823 lines
42 KiB
JavaScript
823 lines
42 KiB
JavaScript
|
/**
|
||
|
* Cesium - https://github.com/CesiumGS/cesium
|
||
|
*
|
||
|
* Copyright 2011-2020 Cesium Contributors
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*
|
||
|
* Columbus View (Pat. Pend.)
|
||
|
*
|
||
|
* Portions licensed separately.
|
||
|
* See https://github.com/CesiumGS/cesium/blob/master/LICENSE.md for full licensing details.
|
||
|
*/
|
||
|
define(['exports', './when-8d13db60', './Check-70bec281', './Math-61ede240', './Cartographic-f2a06374', './Cartesian2-16a61632', './BoundingSphere-d018a565', './Plane-aa6c3ce5', './EllipsoidTangentPlane-33ed15f1'], function (exports, when, Check, _Math, Cartographic, Cartesian2, BoundingSphere, Plane, EllipsoidTangentPlane) { 'use strict';
|
||
|
|
||
|
/**
|
||
|
* Creates an instance of an OrientedBoundingBox.
|
||
|
* An OrientedBoundingBox of some object is a closed and convex cuboid. It can provide a tighter bounding volume than {@link BoundingSphere} or {@link AxisAlignedBoundingBox} in many cases.
|
||
|
* @alias OrientedBoundingBox
|
||
|
* @constructor
|
||
|
*
|
||
|
* @param {Cartesian3} [center=Cartesian3.ZERO] The center of the box.
|
||
|
* @param {Matrix3} [halfAxes=Matrix3.ZERO] The three orthogonal half-axes of the bounding box.
|
||
|
* Equivalently, the transformation matrix, to rotate and scale a 0x0x0
|
||
|
* cube centered at the origin.
|
||
|
*
|
||
|
*
|
||
|
* @example
|
||
|
* // Create an OrientedBoundingBox using a transformation matrix, a position where the box will be translated, and a scale.
|
||
|
* var center = new Cesium.Cartesian3(1.0, 0.0, 0.0);
|
||
|
* var halfAxes = Cesium.Matrix3.fromScale(new Cesium.Cartesian3(1.0, 3.0, 2.0), new Cesium.Matrix3());
|
||
|
*
|
||
|
* var obb = new Cesium.OrientedBoundingBox(center, halfAxes);
|
||
|
*
|
||
|
* @see BoundingSphere
|
||
|
* @see BoundingRectangle
|
||
|
*/
|
||
|
function OrientedBoundingBox(center, halfAxes) {
|
||
|
/**
|
||
|
* The center of the box.
|
||
|
* @type {Cartesian3}
|
||
|
* @default {@link Cartesian3.ZERO}
|
||
|
*/
|
||
|
this.center = Cartographic.Cartesian3.clone(when.defaultValue(center, Cartographic.Cartesian3.ZERO));
|
||
|
/**
|
||
|
* The transformation matrix, to rotate the box to the right position.
|
||
|
* @type {Matrix3}
|
||
|
* @default {@link Matrix3.ZERO}
|
||
|
*/
|
||
|
this.halfAxes = BoundingSphere.Matrix3.clone(when.defaultValue(halfAxes, BoundingSphere.Matrix3.ZERO));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* The number of elements used to pack the object into an array.
|
||
|
* @type {Number}
|
||
|
*/
|
||
|
OrientedBoundingBox.packedLength = Cartographic.Cartesian3.packedLength + BoundingSphere.Matrix3.packedLength;
|
||
|
|
||
|
/**
|
||
|
* Stores the provided instance into the provided array.
|
||
|
*
|
||
|
* @param {OrientedBoundingBox} value The value to pack.
|
||
|
* @param {Number[]} array The array to pack into.
|
||
|
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
|
||
|
*
|
||
|
* @returns {Number[]} The array that was packed into
|
||
|
*/
|
||
|
OrientedBoundingBox.pack = function(value, array, startingIndex) {
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
Check.Check.typeOf.object('value', value);
|
||
|
Check.Check.defined('array', array);
|
||
|
//>>includeEnd('debug');
|
||
|
|
||
|
startingIndex = when.defaultValue(startingIndex, 0);
|
||
|
|
||
|
Cartographic.Cartesian3.pack(value.center, array, startingIndex);
|
||
|
BoundingSphere.Matrix3.pack(value.halfAxes, array, startingIndex + Cartographic.Cartesian3.packedLength);
|
||
|
|
||
|
return array;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Retrieves an instance from a packed array.
|
||
|
*
|
||
|
* @param {Number[]} array The packed array.
