1259 lines
39 KiB
JavaScript
1259 lines
39 KiB
JavaScript
|
/**
|
||
|
* @license
|
||
|
* Cesium - https://github.com/CesiumGS/cesium
|
||
|
* Version 1.117
|
||
|
*
|
||
|
* Copyright 2011-2022 Cesium Contributors
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*
|
||
|
* Columbus View (Pat. Pend.)
|
||
|
*
|
||
|
* Portions licensed separately.
|
||
|
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
|
||
|
*/
|
||
|
|
||
|
import {
|
||
|
Interval_default
|
||
|
} from "./chunk-NI2R52QD.js";
|
||
|
import {
|
||
|
Cartesian3_default,
|
||
|
Cartographic_default,
|
||
|
Matrix3_default
|
||
|
} from "./chunk-C5CE4OG6.js";
|
||
|
import {
|
||
|
Math_default
|
||
|
} from "./chunk-4PHPQRSH.js";
|
||
|
import {
|
||
|
defaultValue_default
|
||
|
} from "./chunk-UCPPWV64.js";
|
||
|
import {
|
||
|
Check_default,
|
||
|
DeveloperError_default
|
||
|
} from "./chunk-U4IMCOF5.js";
|
||
|
import {
|
||
|
defined_default
|
||
|
} from "./chunk-BDUJXBVF.js";
|
||
|
|
||
|
// packages/engine/Source/Core/QuadraticRealPolynomial.js
|
||
|
var QuadraticRealPolynomial = {};
|
||
|
QuadraticRealPolynomial.computeDiscriminant = function(a, b, c) {
|
||
|
if (typeof a !== "number") {
|
||
|
throw new DeveloperError_default("a is a required number.");
|
||
|
}
|
||
|
if (typeof b !== "number") {
|
||
|
throw new DeveloperError_default("b is a required number.");
|
||
|
}
|
||
|
if (typeof c !== "number") {
|
||
|
throw new DeveloperError_default("c is a required number.");
|
||
|
}
|
||
|
const discriminant = b * b - 4 * a * c;
|
||
|
return discriminant;
|
||
|
};
|
||
|
function addWithCancellationCheck(left, right, tolerance) {
|
||
|
const difference = left + right;
|
||
|
if (Math_default.sign(left) !== Math_default.sign(right) && Math.abs(difference / Math.max(Math.abs(left), Math.abs(right))) < tolerance) {
|
||
|
return 0;
|
||
|
}
|
||
|
return difference;
|
||
|
}
|
||
|
QuadraticRealPolynomial.computeRealRoots = function(a, b, c) {
|
||
|
if (typeof a !== "number") {
|
||
|
throw new DeveloperError_default("a is a required number.");
|
||
|
}
|
||
|
if (typeof b !== "number") {
|
||
|
throw new DeveloperError_default("b is a required number.");
|
||
|
}
|
||
|
if (typeof c !== "number") {
|
||
|
throw new DeveloperError_default("c is a required number.");
|
||
|
}
|
||
|
let ratio;
|
||
|
if (a === 0) {
|
||
|
if (b === 0) {
|
||
|
return [];
|
||
|
}
|
||
|
return [-c / b];
|
||
|
} else if (b === 0) {
|
||
|
if (c === 0) {
|
||
|
return [0, 0];
|
||
|
}
|
||
|
const cMagnitude = Math.abs(c);
|
||
|
const aMagnitude = Math.abs(a);
|
||
|
if (cMagnitude < aMagnitude && cMagnitude / aMagnitude < Math_default.EPSILON14) {
|
||
|
return [0, 0];
|
||
|
} else if (cMagnitude > aMagnitude && aMagnitude / cMagnitude < Math_default.EPSILON14) {
|
||
|
return [];
|
||
|
}
|
||
|
ratio = -c / a;
|
||
|
if (ratio < 0) {
|
||
|
return [];
|
||
|
}
|
||
|
const root = Math.sqrt(ratio);
|
||
|
return [-root, root];
|
||
|
} else if (c === 0) {
|
||
|
ratio = -b / a;
|
||
|
if (ratio < 0) {
|
||
|
return [ratio, 0];
|
||
|
}
|
||
|
return [0, ratio];
|
||
|
}
|
||
|
const b2 = b * b;
|
||
|
const four_ac = 4 * a * c;
|
||
|
const radicand = addWithCancellationCheck(b2, -four_ac, Math_default.EPSILON14);
|
||
|
if (radicand < 0) {
|
||
|
return [];
|
||
|
}
|
||
|
const q = -0.5 * addWithCancellationCheck(
|
||
|
b,
|
||
|
Math_default.sign(b) * Math.sqrt(radicand),
|
||
|
Math_default.EPSILON14
|
||
|
);
|
||
|
if (b > 0) {
|
||
|
return [q / a, c / q];
|
||
|
}
|
||
|
return [c / q, q / a];
|
||
|
};
|
||
|
var QuadraticRealPolynomial_default = QuadraticRealPolynomial;
|
||
|
|
||
|
// packages/engine/Source/Core/CubicRealPolynomial.js
|
||
|
var CubicRealPolynomial = {};
|
||
|
CubicRealPolynomial.computeDiscriminant = function(a, b, c, d) {
|
||
|
if (typeof a !== "number") {
|
||
|
throw new DeveloperError_default("a is a required number.");
|
||
|
}
|
||
|
if (typeof b !== "number") {
|
||
|
throw new DeveloperError_default("b is a required number.");
|
||
|
}
|
||
|
if (typeof c !== "number") {
|
||
|
throw new DeveloperError_default("c is a required number.");
|
||
|
}
|
||
|
if (typeof d !== "number") {
|
||
|
throw new DeveloperError_default("d is a required number.");
|
||
|
}
|
||
|
const a2 = a * a;
|
||
|
const b2 = b * b;
|
||
|
const c2 = c * c;
|
||
|
const d2 = d * d;
|
||
|
const discriminant = 18 * a * b * c * d + b2 * c2 - 27 * a2 * d2 - 4 * (a * c2 * c + b2 * b * d);
|
||
|
return discriminant;
|
||
|
};
|
||
|
function computeRealRoots(a, b, c, d) {
|
||
|
const A = a;
|
||
|
const B = b / 3;
|
||
|
const C = c / 3;
|
||
|
const D = d;
|
||
|
const AC = A * C;
|
||
|
const BD = B * D;
|
||
|
const B2 = B * B;
|
||
|
const C2 = C * C;
|
||
|
const delta1 = A * C - B2;
|
||
|
const delta2 = A * D - B * C;
|
||
|
const delta3 = B * D - C2;
|
||
|
const discriminant = 4 * delta1 * delta3 - delta2 * delta2;
|
||
|
let temp;
|
||
|
let temp1;
|
||
|
if (discriminant < 0) {
|
||
|
let ABar;
|
||
|
let CBar;
|
||
|
let DBar;
|
||
|
if (B2 * BD >= AC * C2) {
|
||
|
ABar = A;
|
||
|
CBar = delta1;
|
||
|
DBar = -2 * B * delta1 + A * delta2;
|
||
|
} else {
|
||
|
ABar = D;
|
||
|
CBar = delta3;
|
||
|
DBar = -D * delta2 + 2 * C * delta3;
|
||
|
}
|
||
|
const s = DBar < 0 ? -1 : 1;
|
||
|
const temp0 = -s * Math.abs(ABar) * Math.sqrt(-discriminant);
|
||
|
temp1 = -DBar + temp0;
|
