function(ray, ellipsoid) { //>>includeStart('debug', pragmas.debug); if (!when.defined(ray)) { throw new Check.DeveloperError('ray is required.'); } if (!when.defined(ellipsoid)) { throw new Check.DeveloperError('ellipsoid is required.'); } //>>includeEnd('debug'); var inverseRadii = ellipsoid.oneOverRadii; var q = Cartographic.Cartesian3.multiplyComponents(inverseRadii, ray.origin, scratchQ); var w = Cartographic.Cartesian3.multiplyComponents(inverseRadii, ray.direction, scratchW); var q2 = Cartographic.Cartesian3.magnitudeSquared(q); var qw = Cartographic.Cartesian3.dot(q, w); var difference, w2, product, discriminant, temp; if (q2 > 1.0) { // Outside ellipsoid. if (qw >= 0.0) { // Looking outward or tangent (0 intersections). return undefined; } // qw < 0.0. var qw2 = qw * qw; difference = q2 - 1.0; // Positively valued. w2 = Cartographic.Cartesian3.magnitudeSquared(w); product = w2 * difference; if (qw2 < product) { // Imaginary roots (0 intersections). return undefined; } else if (qw2 > product) { // Distinct roots (2 intersections). discriminant = qw * qw - product; temp = -qw + Math.sqrt(discriminant); // Avoid cancellation. var root0 = temp / w2; var root1 = difference / temp; if (root0 < root1) { return new BoundingSphere.Interval(root0, root1); } return { start : root1, stop : root0 }; } // qw2 == product. Repeated roots (2 intersections). var root = Math.sqrt(difference / w2); return new BoundingSphere.Interval(root, root); } else if (q2 < 1.0) { // Inside ellipsoid (2 intersections). difference = q2 - 1.0; // Negatively valued. w2 = Cartographic.Cartesian3.magnitudeSquared(w); product = w2 * difference; // Negatively valued. discriminant = qw * qw - product; temp = -qw + Math.sqrt(discriminant); // Positively valued. return new BoundingSphere.Interval(0.0, temp / w2); } // q2 == 1.0. On ellipsoid. if (qw < 0.0) { // Looking inward. w2 = Cartographic.Cartesian3.magnitudeSquared(w); return new BoundingSphere.Interval(0.0, -qw / w2); } // qw >= 0.0. Looking outward or tangent. return undefined; }; function addWithCancellationCheck$1(left, right, tolerance) { var difference = left + right; if ((_Math.CesiumMath.sign(left) !== _Math.CesiumMath.sign(right)) && Math.abs(difference / Math.max(Math.abs(left), Math.abs(right))) < tolerance) { return 0.0; } return difference; } function quadraticVectorExpression(A, b, c, x, w) { var xSquared = x * x; var wSquared = w * w; var l2 = (A[BoundingSphere.Matrix3.COLUMN1ROW1] - A[BoundingSphere.Matrix3.COLUMN2ROW2]) * wSquared; var l1 = w * (x * addWithCancellationCheck$1(A[BoundingSphere.Matrix3.COLUMN1ROW0], A[BoundingSphere.Matrix3.COLUMN0ROW1], _Math.CesiumMath.EPSILON15) + b.y); var l0 = (A[BoundingSphere.Matrix3.COLUMN0ROW0] * xSquared + A[BoundingSphere.Matrix3.COLUMN2ROW2] * wSquared) + x * b.x + c; var r1 = wSquared * addWithCancellationCheck$1(A[BoundingSphere.Matrix3.COLUMN2ROW1], A[BoundingSphere.Matrix3.COLUMN1ROW2], _Math.CesiumMath.EPSILON15); var r0 = w * (x * addWithCancellationCheck$1(A[BoundingSphere.Matrix3.COLUMN2ROW0], A[BoundingSphere.Matrix3.COLUMN0ROW2]) + b.z); var cosines; var solutions = []; if (r0 === 0.0 && r1 === 0.0) { cosines = QuadraticRealPolynomial.computeRealRoots(l2, l1, l0); if (cosines.length === 0) { return solutions; } var cosine0 = cosines[0]; var sine0 = Math.sqrt(Math.max(1.0 - cosine0 * cosine0, 0.0)); solutions.push(new Cartographic.Cartesian3(x, w * cosine0, w * -sine0)); solutions.push(new Cartographic.Cartesian3(x, w * cosine0, w * sine0)); if (cosines.length === 2) { var cosine1 = cosines[1]; var sine1 = Math.sqrt(Math.max(1.0 - cosine1 * cosine1, 0.0)); solutions.push(new Cartographic.Cartesian3(x, w * cosine1, w * -sine1)); solutions.push(new Cartographic.Cartesian3(x, w * cosine1, w * sine1)); } return solutions; } var r0Squared = r0 * r0; var r1Squared = r1 * r1; var l2Squared = l2 * l2; var r0r1 = r0 * r1; var c4 = l2Squared + r1Squared; var c3 = 2.0 * (l1 * l2 + r0r1); var c2 = 2.0 * l0 * l2 + l1 * l1 - r1Squared + r0Squared; var c1 = 2.0 * (l0 * l1 - r0r1); var c0 = l0 * l0 - r0Squared; if (c4 === 0.0 && c3 === 0.0 && c2 === 0.0 && c1 === 0.0) { return solutions; } cosines = QuarticRealPolynomial.computeRealRoots(c4, c3, c2, c1, c0); var length = cosines.length; if (length === 0) { return solutions; } for ( var i = 0; i < length; ++i) { var cosine = cosines[i]; var cosineSquared = cosine * cosine; var sineSquared = Math.max(1.0 - cosineSquared, 0.0); var sine = Math.sqrt(sineSquared); //var left = l2 * cosineSquared + l1 * cosine + l0; var left; if (_Math.CesiumMath.sign(l2) === _Math.CesiumMath.sign(l0)) { left = addWithCancellationCheck$1(l2 * cosineSquared + l0, l1 * cosine, _Math.CesiumMath.EPSILON12); } else if (_Math.CesiumMath.sign(l0) === _Math.CesiumMath.sign(l1 * cosine)) { left = addWithCancellationCheck$1(l2 * cosineSquared, l1 * cosine + l0, _Math.CesiumMath.EPSILON12); } else { left = addWithCancellationCheck$1(l2 * cosineSquared + l1 * cosine, l0, _Math.CesiumMath.EPSILON12); } var right = addWithCancellationCheck$1(r1 * cosine, r0, _Math.CesiumMath.EPSILON15); var product = left * right; if (product < 0.0) { solutions.push(new Cartographic.Cartesian3(x, w * cosine, w * sine)); } else if (product > 0.0) { solutions.push(new Cartographic.Cartesian3(x, w * cosine, w * -sine)); } else if (sine !== 0.0) { solutions.push(new Cartographic.Cartesian3(x, w * cosine, w * -sine)); solutions.push(new Cartographic.Cartesian3(x, w * cosine, w * sine)); ++i; } else { solutions.push(new Cartographic.Cartesian3(x, w * cosine, w * sine)); } } return solutions; } var firstAxisScratch = new Cartographic.Cartesian3(); var secondAxisScratch = new Cartographic.Cartesian3(); var thirdAxisScratch = new Cartographic.Cartesian3(); var referenceScratch = new Cartographic.Cartesian3(); var bCart = new Cartographic.Cartesian3(); var bScratch = new BoundingSphere.Matrix3(); var btScratch = new BoundingSphere.Matrix3(); var diScratch = new BoundingSphere.Matrix3(); var dScratch = new BoundingSphere.Matrix3(); var cScratch = new BoundingSphere.Matrix3(); var tempMatrix = new BoundingSphere.Matrix3(); var aScratch = new BoundingSphere.Matrix3(); var sScratch = new Cartographic.Cartesian3(); var closestScratch = new Cartographic.Cartesian3(); var surfPointScratch = new Cartographic.Cartographic(); /** * Provides the point along the ray