/** * @license * Cesium - https://github.com/CesiumGS/cesium * Version 1.117 * * Copyright 2011-2022 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ import { ArcType_default } from "./chunk-YLZTCEBJ.js"; import { GeometryPipeline_default } from "./chunk-PK7TEP3J.js"; import { PolygonPipeline_default, WindingOrder_default } from "./chunk-RR7EOKGZ.js"; import { arrayRemoveDuplicates_default } from "./chunk-V7JB576Q.js"; import { EllipsoidRhumbLine_default } from "./chunk-CYAJYEKW.js"; import { IntersectionTests_default } from "./chunk-G7CJQKKD.js"; import { Plane_default } from "./chunk-FOZQIHZK.js"; import { IndexDatatype_default } from "./chunk-WWP3I7R5.js"; import { GeometryAttributes_default } from "./chunk-RL73GOEF.js"; import { GeometryAttribute_default, Geometry_default, PrimitiveType_default } from "./chunk-34DGOKCO.js"; import { Quaternion_default } from "./chunk-I5TDPPC4.js"; import { ComponentDatatype_default } from "./chunk-TMMOULW3.js"; import { Cartesian2_default, Cartesian3_default, Cartographic_default, Ellipsoid_default, Matrix3_default } from "./chunk-C5CE4OG6.js"; import { Math_default } from "./chunk-4PHPQRSH.js"; import { defaultValue_default } from "./chunk-UCPPWV64.js"; import { defined_default } from "./chunk-BDUJXBVF.js"; // packages/engine/Source/Core/PolygonHierarchy.js function PolygonHierarchy(positions, holes) { this.positions = defined_default(positions) ? positions : []; this.holes = defined_default(holes) ? holes : []; } var PolygonHierarchy_default = PolygonHierarchy; // packages/engine/Source/Core/Queue.js function Queue() { this._array = []; this._offset = 0; this._length = 0; } Object.defineProperties(Queue.prototype, { /** * The length of the queue. * * @memberof Queue.prototype * * @type {number} * @readonly */ length: { get: function() { return this._length; } } }); Queue.prototype.enqueue = function(item) { this._array.push(item); this._length++; }; Queue.prototype.dequeue = function() { if (this._length === 0) { return void 0; } const array = this._array; let offset = this._offset; const item = array[offset]; array[offset] = void 0; offset++; if (offset > 10 && offset * 2 > array.length) { this._array = array.slice(offset); offset = 0; } this._offset = offset; this._length--; return item; }; Queue.prototype.peek = function() { if (this._length === 0) { return void 0; } return this._array[this._offset]; }; Queue.prototype.contains = function(item) { return this._array.indexOf(item) !== -1; }; Queue.prototype.clear = function() { this._array.length = this._offset = this._length = 0; }; Queue.prototype.sort = function(compareFunction) { if (this._offset > 0) { this._array = this._array.slice(this._offset); this._offset = 0; } this._array.sort(compareFunction); }; var Queue_default = Queue; // packages/engine/Source/Core/PolygonGeometryLibrary.js var PolygonGeometryLibrary = {}; PolygonGeometryLibrary.computeHierarchyPackedLength = function(polygonHierarchy, CartesianX) { let numComponents = 0; const stack = [polygonHierarchy]; while (stack.length > 0) { const hierarchy = stack.pop(); if (!defined_default(hierarchy)) { continue; } numComponents += 2; const positions = hierarchy.positions; const holes = hierarchy.holes; if (defined_default(positions) && positions.length > 0) { numComponents += positions.length * CartesianX.packedLength; } if (defined_default(holes)) { const length = holes.length; for (let i = 0; i < length; ++i) { stack.push(holes[i]); } } } return numComponents; }; PolygonGeometryLibrary.packPolygonHierarchy = function(polygonHierarchy, array, startingIndex, CartesianX) { const