||
|
const x = temp1 / 2;
|
||
|
const p = x < 0 ? -Math.pow(-x, 1 / 3) : Math.pow(x, 1 / 3);
|
||
|
const q = temp1 === temp0 ? -p : -CBar / p;
|
||
|
temp = CBar <= 0 ? p + q : -DBar / (p * p + q * q + CBar);
|
||
|
if (B2 * BD >= AC * C2) {
|
||
|
return [(temp - B) / A];
|
||
|
}
|
||
|
return [-D / (temp + C)];
|
||
|
}
|
||
|
const CBarA = delta1;
|
||
|
const DBarA = -2 * B * delta1 + A * delta2;
|
||
|
const CBarD = delta3;
|
||
|
const DBarD = -D * delta2 + 2 * C * delta3;
|
||
|
const squareRootOfDiscriminant = Math.sqrt(discriminant);
|
||
|
const halfSquareRootOf3 = Math.sqrt(3) / 2;
|
||
|
let theta = Math.abs(Math.atan2(A * squareRootOfDiscriminant, -DBarA) / 3);
|
||
|
temp = 2 * Math.sqrt(-CBarA);
|
||
|
let cosine = Math.cos(theta);
|
||
|
temp1 = temp * cosine;
|
||
|
let temp3 = temp * (-cosine / 2 - halfSquareRootOf3 * Math.sin(theta));
|
||
|
const numeratorLarge = temp1 + temp3 > 2 * B ? temp1 - B : temp3 - B;
|
||
|
const denominatorLarge = A;
|
||
|
const root1 = numeratorLarge / denominatorLarge;
|
||
|
theta = Math.abs(Math.atan2(D * squareRootOfDiscriminant, -DBarD) / 3);
|
||
|
temp = 2 * Math.sqrt(-CBarD);
|
||
|
cosine = Math.cos(theta);
|
||
|
temp1 = temp * cosine;
|
||
|
temp3 = temp * (-cosine / 2 - halfSquareRootOf3 * Math.sin(theta));
|
||
|
const numeratorSmall = -D;
|
||
|
const denominatorSmall = temp1 + temp3 < 2 * C ? temp1 + C : temp3 + C;
|
||
|
const root3 = numeratorSmall / denominatorSmall;
|
||
|
const E = denominatorLarge * denominatorSmall;
|
||
|
const F = -numeratorLarge * denominatorSmall - denominatorLarge * numeratorSmall;
|
||
|
const G = numeratorLarge * numeratorSmall;
|
||
|
const root2 = (C * F - B * G) / (-B * F + C * E);
|
||
|
if (root1 <= root2) {
|
||
|
if (root1 <= root3) {
|
||
|
if (root2 <= root3) {
|
||
|
return [root1, root2, root3];
|
||
|
}
|
||
|
return [root1, root3, root2];
|
||
|
}
|
||
|
return [root3, root1, root2];
|
||
|
}
|
||
|
if (root1 <= root3) {
|
||
|
return [root2, root1, root3];
|
||
|
}
|
||
|
if (root2 <= root3) {
|
||
|
return [root2, root3, root1];
|
||
|
}
|
||
|
return [root3, root2, root1];
|
||
|
}
|
||
|
CubicRealPolynomial.computeRealRoots = function(a, b, c, d) {
|
||
|
if (typeof a !== "number") {
|
||
|
throw new DeveloperError_default("a is a required number.");
|
||
|
}
|
||
|
if (typeof b !== "number") {
|
||
|
throw new DeveloperError_default("b is a required number.");
|
||
|
}
|
||
|
if (typeof c !== "number") {
|
||
|
throw new DeveloperError_default("c is a required number.");
|
||
|
}
|
||
|
if (typeof d !== "number") {
|
||
|
throw new DeveloperError_default("d is a required number.");
|
||
|
}
|
||
|
let roots;
|
||
|
let ratio;
|
||
|
if (a === 0) {
|
||
|
return QuadraticRealPolynomial_default.computeRealRoots(b, c, d);
|
||
|
} else if (b === 0) {
|
||
|
if (c === 0) {
|
||
|
if (d === 0) {
|
||
|
return [0, 0, 0];
|
||
|
}
|
||
|
ratio = -d / a;
|
||
|
const root = ratio < 0 ? -Math.pow(-ratio, 1 / 3) : Math.pow(ratio, 1 / 3);
|
||
|
return [root, root, root];
|
||
|
} else if (d === 0) {
|
||
|
roots = QuadraticRealPolynomial_default.computeRealRoots(a, 0, c);
|
||
|
if (roots.Length === 0) {
|
||
|
return [0];
|
||
|
}
|
||
|
return [roots[0], 0, roots[1]];
|
||
|
}
|
||
|
return computeRealRoots(a, 0, c, d);
|
||
|
} else if (c === 0) {
|
||
|
if (d === 0) {
|
||
|
ratio = -b / a;
|
||
|
if (ratio < 0) {
|
||
|
return [ratio, 0, 0];
|
||
|
}
|
||
|
return [0, 0, ratio];
|
||
|
}
|
||
|
return computeRealRoots(a, b, 0, d);
|
||
|
} else if (d === 0) {
|
||
|
roots = QuadraticRealPolynomial_default.computeRealRoots(a, b, c);
|
||
|
if (roots.length === 0) {
|
||
|
return [0];
|
||
|
} else if (roots[1] <= 0) {
|
||
|
return [roots[0], roots[1], 0];
|
||
|
} else if (roots[0] >= 0) {
|
||
|
return [0, roots[0], roots[1]];
|
||
|
}
|
||
|
return [roots[0], 0, roots[1]];
|
||
|
}
|
||
|
return computeRealRoots(a, b, c, d);
|
||
|
};
|
||
|
var CubicRealPolynomial_default = CubicRealPolynomial;
|
||
|
|
||
|
// packages/engine/Source/Core/QuarticRealPolynomial.js
|
||
|
var QuarticRealPolynomial = {};
|
||
|
QuarticRealPolynomial.computeDiscriminant = function(a, b, c, d, e) {
|
||
|
if (typeof a !== "number") {
|
||
|
throw new DeveloperError_default("a is a required number.");
|
||
|
}
|
||
|
if (typeof b !== "number") {
|
||
|
throw new DeveloperError_default("b is a required number.");
|
||
|
}
|
||
|
if (typeof c !== "number") {
|
||
|
throw new DeveloperError_default("c is a required number.");
|
||
|
}
|
||
|
if (typeof d !== "number") {
|
||
|
throw new DeveloperError_default("d is a required number.");
|
||
|
}
|
||
|
if (typeof e !== "number") {
|
||
|
throw new DeveloperError_default("e is a required number.");
|
||
|
}
|
||
|
const a2 = a * a;
|
||
|
const a3 = a2 * a;
|
||
|
const b2 = b * b;
|
||
|
const b3 = b2 * b;
|
||
|
const c2 = c * c;
|
||
|
const c3 = c2 * c;
|
||
|
const d2 = d * d;
|
||
|
const d3 = d2 * d;
|
||
|
const e2 = e * e;
|
||
|
const e3 = e2 * e;
|
||
|
const discriminant = b2 * c2 * d2 - 4 * b3 * d3 - 4 * a * c3 * d2 + 18 * a * b * c * d3 - 27 * a2 * d2 * d2 + 256 * a3 * e3 + e * (18 * b3 * c * d - 4 * b2 * c3 + 16 * a * c2 * c2 - 80 * a * b * c2 * d - 6 * a * b2 * d2 + 144 * a2 * c * d2) + e2 * (144 * a * b2 * c - 27 * b2 * b2 - 128 * a2 * c2 - 192 * a2 * b * d);
|
||
|
return discriminant;
|
||
|
};
|
||
|
function original(a3, a2, a1, a0) {