which is nearest to the ellipsoid. * * @param {Ray} ray The ray. * @param {Ellipsoid} ellipsoid The ellipsoid. * @returns {Cartesian3} The nearest planetodetic point on the ray. */ IntersectionTests.grazingAltitudeLocation = function(ray, ellipsoid) { //>>includeStart('debug', pragmas.debug); if (!when.defined(ray)) { throw new Check.DeveloperError('ray is required.'); } if (!when.defined(ellipsoid)) { throw new Check.DeveloperError('ellipsoid is required.'); } //>>includeEnd('debug'); var position = ray.origin; var direction = ray.direction; if (!Cartographic.Cartesian3.equals(position, Cartographic.Cartesian3.ZERO)) { var normal = ellipsoid.geodeticSurfaceNormal(position, firstAxisScratch); if (Cartographic.Cartesian3.dot(direction, normal) >= 0.0) { // The location provided is the closest point in altitude return position; } } var intersects = when.defined(this.rayEllipsoid(ray, ellipsoid)); // Compute the scaled direction vector. var f = ellipsoid.transformPositionToScaledSpace(direction, firstAxisScratch); // Constructs a basis from the unit scaled direction vector. Construct its rotation and transpose. var firstAxis = Cartographic.Cartesian3.normalize(f, f); var reference = Cartographic.Cartesian3.mostOrthogonalAxis(f, referenceScratch); var secondAxis = Cartographic.Cartesian3.normalize(Cartographic.Cartesian3.cross(reference, firstAxis, secondAxisScratch), secondAxisScratch); var thirdAxis = Cartographic.Cartesian3.normalize(Cartographic.Cartesian3.cross(firstAxis, secondAxis, thirdAxisScratch), thirdAxisScratch); var B = bScratch; B[0] = firstAxis.x; B[1] = firstAxis.y; B[2] = firstAxis.z; B[3] = secondAxis.x; B[4] = secondAxis.y; B[5] = secondAxis.z; B[6] = thirdAxis.x; B[7] = thirdAxis.y; B[8] = thirdAxis.z; var B_T = BoundingSphere.Matrix3.transpose(B, btScratch); // Get the scaling matrix and its inverse. var D_I = BoundingSphere.Matrix3.fromScale(ellipsoid.radii, diScratch); var D = BoundingSphere.Matrix3.fromScale(ellipsoid.oneOverRadii, dScratch); var C = cScratch; C[0] = 0.0; C[1] = -direction.z; C[2] = direction.y; C[3] = direction.z; C[4] = 0.0; C[5] = -direction.x; C[6] = -direction.y; C[7] = direction.x; C[8] = 0.0; var temp = BoundingSphere.Matrix3.multiply(BoundingSphere.Matrix3.multiply(B_T, D, tempMatrix), C, tempMatrix); var A = BoundingSphere.Matrix3.multiply(BoundingSphere.Matrix3.multiply(temp, D_I, aScratch), B, aScratch); var b = BoundingSphere.Matrix3.multiplyByVector(temp, position, bCart); // Solve for the solutions to the expression in standard form: var solutions = quadraticVectorExpression(A, Cartographic.Cartesian3.negate(b, firstAxisScratch), 0.0, 0.0, 1.0); var s; var altitude; var length = solutions.length; if (length > 0) { var closest = Cartographic.Cartesian3.clone(Cartographic.Cartesian3.ZERO, closestScratch); var maximumValue = Number.NEGATIVE_INFINITY; for ( var i = 0; i < length; ++i) { s = BoundingSphere.Matrix3.multiplyByVector(D_I, BoundingSphere.Matrix3.multiplyByVector(B, solutions[i], sScratch), sScratch); var v = Cartographic.Cartesian3.normalize(Cartographic.Cartesian3.subtract(s, position, referenceScratch), referenceScratch); var dotProduct = Cartographic.Cartesian3.dot(v, direction); if (dotProduct > maximumValue) { maximumValue = dotProduct; closest = Cartographic.Cartesian3.clone(s, closest); } } var surfacePoint = ellipsoid.cartesianToCartographic(closest, surfPointScratch); maximumValue = _Math.CesiumMath.clamp(maximumValue, 0.0, 1.0); altitude = Cartographic.Cartesian3.magnitude(Cartographic.Cartesian3.subtract(closest, position, referenceScratch)) * Math.sqrt(1.0 - maximumValue * maximumValue); altitude = intersects ? -altitude : altitude; surfacePoint.height = altitude; return ellipsoid.cartographicToCartesian(surfacePoint, new Cartographic.Cartesian3()); } return undefined; }; var lineSegmentPlaneDifference = new Cartographic.Cartesian3(); /** * Computes the intersection of a line segment and a plane. * * @param {Cartesian3} endPoint0 An end point of the line segment. * @param {Cartesian3} endPoint1 The other end point of the line segment. * @param {Plane} plane The plane. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The intersection point or undefined if there is no intersection. * * @example * var origin = Cesium.Cartesian3.fromDegrees(-75.59777, 40.03883); * var normal = ellipsoid.geodeticSurfaceNormal(origin); * var plane = Cesium.Plane.fromPointNormal(origin, normal); * * var p0 = new Cesium.Cartesian3(...); * var p1 = new Cesium.Cartesian3(...); * * // find the intersection of the line segment from p0 to p1 and the tangent plane at origin. * var intersection = Cesium.IntersectionTests.lineSegmentPlane(p0, p1, plane); */ IntersectionTests.lineSegmentPlane = function(endPoint0, endPoint1, plane, result) { //>>includeStart('debug', pragmas.debug); if (!when.defined(endPoint0)) { throw new Check.DeveloperError('endPoint0 is required.'); } if (!when.defined(endPoint1)) { throw new Check.DeveloperError('endPoint1 is required.'); } if (!when.defined(plane)) { throw new Check.DeveloperError('plane is required.'); } //>>includeEnd('debug'); if (!when.defined(result)) { result = new Cartographic.Cartesian3(); } var difference = Cartographic.Cartesian3.subtract(endPoint1, endPoint0, lineSegmentPlaneDifference); var normal = plane.normal; var nDotDiff = Cartographic.Cartesian3.dot(normal, difference); // check if the segment and plane are parallel if (Math.abs(nDotDiff) < _Math.CesiumMath.EPSILON6) { return undefined; } var nDotP0 = Cartographic.Cartesian3.dot(normal, endPoint0); var t = -(plane.distance + nDotP0) / nDotDiff; // intersection only if t is in [0, 1] if (t < 0.0 || t > 1.0) { return undefined; } // intersection is endPoint0 + t * (endPoint1 - endPoint0) Cartographic.Cartesian3.multiplyByScalar(difference, t, result); Cartographic.Cartesian3.add(endPoint0, result, result); return result; }; /** * Computes the intersection of a triangle and a plane * * @param {Cartesian3} p0 First point of the triangle * @param {Cartesian3} p1 Second point of the triangle * @param {Cartesian3} p2 Third point of the triangle * @param {Plane} plane Intersection plane * @returns {Object} An object with properties positions and indices, which are arrays that represent three triangles that do not cross the plane. (Undefined if no intersection exists) * * @example * var origin = Cesium.Cartesian3.fromDegrees(-75.59777, 40.03883); * var normal = ellipsoid.geodeticSurfaceNormal(origin); * var plane = Cesium.Plane.fromPointNormal(origin, normal); * * var p0 = new Cesium.Cartesian3(...); * var p1 = new Cesium.Cartesian3(...); * var p2 = new Cesium.Cartesian3(...); * * // convert the triangle composed of points (p0, p1, p2) to three triangles that don't cross the plane * var triangles = Cesium.IntersectionTests.trianglePlaneIntersection(p0, p1, p2, plane); */ IntersectionTests.trianglePlaneIntersection = function(p0, p1, p2, plane) { //>>includeStart('debug', pragmas.debug); if ((!when.defined(p0)) || (!when.defined(p1)) || (!when.defined(p2)) || (!when.defined(plane))) { throw new Check.DeveloperError('p0, p1, p2, and plane are required.'); } //>>includeEnd('debug'); var planeNormal = plane.normal; var planeD = plane.distance; var p0Behind = (Cartographic.Cartesian3.dot(planeNormal, p0) + planeD) < 0.0; var p1Behind = (Cartographic.Cartesian3.dot(planeNormal, p1) + planeD) < 0.0; var p2Behind = (Cartographic.Cartesian3.dot(planeNormal, p2) + planeD) < 0.0; // Given these dots products, the calls to lineSegmentPlaneIntersection // always have defined results. var numBehind = 0; numBehind += p0Behind ? 1 : 0; numBehind += p1Behind ? 1 : 0; numBehind += p2Behind ? 1 : 0; var u1, u2; if (numBehind === 1 || numBehind === 2) { u1 = new Cartographic.Cartesian3(); u2 = new Cartographic.Cartesian3(); } if (numBehind === 1) { if (p0Behind) { IntersectionTests.lineSegmentPlane(p0, p1, plane, u1); IntersectionTests.lineSegmentPlane(p0, p2, plane, u2); return { positions : [p0, p1, p2, u1, u2 ], indices : [ // Behind 0, 3, 4, // In front 1, 2, 4, 1, 4, 3 ] }; } else if (p1Behind) { IntersectionTests.lineSegmentPlane(p1, p2, plane, u1); IntersectionTests.lineSegmentPlane(p1, p0, plane, u2); return { positions : [p0, p1, p2, u1, u2 ], indices : [ // Behind 1, 3, 4, // In front 2, 0, 4, 2, 4, 3 ] }; } else if (p2Behind) { IntersectionTests.lineSegmentPlane(p2, p0, plane, u1); IntersectionTests.lineSegmentPlane(p2, p1, plane, u2); return { positions : [p0, p1, p2, u1, u2 ], indices : [ // Behind 2, 3, 4, // In front 0, 1, 4, 0, 4, 3 ] }; } } else if (numBehind === 2) { if (!p0Behind) { IntersectionTests.lineSegmentPlane(p1, p0, plane, u1); IntersectionTests.lineSegmentPlane(p2, p0, plane, u2); return { positions : [p0, p1, p2, u1, u2 ], indices : [ // Behind 1, 2, 4, 1, 4, 3, // In front 0, 3, 4 ] }; } else if (!p1Behind) { IntersectionTests.lineSegmentPlane(p2, p1, plane, u1); IntersectionTests.lineSegmentPlane(p0, p1, plane, u2); return { positions : [p0, p1, p2, u1, u2 ], indices : [ // Behind 2, 0, 4, 2, 4, 3, // In front 1, 3, 4 ] }; } else if (!p2Behind) { IntersectionTests.lineSegmentPlane(p0, p2, plane, u1); IntersectionTests.lineSegmentPlane(p1, p2, plane, u2); return { positions : [p0, p1, p2, u1, u2 ], indices : [ // Behind 0, 1, 4, 0, 4, 3, // In front 2, 3, 4 ] }; } } // if numBehind is 3, the triangle is completely behind the plane; // otherwise, it is completely in front (numBehind is 0). return undefined; }; exports.IntersectionTests = IntersectionTests; exports.Ray = Ray; });