stack = [polygonHierarchy]; while (stack.length > 0) { const hierarchy = stack.pop(); if (!defined_default(hierarchy)) { continue; } const positions = hierarchy.positions; const holes = hierarchy.holes; array[startingIndex++] = defined_default(positions) ? positions.length : 0; array[startingIndex++] = defined_default(holes) ? holes.length : 0; if (defined_default(positions)) { const positionsLength = positions.length; for (let i = 0; i < positionsLength; ++i, startingIndex += CartesianX.packedLength) { CartesianX.pack(positions[i], array, startingIndex); } } if (defined_default(holes)) { const holesLength = holes.length; for (let j = 0; j < holesLength; ++j) { stack.push(holes[j]); } } } return startingIndex; }; PolygonGeometryLibrary.unpackPolygonHierarchy = function(array, startingIndex, CartesianX) { const positionsLength = array[startingIndex++]; const holesLength = array[startingIndex++]; const positions = new Array(positionsLength); const holes = holesLength > 0 ? new Array(holesLength) : void 0; for (let i = 0; i < positionsLength; ++i, startingIndex += CartesianX.packedLength) { positions[i] = CartesianX.unpack(array, startingIndex); } for (let j = 0; j < holesLength; ++j) { holes[j] = PolygonGeometryLibrary.unpackPolygonHierarchy( array, startingIndex, CartesianX ); startingIndex = holes[j].startingIndex; delete holes[j].startingIndex; } return { positions, holes, startingIndex }; }; var distance2DScratch = new Cartesian2_default(); function getPointAtDistance2D(p0, p1, distance, length) { Cartesian2_default.subtract(p1, p0, distance2DScratch); Cartesian2_default.multiplyByScalar( distance2DScratch, distance / length, distance2DScratch ); Cartesian2_default.add(p0, distance2DScratch, distance2DScratch); return [distance2DScratch.x, distance2DScratch.y]; } var distanceScratch = new Cartesian3_default(); function getPointAtDistance(p0, p1, distance, length) { Cartesian3_default.subtract(p1, p0, distanceScratch); Cartesian3_default.multiplyByScalar( distanceScratch, distance / length, distanceScratch ); Cartesian3_default.add(p0, distanceScratch, distanceScratch); return [distanceScratch.x, distanceScratch.y, distanceScratch.z]; } PolygonGeometryLibrary.subdivideLineCount = function(p0, p1, minDistance) { const distance = Cartesian3_default.distance(p0, p1); const n = distance / minDistance; const countDivide = Math.max(0, Math.ceil(Math_default.log2(n))); return Math.pow(2, countDivide); }; var scratchCartographic0 = new Cartographic_default(); var scratchCartographic1 = new Cartographic_default(); var scratchCartographic2 = new Cartographic_default(); var scratchCartesian0 = new Cartesian3_default(); var scratchRhumbLine = new EllipsoidRhumbLine_default(); PolygonGeometryLibrary.subdivideRhumbLineCount = function(ellipsoid, p0, p1, minDistance) { const c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0); const c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1); const rhumb = new EllipsoidRhumbLine_default(c0, c1, ellipsoid); const n = rhumb.surfaceDistance / minDistance; const countDivide = Math.max(0, Math.ceil(Math_default.log2(n))); return Math.pow(2, countDivide); }; PolygonGeometryLibrary.subdivideTexcoordLine = function(t0, t1, p0, p1, minDistance, result) { const subdivisions = PolygonGeometryLibrary.subdivideLineCount( p0, p1, minDistance ); const length2D = Cartesian2_default.distance(t0, t1); const distanceBetweenCoords = length2D / subdivisions; const texcoords = result; texcoords.length = subdivisions * 2; let index = 0; for (let i = 0; i < subdivisions; i++) { const t = getPointAtDistance2D(t0, t1, i * distanceBetweenCoords, length2D); texcoords[index++] = t[0]; texcoords[index++] = t[1]; } return texcoords; }; PolygonGeometryLibrary.subdivideLine = function(p0, p1, minDistance, result) { const numVertices = PolygonGeometryLibrary.subdivideLineCount( p0, p1, minDistance ); const length = Cartesian3_default.distance(p0, p1); const distanceBetweenVertices = length / numVertices; if (!defined_default(result)) { result = []; } const positions = result; positions.length = numVertices * 3; let index = 0; for (let i = 0; i < numVertices; i++) { const p = getPointAtDistance(p0, p1, i * distanceBetweenVertices, length); positions[index++] = p[0]; positions[index++] = p[1]; positions[index++] = p[2]; } return positions; }; PolygonGeometryLibrary.subdivideTexcoordRhumbLine = function(t0, t1, ellipsoid, p0, p1, minDistance, result) { const c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0); const c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1); scratchRhumbLine.setEndPoints(c0, c1); const n = scratchRhumbLine.surfaceDistance / minDistance; const countDivide = Math.max(0, Math.ceil(Math_default.log2(n))); const subdivisions = Math.pow(2, countDivide); const length2D = Cartesian2_default.distance(t0, t1); const distanceBetweenCoords = length2D / subdivisions; const texcoords = result; texcoords.length = subdivisions * 2; let index = 0; for (let i = 0; i < subdivisions; i++) { const t = getPointAtDistance2D(t0, t1, i * distanceBetweenCoords, length2D); texcoords[index++] = t[0]; texcoords[index++] = t[1]; } return texcoords; }; PolygonGeometryLibrary.subdivideRhumbLine = function(ellipsoid, p0, p1, minDistance, result) { const c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0); const c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1); const rhumb = new EllipsoidRhumbLine_default(c0, c1, ellipsoid); const n = rhumb.surfaceDistance / minDistance; const countDivide = Math.max(0, Math.ceil(Math_default.log2(n))); const numVertices = Math.pow(2, countDivide); const distanceBetweenVertices = rhumb.surfaceDistance / numVertices; if (!defined_default(result)) { result = []; } const positions = result; positions.length = numVertices * 3; let index = 0; for (let i = 0; i < numVertices; i++) { const c = rhumb.interpolateUsingSurfaceDistance( i * distanceBetweenVertices, scratchCartographic2 ); const p = ellipsoid.cartographicToCartesian(c, scratchCartesian0); positions[index++] = p.x; positions[index++] = p.y; positions[index++] = p.z; } return positions; }; var scaleToGeodeticHeightN1 = new Cartesian3_default(); var scaleToGeodeticHeightN2 = new Cartesian3_default(); var scaleToGeodeticHeightP1 = new Cartesian3_default(); var scaleToGeodeticHeightP2 = new Cartesian3_default(); PolygonGeometryLibrary.scaleToGeodeticHeightExtruded = function(geometry, maxHeight, minHeight, ellipsoid, perPositionHeight) { ellipsoid = defaultValue_default(ellipsoid, Ellipsoid_default.WGS84); const n1 = scaleToGeodeticHeightN1; let n2 = scaleToGeodeticHeightN2; const p = scaleToGeodeticHeightP1; let p2 = scaleToGeodeticHeightP2; if (defined_default(geometry) && defined_default(geometry.attributes) && defined_default(geometry.attributes.position)) { const positions = geometry.attributes.position.values; const length = positions.length / 2; for (let i = 0; i < length; i += 3) { Cartesian3_default.fromArray(positions, i, p); ellipsoid.geodeticSurfaceNormal(p, n1); p2 = ellipsoid.scaleToGeodeticSurface(p, p2); n2 = Cartesian3_default.multiplyByScalar(n1, minHeight, n2); n2 = Cartesian3_default.add(p2, n2, n2); positions[i + length] = n2.x; positions[i + 1 + length] = n2.y; positions[i + 2 + length] = n2.z; if (perPositionHeight) { p2 = Cartesian3_default.clone(p, p2); } n2 = Cartesian3_default.multiplyByScalar(n1, maxHeight, n2); n2 = Cartesian3_default.add(p2, n2, n2); positions[i] = n2.x; positions[i + 1] = n2.y; positions[i + 2] = n2.z; } } return geometry; }; PolygonGeometryLibrary.polygonOutlinesFromHierarchy = function(polygonHierarchy, scaleToEllipsoidSurface, ellipsoid) { const polygons = []; const queue = new Queue_default(); queue.enqueue(polygonHierarchy); let i; let j; let length; while (queue.length !== 0) { const outerNode = queue.dequeue(); let outerRing = outerNode.positions; if (scaleToEllipsoidSurface) { length = outerRing.length; for (i = 0; i < length; i++) { ellipsoid.scaleToGeodeticSurface(outerRing[i], outerRing[i]); } } outerRing = arrayRemoveDuplicates_default( outerRing, Cartesian3_default.equalsEpsilon, true ); if (outerRing.length < 3) { continue; } const numChildren = outerNode.holes ? outerNode.holes.length : 0; for (i = 0; i < numChildren; i++) { const hole = outerNode.holes[i]; let holePositions = hole.positions; if (scaleToEllipsoidSurface) { length = holePositions.length; for (j = 0; j < length; ++j) { ellipsoid.scaleToGeodeticSurface(holePositions[j], holePositions[j]); } } holePositions = arrayRemoveDuplicates_default( holePositions, Cartesian3_default.equalsEpsilon, true ); if (holePositions.length < 3) { continue; } polygons.push(holePositions); let numGrandchildren = 0; if (defined_default(hole.holes)) { numGrandchildren = hole.holes.length; } for (j = 0; j < numGrandchildren; j++) { queue.enqueue(hole.holes[j]); } } polygons.push(outerRing); } return polygons; }; var scratchRhumbIntersection = new Cartographic_default(); function computeEquatorIntersectionRhumb(start, end, ellipsoid) { const c0 = ellipsoid.cartesianToCartographic(start, scratchCartographic0); const c1 = ellipsoid.cartesianToCartographic(end, scratchCartographic1); if (Math.sign(c0.latitude) === Math.sign(c1.latitude)) { return; } scratchRhumbLine.setEndPoints(c0, c1); const intersection = scratchRhumbLine.findIntersectionWithLatitude( 0, scratchRhumbIntersection ); if (!defined_default(intersection)) { return; } let minLongitude = Math.min(c0.longitude, c1.longitude); let maxLongitude = Math.max(c0.longitude, c1.longitude); if (Math.abs(maxLongitude - minLongitude) > Math_default.PI) { const swap = minLongitude; minLongitude = maxLongitude; maxLongitude = swap; } if (intersection.longitude < minLongitude || intersection.longitude > maxLongitude) { return; } return ellipsoid.cartographicToCartesian(intersection); } function computeEquatorIntersection(start, end, ellipsoid, arcType) { if (arcType === ArcType_default.RHUMB) { return computeEquatorIntersectionRhumb(start, end, ellipsoid); } const intersection = IntersectionTests_default.lineSegmentPlane( start, end, Plane_default.ORIGIN_XY_PLANE ); if (!defined_default(intersection)) { return; } return ellipsoid.scaleToGeodeticSurface(intersection, intersection); } var scratchCartographic = new Cartographic_default(); function computeEdgesOnPlane(positions, ellipsoid, arcType) { const edgesOnPlane = []; let startPoint, endPoint, type, next, intersection, i = 0; while (i < positions.length) { startPoint = positions[i]; endPoint = positions[(i + 1) % positions.length]; type = Math_default.sign(startPoint.z); next = Math_default.sign(endPoint.z); const getLongitude = (position) => { const cartographic = ellipsoid.cartesianToCartographic( position, scratchCartographic ); return cartographic.longitude; }; if (type === 0) { edgesOnPlane.push({ position: i, type, visited: false, next, theta: getLongitude(startPoint) }); } else if (next !