|
||
|
const a3Squared = a3 * a3;
|
||
|
const p = a2 - 3 * a3Squared / 8;
|
||
|
const q = a1 - a2 * a3 / 2 + a3Squared * a3 / 8;
|
||
|
const r = a0 - a1 * a3 / 4 + a2 * a3Squared / 16 - 3 * a3Squared * a3Squared / 256;
|
||
|
const cubicRoots = CubicRealPolynomial_default.computeRealRoots(
|
||
|
1,
|
||
|
2 * p,
|
||
|
p * p - 4 * r,
|
||
|
-q * q
|
||
|
);
|
||
|
if (cubicRoots.length > 0) {
|
||
|
const temp = -a3 / 4;
|
||
|
const hSquared = cubicRoots[cubicRoots.length - 1];
|
||
|
if (Math.abs(hSquared) < Math_default.EPSILON14) {
|
||
|
const roots = QuadraticRealPolynomial_default.computeRealRoots(1, p, r);
|
||
|
if (roots.length === 2) {
|
||
|
const root0 = roots[0];
|
||
|
const root1 = roots[1];
|
||
|
let y;
|
||
|
if (root0 >= 0 && root1 >= 0) {
|
||
|
const y0 = Math.sqrt(root0);
|
||
|
const y1 = Math.sqrt(root1);
|
||
|
return [temp - y1, temp - y0, temp + y0, temp + y1];
|
||
|
} else if (root0 >= 0 && root1 < 0) {
|
||
|
y = Math.sqrt(root0);
|
||
|
return [temp - y, temp + y];
|
||
|
} else if (root0 < 0 && root1 >= 0) {
|
||
|
y = Math.sqrt(root1);
|
||
|
return [temp - y, temp + y];
|
||
|
}
|
||
|
}
|
||
|
return [];
|
||
|
} else if (hSquared > 0) {
|
||
|
const h = Math.sqrt(hSquared);
|
||
|
const m = (p + hSquared - q / h) / 2;
|
||
|
const n = (p + hSquared + q / h) / 2;
|
||
|
const roots1 = QuadraticRealPolynomial_default.computeRealRoots(1, h, m);
|
||
|
const roots2 = QuadraticRealPolynomial_default.computeRealRoots(1, -h, n);
|
||
|
if (roots1.length !== 0) {
|
||
|
roots1[0] += temp;
|
||
|
roots1[1] += temp;
|
||
|
if (roots2.length !== 0) {
|
||
|
roots2[0] += temp;
|
||
|
roots2[1] += temp;
|
||
|
if (roots1[1] <= roots2[0]) {
|
||
|
return [roots1[0], roots1[1], roots2[0], roots2[1]];
|
||
|
} else if (roots2[1] <= roots1[0]) {
|
||
|
return [roots2[0], roots2[1], roots1[0], roots1[1]];
|
||
|
} else if (roots1[0] >= roots2[0] && roots1[1] <= roots2[1]) {
|
||
|
return [roots2[0], roots1[0], roots1[1], roots2[1]];
|
||
|
} else if (roots2[0] >= roots1[0] && roots2[1] <= roots1[1]) {
|
||
|
return [roots1[0], roots2[0], roots2[1], roots1[1]];
|
||
|
} else if (roots1[0] > roots2[0] && roots1[0] < roots2[1]) {
|
||
|
return [roots2[0], roots1[0], roots2[1], roots1[1]];
|
||
|
}
|
||
|
return [roots1[0], roots2[0], roots1[1], roots2[1]];
|
||
|
}
|
||
|
return roots1;
|
||
|
}
|
||
|
if (roots2.length !== 0) {
|
||
|
roots2[0] += temp;
|
||
|
roots2[1] += temp;
|
||
|
return roots2;
|
||
|
}
|
||
|
return [];
|
||
|
}
|
||
|
}
|
||
|
return [];
|
||
|
}
|
||
|
function neumark(a3, a2, a1, a0) {
|
||
|
const a1Squared = a1 * a1;
|
||
|
const a2Squared = a2 * a2;
|
||
|
const a3Squared = a3 * a3;
|
||
|
const p = -2 * a2;
|
||
|
const q = a1 * a3 + a2Squared - 4 * a0;
|
||
|
const r = a3Squared * a0 - a1 * a2 * a3 + a1Squared;
|
||
|
const cubicRoots = CubicRealPolynomial_default.computeRealRoots(1, p, q, r);
|
||
|
if (cubicRoots.length > 0) {
|
||
|
const y = cubicRoots[0];
|
||
|
const temp = a2 - y;
|
||
|
const tempSquared = temp * temp;
|
||
|
const g1 = a3 / 2;
|
||
|
const h1 = temp / 2;
|
||
|
const m = tempSquared - 4 * a0;
|
||
|
const mError = tempSquared + 4 * Math.abs(a0);
|
||
|
const n = a3Squared - 4 * y;
|
||
|
const nError = a3Squared + 4 * Math.abs(y);
|
||
|
let g2;
|
||
|
let h2;
|
||
|
if (y < 0 || m * nError < n * mError) {
|
||
|
const squareRootOfN = Math.sqrt(n);
|
||
|
g2 = squareRootOfN / 2;
|
||
|
h2 = squareRootOfN === 0 ? 0 : (a3 * h1 - a1) / squareRootOfN;
|
||
|
} else {
|
||
|
const squareRootOfM = Math.sqrt(m);
|
||
|
g2 = squareRootOfM === 0 ? 0 : (a3 * h1 - a1) / squareRootOfM;
|
||
|
h2 = squareRootOfM / 2;
|
||
|
}
|
||
|
let G;
|
||
|
let g;
|
||
|
if (g1 === 0 && g2 === 0) {
|
||
|
G = 0;
|
||
|
g = 0;
|
||
|
} else if (Math_default.sign(g1) === Math_default.sign(g2)) {
|
||
|
G = g1 + g2;
|
||
|
g = y / G;
|
||
|
} else {
|
||
|
g = g1 - g2;
|
||
|
G = y / g;
|
||
|
}
|
||
|
let H;
|
||
|
let h;
|
||
|
if (h1 === 0 && h2 === 0) {
|
||
|
H = 0;
|
||
|
h = 0;
|
||
|
} else if (Math_default.sign(h1) === Math_default.sign(h2)) {
|
||
|
H = h1 + h2;
|
||
|
h = a0 / H;
|
||
|
} else {
|
||
|
h = h1 - h2;
|
||
|
H = a0 / h;
|
||
|
}
|
||
|
const roots1 = QuadraticRealPolynomial_default.computeRealRoots(1, G, H);
|
||
|
const roots2 = QuadraticRealPolynomial_default.computeRealRoots(1, g, h);
|
||
|
if (roots1.length !== 0) {
|
||
|
if (roots2.length !== 0) {
|
||
|
if (roots1[1] <= roots2[0]) {
|
||
|
return [roots1[0], roots1[1], roots2[0], roots2[1]];
|
||
|
} else if (roots2[1] <= roots1[0]) {
|
||
|
return [roots2[0], roots2[1], roots1[0], roots1[1]];
|
||
|
} else if (roots1[0] >= roots2[0] && roots1[1] <= roots2[1]) {
|
||
|
return [roots2[0], roots1[0], roots1[1], roots2[1]];
|
||
|
} else if (roots2[0] >= roots1[0] && roots2[1] <= roots1[1]) {
|
||
|
return [roots1[0], roots2[0], roots2[1], roots1[1]];
|
||
|
} else if (roots1[0] > roots2[0] && roots1[0] < roots2[1]) {
|
||
|
return [roots2[0], roots1[0], roots2[1], roots1[1]];
|
||
|
}
|
||
|
return [roots1[0], roots2[0], roots1[1], roots2[1]];
|
||
|
}
|
||
|
return roots1;
|
||
|
}
|
||
|
if (roots2.length !== 0) {
|
||
|
return roots2;
|
||
|
}
|
||
|
}
|
||
|
return [];
|
||
|
}
|
||
|
QuarticRealPolynomial.computeRealRoots = function(a, b, c, d, e) {
|
||
|
if (typeof a !== "number") {
|
||
|
throw new DeveloperError_default("a is a required number.");