|
||
|
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
|
||
|
* @param {OrientedBoundingBox} [result] The object into which to store the result.
|
||
|
* @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if one was not provided.
|
||
|
*/
|
||
|
OrientedBoundingBox.unpack = function(array, startingIndex, result) {
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
Check.Check.defined('array', array);
|
||
|
//>>includeEnd('debug');
|
||
|
|
||
|
startingIndex = when.defaultValue(startingIndex, 0);
|
||
|
|
||
|
if (!when.defined(result)) {
|
||
|
result = new OrientedBoundingBox();
|
||
|
}
|
||
|
|
||
|
Cartographic.Cartesian3.unpack(array, startingIndex, result.center);
|
||
|
BoundingSphere.Matrix3.unpack(array, startingIndex + Cartographic.Cartesian3.packedLength, result.halfAxes);
|
||
|
return result;
|
||
|
};
|
||
|
|
||
|
var scratchCartesian1 = new Cartographic.Cartesian3();
|
||
|
var scratchCartesian2 = new Cartographic.Cartesian3();
|
||
|
var scratchCartesian3 = new Cartographic.Cartesian3();
|
||
|
var scratchCartesian4 = new Cartographic.Cartesian3();
|
||
|
var scratchCartesian5 = new Cartographic.Cartesian3();
|
||
|
var scratchCartesian6 = new Cartographic.Cartesian3();
|
||
|
var scratchCovarianceResult = new BoundingSphere.Matrix3();
|
||
|
var scratchEigenResult = {
|
||
|
unitary : new BoundingSphere.Matrix3(),
|
||
|
diagonal : new BoundingSphere.Matrix3()
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Computes an instance of an OrientedBoundingBox of the given positions.
|
||
|
* This is an implementation of Stefan Gottschalk's Collision Queries using Oriented Bounding Boxes solution (PHD thesis).
|
||
|
* Reference: http://gamma.cs.unc.edu/users/gottschalk/main.pdf
|
||
|
*
|
||
|
* @param {Cartesian3[]} [positions] List of {@link Cartesian3} points that the bounding box will enclose.
|
||
|
* @param {OrientedBoundingBox} [result] The object onto which to store the result.
|
||
|
* @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if one was not provided.
|
||
|
*
|
||
|
* @example
|
||
|
* // Compute an object oriented bounding box enclosing two points.
|
||
|
* var box = Cesium.OrientedBoundingBox.fromPoints([new Cesium.Cartesian3(2, 0, 0), new Cesium.Cartesian3(-2, 0, 0)]);
|
||
|
*/
|
||
|
OrientedBoundingBox.fromPoints = function(positions, result) {
|
||
|
if (!when.defined(result)) {
|
||
|
result = new OrientedBoundingBox();
|
||
|
}
|
||
|
|
||
|
if (!when.defined(positions) || positions.length === 0) {
|
||
|
result.halfAxes = BoundingSphere.Matrix3.ZERO;
|
||
|
result.center = Cartographic.Cartesian3.ZERO;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
var i;
|
||
|
var length = positions.length;
|
||
|
|
||
|
var meanPoint = Cartographic.Cartesian3.clone(positions[0], scratchCartesian1);
|
||
|
for (i = 1; i < length; i++) {
|
||
|
Cartographic.Cartesian3.add(meanPoint, positions[i], meanPoint);
|
||
|
}
|
||
|
var invLength = 1.0 / length;
|
||
|
Cartographic.Cartesian3.multiplyByScalar(meanPoint, invLength, meanPoint);
|
||
|
|
||
|
var exx = 0.0;
|
||
|
var exy = 0.0;
|
||
|
var exz = 0.0;
|
||
|
var eyy = 0.0;
|
||
|
var eyz = 0.0;
|
||
|
var ezz = 0.0;
|
||
|
var p;
|
||
|
|
||
|
for (i = 0; i < length; i++) {
|
||
|
p = Cartographic.Cartesian3.subtract(positions[i], meanPoint, scratchCartesian2);
|
||
|
exx += p.x * p.x;
|
||
|
exy += p.x * p.y;
|
||
|