== 0) { intersection = computeEquatorIntersection( startPoint, endPoint, ellipsoid, arcType ); ++i; if (!defined_default(intersection)) { continue; } positions.splice(i, 0, intersection); edgesOnPlane.push({ position: i, type, visited: false, next, theta: getLongitude(intersection) }); } ++i; } return edgesOnPlane; } function wirePolygon(polygons, polygonIndex, positions, edgesOnPlane, toDelete, startIndex, abovePlane) { const polygon = []; let i = startIndex; const getMatchingEdge = (i2) => (edge) => edge.position === i2; const polygonsToWire = []; do { const position = positions[i]; polygon.push(position); const edgeIndex = edgesOnPlane.findIndex(getMatchingEdge(i)); const edge = edgesOnPlane[edgeIndex]; if (!defined_default(edge)) { ++i; continue; } const { visited: hasBeenVisited, type, next } = edge; edge.visited = true; if (type === 0) { if (next === 0) { const previousEdge = edgesOnPlane[edgeIndex - (abovePlane ? 1 : -1)]; if (previousEdge?.position === i + 1) { previousEdge.visited = true; } else { ++i; continue; } } if (!hasBeenVisited && abovePlane && next > 0 || startIndex === i && !abovePlane && next < 0) { ++i; continue; } } const followEdge = abovePlane ? type >= 0 : type <= 0; if (!followEdge) { ++i; continue; } if (!hasBeenVisited) { polygonsToWire.push(i); } const nextEdgeIndex = edgeIndex + (abovePlane ? 1 : -1); const nextEdge = edgesOnPlane[nextEdgeIndex]; if (!defined_default(nextEdge)) { ++i; continue; } i = nextEdge.position; } while (i < positions.length && i >= 0 && i !== startIndex && polygon.length < positions.length); polygons.splice(polygonIndex, toDelete, polygon); for (const index of polygonsToWire) { polygonIndex = wirePolygon( polygons, ++polygonIndex, positions, edgesOnPlane, 0, index, !abovePlane ); } return polygonIndex; } PolygonGeometryLibrary.splitPolygonsOnEquator = function(outerRings, ellipsoid, arcType, result) { if (!defined_default(result)) { result = []; } result.splice(0, 0, ...outerRings); result.length = outerRings.length; let currentPolygon = 0; while (currentPolygon < result.length) { const outerRing = result[currentPolygon]; const positions = outerRing.slice(); if (outerRing.length < 3) { result[currentPolygon] = positions; ++currentPolygon; continue; } const edgesOnPlane = computeEdgesOnPlane(positions, ellipsoid, arcType); if (positions.length === outerRing.length || edgesOnPlane.length <= 1) { result[currentPolygon] = positions; ++currentPolygon; continue; } edgesOnPlane.sort((a, b) => { return a.theta - b.theta; }); const north = positions[0].z >= 0; currentPolygon = wirePolygon( result, currentPolygon, positions, edgesOnPlane, 1, 0, north ); } return result; }; PolygonGeometryLibrary.polygonsFromHierarchy = function(polygonHierarchy, keepDuplicates, projectPointsTo2D, scaleToEllipsoidSurface, ellipsoid, splitPolygons) { const hierarchy = []; const polygons = []; const queue = new Queue_default(); queue.enqueue(polygonHierarchy); let split = defined_default(splitPolygons); while (queue.length !