|
||
|
}
|
||
|
if (typeof b !== "number") {
|
||
|
throw new DeveloperError_default("b is a required number.");
|
||
|
}
|
||
|
if (typeof c !== "number") {
|
||
|
throw new DeveloperError_default("c is a required number.");
|
||
|
}
|
||
|
if (typeof d !== "number") {
|
||
|
throw new DeveloperError_default("d is a required number.");
|
||
|
}
|
||
|
if (typeof e !== "number") {
|
||
|
throw new DeveloperError_default("e is a required number.");
|
||
|
}
|
||
|
if (Math.abs(a) < Math_default.EPSILON15) {
|
||
|
return CubicRealPolynomial_default.computeRealRoots(b, c, d, e);
|
||
|
}
|
||
|
const a3 = b / a;
|
||
|
const a2 = c / a;
|
||
|
const a1 = d / a;
|
||
|
const a0 = e / a;
|
||
|
let k = a3 < 0 ? 1 : 0;
|
||
|
k += a2 < 0 ? k + 1 : k;
|
||
|
k += a1 < 0 ? k + 1 : k;
|
||
|
k += a0 < 0 ? k + 1 : k;
|
||
|
switch (k) {
|
||
|
case 0:
|
||
|
return original(a3, a2, a1, a0);
|
||
|
case 1:
|
||
|
return neumark(a3, a2, a1, a0);
|
||
|
case 2:
|
||
|
return neumark(a3, a2, a1, a0);
|
||
|
case 3:
|
||
|
return original(a3, a2, a1, a0);
|
||
|
case 4:
|
||
|
return original(a3, a2, a1, a0);
|
||
|
case 5:
|
||
|
return neumark(a3, a2, a1, a0);
|
||
|
case 6:
|
||
|
return original(a3, a2, a1, a0);
|
||
|
case 7:
|
||
|
return original(a3, a2, a1, a0);
|
||
|
case 8:
|
||
|
return neumark(a3, a2, a1, a0);
|
||
|
case 9:
|
||
|
return original(a3, a2, a1, a0);
|
||
|
case 10:
|
||
|
return original(a3, a2, a1, a0);
|
||
|
case 11:
|
||
|
return neumark(a3, a2, a1, a0);
|
||
|
case 12:
|
||
|
return original(a3, a2, a1, a0);
|
||
|
case 13:
|
||
|
return original(a3, a2, a1, a0);
|
||
|
case 14:
|
||
|
return original(a3, a2, a1, a0);
|
||
|
case 15:
|
||
|
return original(a3, a2, a1, a0);
|
||
|
default:
|
||
|
return void 0;
|
||
|
}
|
||
|
};
|
||
|
var QuarticRealPolynomial_default = QuarticRealPolynomial;
|
||
|
|
||
|
// packages/engine/Source/Core/Ray.js
|
||
|
function Ray(origin, direction) {
|
||
|
direction = Cartesian3_default.clone(defaultValue_default(direction, Cartesian3_default.ZERO));
|
||
|
if (!Cartesian3_default.equals(direction, Cartesian3_default.ZERO)) {
|
||
|
Cartesian3_default.normalize(direction, direction);
|
||
|
}
|
||
|
this.origin = Cartesian3_default.clone(defaultValue_default(origin, Cartesian3_default.ZERO));
|
||
|
this.direction = direction;
|
||
|
}
|
||
|
Ray.clone = function(ray, result) {
|
||
|
if (!defined_default(ray)) {
|
||
|
return void 0;
|
||
|
}
|
||
|
if (!defined_default(result)) {
|
||
|
return new Ray(ray.origin, ray.direction);
|
||
|
}
|
||
|
result.origin = Cartesian3_default.clone(ray.origin);
|
||
|
result.direction = Cartesian3_default.clone(ray.direction);
|
||
|
return result;
|
||
|
};
|
||
|
Ray.getPoint = function(ray, t, result) {
|
||
|
Check_default.typeOf.object("ray", ray);
|
||
|
Check_default.typeOf.number("t", t);
|
||
|
if (!defined_default(result)) {
|
||
|
result = new Cartesian3_default();
|
||
|
}
|
||
|
result = Cartesian3_default.multiplyByScalar(ray.direction, t, result);
|
||
|
return Cartesian3_default.add(ray.origin, result, result);
|
||
|
};
|
||
|
var Ray_default = Ray;
|
||
|
|
||
|
// packages/engine/Source/Core/IntersectionTests.js
|
||
|
var IntersectionTests = {};
|
||
|
IntersectionTests.rayPlane = function(ray, plane, result) {
|
||
|
if (!defined_default(ray)) {
|
||
|
throw new DeveloperError_default("ray is required.");
|
||
|
}
|
||
|
if (!defined_default(plane)) {
|
||
|
throw new DeveloperError_default("plane is required.");
|
||
|
}
|
||
|
if (!defined_default(result)) {
|
||
|
result = new Cartesian3_default();
|
||
|
}
|
||
|
const origin = ray.origin;
|
||
|
const direction = ray.direction;
|
||
|
const normal = plane.normal;
|
||
|
const denominator = Cartesian3_default.dot(normal, direction);
|
||
|
if (Math.abs(denominator) < Math_default.EPSILON15) {
|
||
|
return void 0;
|
||
|
}
|
||
|
const t = (-plane.distance - Cartesian3_default.dot(normal, origin)) / denominator;
|
||
|
if (t < 0) {
|
||
|
return void 0;
|
||
|
}
|
||
|
result = Cartesian3_default.multiplyByScalar(direction, t, result);
|
||
|
return Cartesian3_default.add(origin, result, result);
|
||
|
};
|
||
|
var scratchEdge0 = new Cartesian3_default();
|
||
|
var scratchEdge1 = new Cartesian3_default();
|
||
|
var scratchPVec = new Cartesian3_default();
|
||
|
var scratchTVec = new Cartesian3_default();
|
||
|
var scratchQVec = new Cartesian3_default();
|
||
|
IntersectionTests.rayTriangleParametric = function(ray, p0, p1, p2, cullBackFaces) {
|
||
|
if (!defined_default(ray)) {
|
||
|
throw new DeveloperError_default("ray is required.");
|
||
|
}
|
||
|
if (!defined_default(p0)) {
|
||
|
throw new DeveloperError_default("p0 is required.");
|
||
|
}
|
||
|
if (!defined_default(p1)) {
|
||
|
throw new DeveloperError_default("p1 is required.");
|
||
|
}
|
||
|
if (!defined_default(p2)) {
|
||
|
throw new DeveloperError_default("p2 is required.");
|
||
|
}
|
||
|
cullBackFaces = defaultValue_default(cullBackFaces, false);
|
||
|
const origin = ray.origin;
|
||
|
const direction = ray.direction;
|
||
|
const edge0 = Cartesian3_default.subtract(p1, p0, scratchEdge0);
|
||
|
const edge1 = Cartesian3_default.subtract(p2, p0, scratchEdge1);
|
||
|
const p = Cartesian3_default.cross(direction, edge1, scratchPVec);
|
||
|
const det = Cartesian3_default.dot(edge0, p);
|
||
|
let tvec;
|
||
|
let q;
|
||
|
let u;
|
||
|
let v;
|
||
|
let t;
|
||
|
if (cullBackFaces) {
|
||
|
if (det < Math_default.EPSILON6) {
|
||
|
return void 0;
|
||
|
}
|
||
|
tvec = Cartesian3_default.subtract(origin, p0, scratchTVec);
|
||
|
u = Cartesian3_default.dot(tvec, p);
|
||
|
if (u < 0 || u > det) {
|
||
|
return void 0;
|
||
|
}
|
||
|
q = Cartesian3_default.cross(tvec, edge0, scratchQVec);
|
||
|
v = Cartesian3_default.dot(direction, q);
|
||
|
if (v < 0 || u + v > det) {
|
||
|
return void 0;
|
||
|
}
|
||
|
t = Cartesian3_default.dot(edge1, q) / det;
|
||
|
} else {
|
||
|
if (Math.abs(det) < Math_default.EPSILON6) {
|
||
|
return void 0;
|
||
|
}
|
||
|
const invDet = 1 / det;
|
||
|
tvec = Cartesian3_default.subtract(origin, p0, scratchTVec);
|
||
|
u = Cartesian3_default.dot(tvec, p) * invDet;
|
||
|
if (u < 0 || u > 1) {
|
||
|
return void 0;
|
||
|
}
|
||
|
q = Cartesian3_default.cross(tvec, edge0, scratchQVec);
|
||
|
v = Cartesian3_default.dot(direction, q) * invDet;
|
||
|
if (v < 0 || u + v > 1) {
|
||
|
return void 0;
|
||
|
}
|
||
|
t = Cartesian3_default.dot(edge1, q) * invDet;
|
||
|
}
|
||
|
return t;
|
||
|
};
|
||
|
IntersectionTests.rayTriangle = function(ray, p0, p1, p2, cullBackFaces, result) {
|
||
|
const t = IntersectionTests.rayTriangleParametric(
|
||
|
ray,
|
||
|
p0,
|
||
|
p1,
|
||
|
p2,
|
||
|
cullBackFaces
|
||
|
);
|
||
|
if (!defined_default(t) || t < 0) {
|
||
|
return void 0;
|
||
|
}
|
||
|
if (!defined_default(result)) {
|
||
|
result = new Cartesian3_default();
|
||
|
}
|
||
|
Cartesian3_default.multiplyByScalar(ray.direction, t, result);
|
||
|
return Cartesian3_default.add(ray.origin, result, result);
|
||
|
};
|
||
|
var scratchLineSegmentTriangleRay = new Ray_default();
|
||
|
IntersectionTests.lineSegmentTriangle = function(v0, v1, p0, p1, p2, cullBackFaces, result) {
|
||
|
if (!defined_default(v0)) {
|
||
|
throw new DeveloperError_default("v0 is required.");
|
||
|
}
|
||
|
if (!defined_default(v1)) {
|
||
|
throw new DeveloperError_default("v1 is required.");
|
||
|
}
|
||
|
if (!defined_default(p0)) {
|
||
|
throw new DeveloperError_default("p0 is required.");
|
||
|
}
|
||
|
if (!defined_default(p1)) {
|
||
|
throw new DeveloperError_default("p1 is required.");
|
||
|
}
|
||
|
if (!defined_default(p2)) {
|
||
|
throw new DeveloperError_default("p2 is required.");
|
||
|
}
|
||
|
const ray = scratchLineSegmentTriangleRay;
|
||
|
Cartesian3_default.clone(v0, ray.origin);
|
||
|
Cartesian3_default.subtract(v1, v0, ray.direction);
|
||
|
Cartesian3_default.normalize(ray.direction, ray.direction);
|
||
|
const t = IntersectionTests.rayTriangleParametric(
|
||
|
ray,
|
||
|
p0,
|
||
|
p1,
|
||
|
p2,
|
||
|
cullBackFaces
|
||
|
);
|
||
|
if (!defined_default(t) || t < 0 || t > Cartesian3_default.distance(v0, v1)) {
|
||
|
return void 0;
|
||
|
}
|
||
|
if (!defined_default(result)) {
|
||
|
result = new Cartesian3_default();
|
||
|
}
|
||
|
Cartesian3_default.multiplyByScalar(ray.direction, t, result);
|
||
|
return Cartesian3_default.add(ray.origin, result, result);
|
||
|
};
|
||
|
function solveQuadratic(a, b, c, result) {
|
||
|
const det = b * b - 4 * a * c;
|
||
|
if (det < 0) {
|
||
|
return void 0;
|
||
|
} else if (det > 0) {
|
||
|
const denom = 1 / (2 * a);
|
||
|
const disc = Math.sqrt(det);
|
||
|
const root0 = (-b + disc) * denom;
|
||
|
const root1 = (-b - disc) * denom;
|
||
|
if (root0 < root1) {
|
||
|
result.root0 = root0;
|
||
|
result.root1 = root1;
|
||
|
} else {
|
||
|
result.root0 = root1;
|
||
|
result.root1 = root0;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
const root = -b / (2 * a);
|
||
|
if (root === 0) {
|
||
|
return void 0;
|
||
|
}
|
||
|
result.root0 = result.root1 = root;
|
||
|
return result;
|
||
|
}
|
||
|
var raySphereRoots = {
|
||
|
root0: 0,
|
||
|
root1: 0
|
||
|
};
|
||
|
function raySphere(ray, sphere, result) {
|
||
|
if (!defined_default(result)) {
|
||
|
result = new Interval_default();
|
||
|
}
|
||
|
const origin = ray.origin;
|
||
|
const direction = ray.direction;
|
||
|
const center = sphere.center;
|
||
|
const radiusSquared = sphere.radius * sphere.radius;
|
||
|
const diff = Cartesian3_default.subtract(origin, center, scratchPVec);
|
||
|
const a = Cartesian3_default.dot(direction, direction);
|
||
|
const b = 2 * Cartesian3_default.dot(direction, diff);
|
||
|
const c = Cartesian3_default.magnitudeSquared(diff) - radiusSquared;
|
||
|
const roots = solveQuadratic(a, b, c, raySphereRoots);
|
||
|
if (!defined_default(roots)) {
|
||
|
return void 0;
|
||
|
}
|
||
|
result.start = roots.root0;
|
||
|
result.stop = roots.root1;
|
||
|
return result;
|
||
|
}
|
||
|
IntersectionTests.raySphere = function(ray, sphere, result) {
|
||
|
if (!defined_default(ray)) {
|
||
|
throw new DeveloperError_default("ray is required.");
|
||
|
}
|
||
|
if (!defined_default(sphere)) {
|
||
|
throw new DeveloperError_default("sphere is required.");
|
||
|
}
|
||
|
result = raySphere(ray, sphere, result);
|
||
|
if (!defined_default(result) || result.stop < 0) {
|
||
|
return void 0;
|
||
|
}
|
||
|
result.start = Math.max(result.start, 0);
|
||
|
return result;
|
||
|
};
|
||
|
var scratchLineSegmentRay = new Ray_default();
|
||
|
IntersectionTests.lineSegmentSphere = function(p0, p1, sphere, result) {
|
||
|
if (!defined_default(p0)) {
|
||
|
throw new DeveloperError_default("p0 is required.");
|
||
|
}
|
||
|