== 0) { const outerNode = queue.dequeue(); let outerRing = outerNode.positions; const holes = outerNode.holes; let i; let length; if (scaleToEllipsoidSurface) { length = outerRing.length; for (i = 0; i < length; i++) { ellipsoid.scaleToGeodeticSurface(outerRing[i], outerRing[i]); } } if (!keepDuplicates) { outerRing = arrayRemoveDuplicates_default( outerRing, Cartesian3_default.equalsEpsilon, true ); } if (outerRing.length < 3) { continue; } let positions2D = projectPointsTo2D(outerRing); if (!defined_default(positions2D)) { continue; } const holeIndices = []; let originalWindingOrder = PolygonPipeline_default.computeWindingOrder2D( positions2D ); if (originalWindingOrder === WindingOrder_default.CLOCKWISE) { positions2D.reverse(); outerRing = outerRing.slice().reverse(); } if (split) { split = false; let polygons2 = [outerRing]; polygons2 = splitPolygons(polygons2, polygons2); if (polygons2.length > 1) { for (const positions2 of polygons2) { queue.enqueue(new PolygonHierarchy_default(positions2, holes)); } continue; } } let positions = outerRing.slice(); const numChildren = defined_default(holes) ? holes.length : 0; const polygonHoles = []; let j; for (i = 0; i < numChildren; i++) { const hole = holes[i]; let holePositions = hole.positions; if (scaleToEllipsoidSurface) { length = holePositions.length; for (j = 0; j < length; ++j) { ellipsoid.scaleToGeodeticSurface(holePositions[j], holePositions[j]); } } if (!keepDuplicates) { holePositions = arrayRemoveDuplicates_default( holePositions, Cartesian3_default.equalsEpsilon, true ); } if (holePositions.length < 3) { continue; } const holePositions2D = projectPointsTo2D(holePositions); if (!defined_default(holePositions2D)) { continue; } originalWindingOrder = PolygonPipeline_default.computeWindingOrder2D( holePositions2D ); if (originalWindingOrder === WindingOrder_default.CLOCKWISE) { holePositions2D.reverse(); holePositions = holePositions.slice().reverse(); } polygonHoles.push(holePositions); holeIndices.push(positions.length); positions = positions.concat(holePositions); positions2D = positions2D.concat(holePositions2D); let numGrandchildren = 0; if (defined_default(hole.holes)) { numGrandchildren = hole.holes.length; } for (j = 0; j < numGrandchildren; j++) { queue.enqueue(hole.holes[j]); } } hierarchy.push({ outerRing, holes: polygonHoles }); polygons.push({ positions, positions2D, holes: holeIndices }); } return { hierarchy, polygons }; }; var computeBoundingRectangleCartesian2 = new Cartesian2_default(); var computeBoundingRectangleCartesian3 = new Cartesian3_default(); var computeBoundingRectangleQuaternion = new Quaternion_default(); var computeBoundingRectangleMatrix3 = new Matrix3_default(); PolygonGeometryLibrary.computeBoundingRectangle = function(planeNormal, projectPointTo2D, positions, angle, result) { const rotation = Quaternion_default.fromAxisAngle( planeNormal, angle, computeBoundingRectangleQuaternion ); const textureMatrix = Matrix3_default.fromQuaternion( rotation, computeBoundingRectangleMatrix3 ); let minX = Number.POSITIVE_INFINITY; let maxX = Number.NEGATIVE_INFINITY; let minY = Number.POSITIVE_INFINITY; let maxY = Number.NEGATIVE_INFINITY; const length = positions.length; for (let i = 0; i < length; ++i) { const p = Cartesian3_default.clone( positions[i], computeBoundingRectangleCartesian3 ); Matrix3_default.multiplyByVector(textureMatrix, p, p); const st = projectPointTo2D(p, computeBoundingRectangleCartesian2); if (defined_default(st)) { minX = Math.min(minX, st.x); maxX = Math.max(maxX, st.x); minY = Math.min(minY, st.y); maxY = Math.max(maxY, st.y); } } result.x = minX; result.y = minY; result.width = maxX - minX; result.height = maxY - minY; return result; }; PolygonGeometryLibrary.createGeometryFromPositions = function(ellipsoid, polygon, textureCoordinates, granularity, perPositionHeight, vertexFormat, arcType) { let indices = PolygonPipeline_default.triangulate(polygon.positions2D, polygon.holes); if (indices.length < 3) { indices = [0, 1, 2]; } const positions = polygon.positions; const hasTexcoords = defined_default(textureCoordinates); const texcoords = hasTexcoords ? textureCoordinates.positions : void 0; if (perPositionHeight) { const length = positions.length; const flattenedPositions = new Array(length * 3); let index = 0; for (let i = 0; i < length; i++) { const p = positions[i]; flattenedPositions[index++] = p.x; flattenedPositions[index++] = p.y; flattenedPositions[index++] = p.z; } const geometryOptions = { attributes: { position: new GeometryAttribute_default({ componentDatatype: ComponentDatatype_default.DOUBLE, componentsPerAttribute: 3, values: flattenedPositions }) }, indices, primitiveType: PrimitiveType_default.TRIANGLES }; if (hasTexcoords) { geometryOptions.attributes.st = new GeometryAttribute_default({ componentDatatype: ComponentDatatype_default.FLOAT, componentsPerAttribute: 2, values: Cartesian2_default.packArray(texcoords) }); } const geometry = new Geometry_default(geometryOptions); if (vertexFormat.normal) { return GeometryPipeline_default.computeNormal(geometry); } return geometry; } if (arcType === ArcType_default.GEODESIC) { return PolygonPipeline_default.computeSubdivision( ellipsoid, positions, indices, texcoords, granularity ); } else if (arcType === ArcType_default.RHUMB) { return PolygonPipeline_default.computeRhumbLineSubdivision( ellipsoid, positions, indices, texcoords, granularity ); } }; var computeWallTexcoordsSubdivided = []; var computeWallIndicesSubdivided = []; var p1Scratch = new Cartesian3_default(); var p2Scratch = new Cartesian3_default(); PolygonGeometryLibrary.computeWallGeometry = function(positions, textureCoordinates, ellipsoid, granularity, perPositionHeight, arcType) { let edgePositions; let topEdgeLength; let i; let p1; let p2; let t1; let t2; let edgeTexcoords; let topEdgeTexcoordLength; let length = positions.length; let index = 0; let textureIndex = 0; const hasTexcoords = defined_default(textureCoordinates); const texcoords = hasTexcoords ? textureCoordinates.positions : void 0; if (!perPositionHeight) { const minDistance = Math_default.chordLength( granularity, ellipsoid.maximumRadius ); let numVertices = 0; if (arcType === ArcType_default.GEODESIC) { for (i = 0; i < length; i++) { numVertices += PolygonGeometryLibrary.subdivideLineCount( positions[i], positions[(i + 1) % length], minDistance ); } } else if (arcType === ArcType_default.RHUMB) { for (i = 0; i < length; i++) { numVertices += PolygonGeometryLibrary.subdivideRhumbLineCount( ellipsoid, positions[i], positions[(i + 1) % length], minDistance ); } } topEdgeLength = (numVertices + length) * 3; edgePositions = new Array(topEdgeLength * 2); if (hasTexcoords) { topEdgeTexcoordLength = (numVertices + length) * 2; edgeTexcoords = new Array(topEdgeTexcoordLength * 2); } for (i = 0; i < length; i++) { p1 = positions[i]; p2 = positions[(i + 1) % length]; let tempPositions; let tempTexcoords; if (hasTexcoords) { t1 = texcoords[i]; t2 = texcoords[(i + 1) % length]; } if (arcType === ArcType_default.GEODESIC) { tempPositions = PolygonGeometryLibrary.subdivideLine( p1, p2, minDistance, computeWallIndicesSubdivided ); if (hasTexcoords) { tempTexcoords = PolygonGeometryLibrary.subdivideTexcoordLine( t1, t2, p1, p2, minDistance, computeWallTexcoordsSubdivided ); } } else if (arcType === ArcType_default.RHUMB) { tempPositions = PolygonGeometryLibrary.subdivideRhumbLine( ellipsoid, p1, p2, minDistance, computeWallIndicesSubdivided ); if (hasTexcoords) { tempTexcoords = PolygonGeometryLibrary.subdivideTexcoordRhumbLine( t1, t2, ellipsoid, p1, p2, minDistance, computeWallTexcoordsSubdivided ); } } const tempPositionsLength = tempPositions.length; for (let j = 0; j < tempPositionsLength; ++j, ++index) { edgePositions[index] = tempPositions[j]; edgePositions[index + topEdgeLength] = tempPositions[j]; } edgePositions[index] = p2.x; edgePositions[index + topEdgeLength] = p2.x; ++index; edgePositions[index] = p2.y; edgePositions[index + topEdgeLength] = p2.y; ++index; edgePositions[index] = p2.z; edgePositions[index + topEdgeLength] = p2.z; ++index; if (hasTexcoords) { const tempTexcoordsLength = tempTexcoords.length; for (let k = 0; k < tempTexcoordsLength; ++k, ++textureIndex) { edgeTexcoords[textureIndex] = tempTexcoords[k]; edgeTexcoords[textureIndex + topEdgeTexcoordLength] = tempTexcoords[k]; } edgeTexcoords[textureIndex] = t2.x; edgeTexcoords[textureIndex + topEdgeTexcoordLength] = t2.x; ++textureIndex; edgeTexcoords[textureIndex] = t2.y; edgeTexcoords[textureIndex + topEdgeTexcoordLength] = t2.y; ++textureIndex; } } } else { topEdgeLength = length * 3 * 2; edgePositions = new Array(topEdgeLength * 2); if (hasTexcoords) { topEdgeTexcoordLength = length * 2 * 2; edgeTexcoords = new Array(topEdgeTexcoordLength * 2); } for (i = 0; i < length; i++) { p1 = positions[i]; p2 = positions[(i + 1) % length]; edgePositions[index] = edgePositions[index + topEdgeLength] = p1.x; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p1.y; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p1.z; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p2.x; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p2.y; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p2.z; ++index; if (hasTexcoords) { t1 = texcoords[i]; t2 = texcoords[(i + 1) % length]; edgeTexcoords[textureIndex] = edgeTexcoords[textureIndex + topEdgeTexcoordLength] = t1.x; ++textureIndex; edgeTexcoords[textureIndex] = edgeTexcoords[textureIndex + topEdgeTexcoordLength] = t1.y; ++textureIndex; edgeTexcoords[textureIndex] = edgeTexcoords[textureIndex + topEdgeTexcoordLength] = t2.x; ++textureIndex; edgeTexcoords[textureIndex] = edgeTexcoords[textureIndex + topEdgeTexcoordLength] = t2.y; ++textureIndex; } } } length = edgePositions.length; const indices = IndexDatatype_default.createTypedArray( length / 3, length - positions.length * 6 ); let edgeIndex = 0; length /= 6; for (i = 0; i < length; i++) { const UL = i; const UR = UL + 1; const LL = UL + length; const LR = LL + 1; p1 = Cartesian3_default.fromArray(edgePositions, UL * 3, p1Scratch); p2 = Cartesian3_default.fromArray(edgePositions, UR * 3, p2Scratch); if (Cartesian3_default.equalsEpsilon( p1, p2, Math_default.EPSILON10, Math_default.EPSILON10 )) { continue; } indices[edgeIndex++] = UL; indices[edgeIndex++] = LL; indices[edgeIndex++] = UR; indices[edgeIndex++] = UR; indices[edgeIndex++] = LL; indices[edgeIndex++] = LR; } const geometryOptions = { attributes: new GeometryAttributes_default({ position: new GeometryAttribute_default({ componentDatatype: ComponentDatatype_default.DOUBLE, componentsPerAttribute: 3, values: edgePositions }) }), indices, primitiveType: PrimitiveType_default.TRIANGLES }; if (hasTexcoords) { geometryOptions.attributes.st = new GeometryAttribute_default({ componentDatatype: ComponentDatatype_default.FLOAT, componentsPerAttribute: 2, values: edgeTexcoords }); } const geometry = new Geometry_default(geometryOptions); return geometry; }; var PolygonGeometryLibrary_default = PolygonGeometryLibrary; export { PolygonGeometryLibrary_default };