if (!defined_default(p1)) {
|
||
|
throw new DeveloperError_default("p1 is required.");
|
||
|
}
|
||
|
if (!defined_default(sphere)) {
|
||
|
throw new DeveloperError_default("sphere is required.");
|
||
|
}
|
||
|
const ray = scratchLineSegmentRay;
|
||
|
Cartesian3_default.clone(p0, ray.origin);
|
||
|
const direction = Cartesian3_default.subtract(p1, p0, ray.direction);
|
||
|
const maxT = Cartesian3_default.magnitude(direction);
|
||
|
Cartesian3_default.normalize(direction, direction);
|
||
|
result = raySphere(ray, sphere, result);
|
||
|
if (!defined_default(result) || result.stop < 0 || result.start > maxT) {
|
||
|
return void 0;
|
||
|
}
|
||
|
result.start = Math.max(result.start, 0);
|
||
|
result.stop = Math.min(result.stop, maxT);
|
||
|
return result;
|
||
|
};
|
||
|
var scratchQ = new Cartesian3_default();
|
||
|
var scratchW = new Cartesian3_default();
|
||
|
IntersectionTests.rayEllipsoid = function(ray, ellipsoid) {
|
||
|
if (!defined_default(ray)) {
|
||
|
throw new DeveloperError_default("ray is required.");
|
||
|
}
|
||
|
if (!defined_default(ellipsoid)) {
|
||
|
throw new DeveloperError_default("ellipsoid is required.");
|
||
|
}
|
||
|
const inverseRadii = ellipsoid.oneOverRadii;
|
||
|
const q = Cartesian3_default.multiplyComponents(inverseRadii, ray.origin, scratchQ);
|
||
|
const w = Cartesian3_default.multiplyComponents(
|
||
|
inverseRadii,
|
||
|
ray.direction,
|
||
|
scratchW
|
||
|
);
|
||
|
const q2 = Cartesian3_default.magnitudeSquared(q);
|
||
|
const qw = Cartesian3_default.dot(q, w);
|
||
|
let difference, w2, product, discriminant, temp;
|
||
|
if (q2 > 1) {
|
||
|
if (qw >= 0) {
|
||
|
return void 0;
|
||
|
}
|
||
|
const qw2 = qw * qw;
|
||
|
difference = q2 - 1;
|
||
|
w2 = Cartesian3_default.magnitudeSquared(w);
|
||
|
product = w2 * difference;
|
||
|
if (qw2 < product) {
|
||
|
return void 0;
|
||
|
} else if (qw2 > product) {
|
||
|
discriminant = qw * qw - product;
|
||
|
temp = -qw + Math.sqrt(discriminant);
|
||
|
const root0 = temp / w2;
|
||
|
const root1 = difference / temp;
|
||
|
if (root0 < root1) {
|
||
|
return new Interval_default(root0, root1);
|
||
|
}
|
||
|
return {
|
||
|
start: root1,
|
||
|
stop: root0
|
||
|
};
|
||
|
}
|
||
|
const root = Math.sqrt(difference / w2);
|
||
|
return new Interval_default(root, root);
|
||
|
} else if (q2 < 1) {
|
||
|
difference = q2 - 1;
|
||
|
w2 = Cartesian3_default.magnitudeSquared(w);
|
||
|
product = w2 * difference;
|
||
|
discriminant = qw * qw - product;
|
||
|
temp = -qw + Math.sqrt(discriminant);
|
||
|
return new Interval_default(0, temp / w2);
|
||
|
}
|
||
|
if (qw < 0) {
|
||
|
w2 = Cartesian3_default.magnitudeSquared(w);
|
||
|
return new Interval_default(0, -qw / w2);
|
||
|
}
|
||
|
return void 0;
|
||
|
};
|
||
|
function addWithCancellationCheck2(left, right, tolerance) {
|
||
|
const difference = left + right;
|
||
|
if (Math_default.sign(left) !== Math_default.sign(right) && Math.abs(difference / Math.max(Math.abs(left), Math.abs(right))) < tolerance) {
|
||
|
return 0;
|
||
|
}
|
||
|
return difference;
|
||
|
}
|
||
|
IntersectionTests.quadraticVectorExpression = function(A, b, c, x, w) {
|
||
|
const xSquared = x * x;
|
||
|
const wSquared = w * w;
|
||
|
const l2 = (A[Matrix3_default.COLUMN1ROW1] - A[Matrix3_default.COLUMN2ROW2]) * wSquared;
|
||
|
const l1 = w * (x * addWithCancellationCheck2(
|
||
|
A[Matrix3_default.COLUMN1ROW0],
|
||
|
A[Matrix3_default.COLUMN0ROW1],
|
||
|
Math_default.EPSILON15
|
||
|
) + b.y);
|
||
|
const l0 = A[Matrix3_default.COLUMN0ROW0] * xSquared + A[Matrix3_default.COLUMN2ROW2] * wSquared + x * b.x + c;
|
||
|
const r1 = wSquared * addWithCancellationCheck2(
|
||
|
A[Matrix3_default.COLUMN2ROW1],
|
||
|
A[Matrix3_default.COLUMN1ROW2],
|
||
|
Math_default.EPSILON15
|
||
|
);
|
||
|
const r0 = w * (x * addWithCancellationCheck2(A[Matrix3_default.COLUMN2ROW0], A[Matrix3_default.COLUMN0ROW2]) + b.z);
|
||
|
let cosines;
|
||
|
const solutions = [];
|
||
|
if (r0 === 0 && r1 === 0) {
|
||
|
cosines = QuadraticRealPolynomial_default.computeRealRoots(l2, l1, l0);
|
||
|
if (cosines.length === 0) {
|
||
|
return solutions;
|
||
|
}
|
||
|
const cosine0 = cosines[0];
|
||
|
const sine0 = Math.sqrt(Math.max(1 - cosine0 * cosine0, 0));
|
||
|
solutions.push(new Cartesian3_default(x, w * cosine0, w * -sine0));
|
||
|
solutions.push(new Cartesian3_default(x, w * cosine0, w * sine0));
|
||
|
if (cosines.length === 2) {
|
||
|
const cosine1 = cosines[1];
|
||
|
const sine1 = Math.sqrt(Math.max(1 - cosine1 * cosine1, 0));
|
||
|
solutions.push(new Cartesian3_default(x, w * cosine1, w * -sine1));
|
||
|
solutions.push(new Cartesian3_default(x, w * cosine1, w * sine1));
|
||
|
}
|
||
|
return solutions;
|
||
|
}
|
||
|
const r0Squared = r0 * r0;
|
||
|
const r1Squared = r1 * r1;
|
||
|
const l2Squared = l2 * l2;
|
||
|
const r0r1 = r0 * r1;
|
||
|
const c4 = l2Squared + r1Squared;
|
||
|
const c3 = 2 * (l1 * l2 + r0r1);
|
||
|
const c2 = 2 * l0 * l2 + l1 * l1 - r1Squared + r0Squared;
|
||
|
const c1 = 2 * (l0 * l1 - r0r1);
|
||
|
const c0 = l0 * l0 - r0Squared;
|
||
|
if (c4 === 0 && c3 === 0 && c2 === 0 && c1 === 0) {
|
||
|
return solutions;
|
||
|
}
|
||
|
cosines = QuarticRealPolynomial_default.computeRealRoots(c4, c3, c2, c1, c0);
|
||
|
const length = cosines.length;
|
||
|
if (length === 0) {
|
||
|
return solutions;
|
||
|
}
|
||
|
for (let i = 0; i < length; ++i) {
|
||
|
const cosine = cosines[i];
|
||
|
const cosineSquared = cosine * cosine;
|
||
|
const sineSquared = Math.max(1 - cosineSquared, 0);
|
||
|
const sine = Math.sqrt(sineSquared);
|
||
|
let left;
|
||
|
if (Math_default.sign(l2) === Math_default.sign(l0)) {
|
||
|
left = addWithCancellationCheck2(
|
||
|
l2 * cosineSquared + l0,
|
||
|
l1 * cosine,
|
||
|
Math_default.EPSILON12
|
||
|
);
|
||
|
} else if (Math_default.sign(l0) === Math_default.sign(l1 * cosine)) {
|
||
|
left = addWithCancellationCheck2(
|
||
|
l2 * cosineSquared,
|
||
|
l1 * cosine + l0,
|
||
|
Math_default.EPSILON12
|
||
|
);
|
||
|
} else {
|
||
|
left = addWithCancellationCheck2(
|
||
|
l2 * cosineSquared + l1 * cosine,
|
||
|
l0,
|
||
|
Math_default.EPSILON12
|
||
|
);
|
||
|
}
|
||
|
const right = addWithCancellationCheck2(
|
||
|
r1 * cosine,
|
||
|
r0,
|
||
|
Math_default.EPSILON15
|
||
|
);
|
||
|
const product = left * right;
|
||
|
if (product < 0) {
|
||
|
solutions.push(new Cartesian3_default(x, w * cosine, w * sine));
|
||
|
} else if (product > 0) {
|
||
|
solutions.push(new Cartesian3_default(x, w * cosine, w * -sine));
|
||
|
} else if (sine !== 0) {
|
||
|
solutions.push(new Cartesian3_default(x, w * cosine, w * -sine));
|
||
|
solutions.push(new Cartesian3_default(x, w * cosine, w * sine));
|
||
|
++i;
|
||
|
} else {
|
||
|
solutions.push(new Cartesian3_default(x, w * cosine, w * sine));
|
||
|
}
|
||
|
}
|
||
|
return solutions;
|
||
|
};
|
||
|
var firstAxisScratch = new Cartesian3_default();
|
||
|
var secondAxisScratch = new Cartesian3_default();
|
||
|
var thirdAxisScratch = new Cartesian3_default();
|
||
|
var referenceScratch = new Cartesian3_default();
|
||
|
var bCart = new Cartesian3_default();
|
||
|
var bScratch = new Matrix3_default();
|
||
|
var btScratch = new Matrix3_default();
|
||
|
var diScratch = new Matrix3_default();
|
||
|
var dScratch = new Matrix3_default();
|
||
|
var cScratch = new Matrix3_default();
|
||
|
var tempMatrix = new Matrix3_default();
|
||
|
var aScratch = new Matrix3_default();
|
||
|
var sScratch = new Cartesian3_default();
|
||
|
var closestScratch = new Cartesian3_default();
|
||
|
var surfPointScratch = new Cartographic_default();
|
||
|
IntersectionTests.grazingAltitudeLocation = function(ray, ellipsoid) {
|
||
|
if (!defined_default(ray)) {
|
||
|
throw new DeveloperError_default("ray is required.");
|
||
|
}
|
||
|
if (!defined_default(ellipsoid)) {
|
||
|
throw new DeveloperError_default("ellipsoid is required.");
|
||
|
}
|
||
|
const position = ray.origin;
|
||
|
const direction = ray.direction;
|
||
|
if (!Cartesian3_default.equals(position, Cartesian3_default.ZERO)) {
|
||
|
const normal = ellipsoid.geodeticSurfaceNormal(position, firstAxisScratch);
|
||
|
if (Cartesian3_default.dot(direction, normal) >= 0) {
|
||
|
return position;
|
||
|
}
|
||
|
}
|
||
|
const intersects = defined_default(this.rayEllipsoid(ray, ellipsoid));
|
||
|
const f = ellipsoid.transformPositionToScaledSpace(
|
||
|
direction,
|
||
|
firstAxisScratch
|
||
|
);
|
||
|
const firstAxis = Cartesian3_default.normalize(f, f);
|
||
|
const reference = Cartesian3_default.mostOrthogonalAxis(f, referenceScratch);
|
||
|
const secondAxis = Cartesian3_default.normalize(
|
||
|
Cartesian3_default.cross(reference, firstAxis, secondAxisScratch),
|
||
|
secondAxisScratch
|
||
|
);
|
||
|
const thirdAxis = Cartesian3_default.normalize(
|
||
|
Cartesian3_default.cross(firstAxis, secondAxis, thirdAxisScratch),
|
||
|
thirdAxisScratch
|
||
|
);
|
||
|
const B = bScratch;
|
||
|
B[0] = firstAxis.x;
|
||
|
B[1] = firstAxis.y;
|
||
|
B[2] = firstAxis.z;
|
||
|
B[3] = secondAxis.x;
|
||
|
B[4] = secondAxis.y;
|
||
|
B[5] = secondAxis.z;
|
||
|
B[6] = thirdAxis.x;
|
||
|
B[7] = thirdAxis.y;
|
||
|
B[8] = thirdAxis.z;
|
||
|
const B_T = Matrix3_default.transpose(B, btScratch);
|
||
|
const D_I = Matrix3_default.fromScale(ellipsoid.radii, diScratch);
|
||
|
const D = Matrix3_default.fromScale(ellipsoid.oneOverRadii, dScratch);
|
||
|
const C = cScratch;
|
||
|
C[0] = 0;
|
||
|
C[1] = -direction.z;
|
||
|
C[2] = direction.y;
|
||
|
C[3] = direction.z;
|
||
|
C[4] = 0;
|
||
|
C[5] = -direction.x;
|
||
|
C[6] = -direction.y;
|
||
|
C[7] = direction.x;
|
||
|
C[8] = 0;
|
||
|
const temp = Matrix3_default.multiply(
|
||
|
Matrix3_default.multiply(B_T, D, tempMatrix),
|
||
|
C,
|
||
|
tempMatrix
|
||
|
);
|
||
|
const A = Matrix3_default.multiply(
|
||
|
Matrix3_default.multiply(temp, D_I, aScratch),
|
||
|
B,
|
||
|
aScratch
|
||
|
);
|
||
|
const b = Matrix3_default.multiplyByVector(temp, position, bCart);
|
||
|
const solutions = IntersectionTests.quadraticVectorExpression(
|
||
|
A,
|
||
|
Cartesian3_default.negate(b, firstAxisScratch),
|
||
|
0,
|
||
|
0,
|
||
|
1
|
||
|
);
|
||
|
let s;
|
||
|
let altitude;
|
||
|
const length = solutions.length;
|
||
|
if (length > 0) {
|
||
|
let closest = Cartesian3_default.clone(Cartesian3_default.ZERO, closestScratch);
|
||
|
let maximumValue = Number.NEGATIVE_INFINITY;
|
||
|
for (let i = 0; i < length; ++i) {
|
||
|
s = Matrix3_default.multiplyByVector(
|
||
|
D_I,
|
||
|
Matrix3_default.multiplyByVector(B, solutions[i], sScratch),
|
||
|
sScratch
|
||
|
);
|
||
|
const v = Cartesian3_default.normalize(
|
||
|
Cartesian3_default.subtract(s, position, referenceScratch),
|
||
|
referenceScratch
|
||
|
);
|
||
|
const dotProduct = Cartesian3_default.dot(v, direction);
|
||
|
if (dotProduct > maximumValue) {
|
||
|
maximumValue = dotProduct;
|
||
|
closest = Cartesian3_default.clone(s, closest);
|
||
|
}
|
||
|
}
|
||
|
const surfacePoint = ellipsoid.cartesianToCartographic(
|
||
|
closest,
|
||
|
surfPointScratch
|
||
|
);
|
||
|
maximumValue = Math_default.clamp(maximumValue, 0, 1);
|
||
|
altitude = Cartesian3_default.magnitude(
|
||
|
Cartesian3_default.subtract(closest, position, referenceScratch)
|
||
|
) * Math.sqrt(1 - maximumValue * maximumValue);
|
||
|
altitude = intersects ? -altitude : altitude;
|
||
|
surfacePoint.height = altitude;
|
||
|
return ellipsoid.cartographicToCartesian(surfacePoint, new Cartesian3_default());
|
||
|
}
|
||
|
return void 0;
|
||
|
};
|
||
|
var lineSegmentPlaneDifference = new Cartesian3_default();
|
||
|
IntersectionTests.lineSegmentPlane = function(endPoint0, endPoint1, plane, result) {
|
||
|
if (!defined_default(endPoint0)) {
|
||
|
throw new DeveloperError_default("endPoint0 is required.");
|
||
|
}
|
||
|
if (!defined_default(endPoint1)) {
|
||
|
throw new DeveloperError_default("endPoint1 is required.");
|
||
|
}
|
||
|
if (!defined_default(plane)) {
|
||
|
throw new DeveloperError_default("plane is required.");
|
||
|
}
|
||
|
if (!defined_default(result)) {
|
||
|
result = new Cartesian3_default();
|
||
|
}
|
||
|
const difference = Cartesian3_default.subtract(
|
||
|
endPoint1,
|
||
|
endPoint0,
|
||
|
lineSegmentPlaneDifference
|
||
|
);
|
||
|
const normal = plane.normal;
|
||
|
const nDotDiff = Cartesian3_default.dot(normal, difference);
|
||
|
if (Math.abs(nDotDiff) < Math_default.EPSILON6) {
|
||
|
return void 0;
|
||
|
}
|
||
|
const nDotP0 = Cartesian3_default.dot(normal, endPoint0);
|
||
|
const t = -(plane.distance + nDotP0) / nDotDiff;
|
||
|
if (t < 0 || t > 1) {
|
||
|
return void 0;
|
||
|
}
|
||
|
Cartesian3_default.multiplyByScalar(difference, t, result);
|
||
|
Cartesian3_default.add(endPoint0, result, result);
|
||
|
return result;
|
||
|
};
|
||
|
IntersectionTests.trianglePlaneIntersection = function(p0, p1, p2, plane) {
|
||
|
if (!defined_default(p0) || !defined_default(p1) || !defined_default(p2) || !defined_default(plane)) {
|
||
|
throw new DeveloperError_default("p0, p1, p2, and plane are required.");
|
||
|
}
|
||
|
const planeNormal = plane.normal;
|
||
|
const planeD = plane.distance;
|
||
|
const p0Behind = Cartesian3_default.dot(planeNormal, p0) + planeD < 0;
|
||
|
const p1Behind = Cartesian3_default.dot(planeNormal, p1) + planeD < 0;
|
||
|
const p2Behind = Cartesian3_default.dot(planeNormal, p2) + planeD < 0;
|
||
|
let numBehind = 0;
|
||
|
numBehind += p0Behind ? 1 : 0;
|
||
|
numBehind += p1Behind ? 1 : 0;
|
||
|
numBehind += p2Behind ? 1 : 0;
|
||
|
let u1, u2;
|
||
|
if (numBehind === 1 || numBehind === 2) {
|
||
|
u1 = new Cartesian3_default();
|
||
|
u2 = new Cartesian3_default();
|
||
|
}
|
||
|
if (numBehind === 1) {
|
||
|
if (p0Behind) {
|
||
|
IntersectionTests.lineSegmentPlane(p0, p1, plane, u1);
|
||
|
IntersectionTests.lineSegmentPlane(p0, p2, plane, u2);
|
||
|
return {
|
||
|
positions: [p0, p1, p2, u1, u2],
|
||
|
indices: [
|
||
|
// Behind
|
||
|
0,
|
||
|
3,
|
||
|
4,
|
||
|
// In front
|
||
|
1,
|
||
|
2,
|
||
|
4,
|
||
|
1,
|
||
|
4,
|
||
|
3
|
||
|
]
|
||
|
};
|
||
|
} else if (p1Behind) {
|
||
|
IntersectionTests.lineSegmentPlane(p1, p2, plane, u1);
|
||
|
IntersectionTests.lineSegmentPlane(p1, p0, plane, u2);
|
||
|
return {
|
||
|
positions: [p0, p1, p2, u1, u2],
|
||
|
indices: [
|
||
|
// Behind
|
||
|
1,
|
||
|
3,
|
||
|
4,
|
||
|
// In front
|
||
|
2,
|
||
|
0,
|
||
|
4,
|
||
|
2,
|
||
|
4,
|
||
|
3
|
||
|
]
|
||
|
};
|
||
|
} else if (p2Behind) {
|
||
|
IntersectionTests.lineSegmentPlane(p2, p0, plane, u1);
|
||
|
IntersectionTests.lineSegmentPlane(p2, p1, plane, u2);
|
||
|
return {
|
||
|
positions: [p0, p1, p2, u1, u2],
|
||
|
indices: [
|
||
|
// Behind
|
||
|
2,
|
||
|
3,
|
||
|
4,
|
||
|
// In front
|
||
|
0,
|
||
|
1,
|
||
|
4,
|
||
|
0,
|
||
|
4,
|
||
|
3
|
||
|
]
|
||
|
};
|
||
|
}
|
||
|
} else if (numBehind === 2) {
|
||
|
if (!p0Behind) {
|
||
|
IntersectionTests.lineSegmentPlane(p1, p0, plane, u1);
|
||
|
IntersectionTests.lineSegmentPlane(p2, p0, plane, u2);
|
||
|
return {
|
||
|
positions: [p0, p1, p2, u1, u2],
|
||
|
indices: [
|
||
|
// Behind
|
||
|
1,
|
||
|
2,
|
||
|
4,
|
||
|
1,
|
||
|
4,
|
||
|
3,
|
||
|
// In front
|
||
|
0,
|
||
|
3,
|
||
|
4
|
||
|
]
|
||
|
};
|
||
|
} else if (!p1Behind) {
|
||
|
IntersectionTests.lineSegmentPlane(p2, p1, plane, u1);
|
||
|
IntersectionTests.lineSegmentPlane(p0, p1, plane, u2);
|
||
|
return {
|
||
|
positions: [p0, p1, p2, u1, u2],
|
||
|
indices: [
|
||
|
// Behind
|
||
|
2,
|
||
|
0,
|
||
|
4,
|
||
|
2,
|
||
|
4,
|
||
|
3,
|
||
|
// In front
|
||
|
1,
|
||
|
3,
|
||
|
4
|
||
|
]
|
||
|
};
|
||
|
} else if (!p2Behind) {
|
||
|
IntersectionTests.lineSegmentPlane(p0, p2, plane, u1);
|
||
|
IntersectionTests.lineSegmentPlane(p1, p2, plane, u2);
|
||
|
return {
|
||
|
positions: [p0, p1, p2, u1, u2],
|
||
|
indices: [
|
||
|
// Behind
|
||
|
0,
|
||
|
1,
|
||
|
4,
|
||
|
0,
|
||
|
4,
|
||
|
3,
|
||
|
// In front
|
||
|
2,
|
||
|
3,
|
||
|
4
|
||
|
]
|
||
|
};
|
||
|
}
|
||
|
}
|
||
|
return void 0;
|
||
|
};
|
||
|
var IntersectionTests_default = IntersectionTests;
|
||
|
|
||
|
export {
|
||
|
Ray_default,
|
||
|
IntersectionTests_default
|
||
|
};
|