exz += p.x * p.z;
|
||
|
eyy += p.y * p.y;
|
||
|
eyz += p.y * p.z;
|
||
|
ezz += p.z * p.z;
|
||
|
}
|
||
|
|
||
|
exx *= invLength;
|
||
|
exy *= invLength;
|
||
|
exz *= invLength;
|
||
|
eyy *= invLength;
|
||
|
eyz *= invLength;
|
||
|
ezz *= invLength;
|
||
|
|
||
|
var covarianceMatrix = scratchCovarianceResult;
|
||
|
covarianceMatrix[0] = exx;
|
||
|
covarianceMatrix[1] = exy;
|
||
|
covarianceMatrix[2] = exz;
|
||
|
covarianceMatrix[3] = exy;
|
||
|
covarianceMatrix[4] = eyy;
|
||
|
covarianceMatrix[5] = eyz;
|
||
|
covarianceMatrix[6] = exz;
|
||
|
covarianceMatrix[7] = eyz;
|
||
|
covarianceMatrix[8] = ezz;
|
||
|
|
||
|
var eigenDecomposition = BoundingSphere.Matrix3.computeEigenDecomposition(covarianceMatrix, scratchEigenResult);
|
||
|
var rotation = BoundingSphere.Matrix3.clone(eigenDecomposition.unitary, result.halfAxes);
|
||
|
|
||
|
var v1 = BoundingSphere.Matrix3.getColumn(rotation, 0, scratchCartesian4);
|
||
|
var v2 = BoundingSphere.Matrix3.getColumn(rotation, 1, scratchCartesian5);
|
||
|
var v3 = BoundingSphere.Matrix3.getColumn(rotation, 2, scratchCartesian6);
|
||
|
|
||
|
var u1 = -Number.MAX_VALUE;
|
||
|
var u2 = -Number.MAX_VALUE;
|
||
|
var u3 = -Number.MAX_VALUE;
|
||
|
var l1 = Number.MAX_VALUE;
|
||
|
var l2 = Number.MAX_VALUE;
|
||
|
var l3 = Number.MAX_VALUE;
|
||
|
|
||
|
for (i = 0; i < length; i++) {
|
||
|
p = positions[i];
|
||
|
u1 = Math.max(Cartographic.Cartesian3.dot(v1, p), u1);
|
||
|
u2 = Math.max(Cartographic.Cartesian3.dot(v2, p), u2);
|
||
|
u3 = Math.max(Cartographic.Cartesian3.dot(v3, p), u3);
|
||
|
|
||
|
l1 = Math.min(Cartographic.Cartesian3.dot(v1, p), l1);
|
||
|
l2 = Math.min(Cartographic.Cartesian3.dot(v2, p), l2);
|
||
|
l3 = Math.min(Cartographic.Cartesian3.dot(v3, p), l3);
|
||
|
}
|
||
|
|
||
|
v1 = Cartographic.Cartesian3.multiplyByScalar(v1, 0.5 * (l1 + u1), v1);
|
||
|
v2 = Cartographic.Cartesian3.multiplyByScalar(v2, 0.5 * (l2 + u2), v2);
|
||
|
v3 = Cartographic.Cartesian3.multiplyByScalar(v3, 0.5 * (l3 + u3), v3);
|
||
|
|
||
|
var center = Cartographic.Cartesian3.add(v1, v2, result.center);
|
||
|
Cartographic.Cartesian3.add(center, v3, center);
|
||
|
|
||
|
var scale = scratchCartesian3;
|
||
|
scale.x = u1 - l1;
|
||
|
scale.y = u2 - l2;
|
||
|
scale.z = u3 - l3;
|
||
|
Cartographic.Cartesian3.multiplyByScalar(scale, 0.5, scale);
|
||
|
BoundingSphere.Matrix3.multiplyByScale(result.halfAxes, scale, result.halfAxes);
|
||
|
|
||
|
return result;
|
||
|
};
|
||
|
|
||
|
var scratchOffset = new Cartographic.Cartesian3();
|
||
|
var scratchScale = new Cartographic.Cartesian3();
|
||
|
function fromPlaneExtents(planeOrigin, planeXAxis, planeYAxis, planeZAxis, minimumX, maximumX, minimumY, maximumY, minimumZ, maximumZ, result) {
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
if (!when.defined(minimumX) ||
|
||
|
!when.defined(maximumX) ||
|
||
|
!when.defined(minimumY) ||
|
||
|
!when.defined(maximumY) ||
|
||
|
!when.defined(minimumZ) ||
|
||
|
!when.defined(maximumZ)) {
|
||
|
throw new Check.DeveloperError('all extents (minimum/maximum X/Y/Z) are required.');
|
||
|
}
|
||
|
//>>includeEnd('debug');
|
||
|
|
||
|
if (!when.defined(result)) {
|
||
|
result = new OrientedBoundingBox();
|
||
|
}
|
||
|
|
||
|
var halfAxes = result.halfAxes;
|
||
|
BoundingSphere.Matrix3.setColumn(halfAxes, 0, planeXAxis, halfAxes);
|
||
|
BoundingSphere.Matrix3.setColumn(halfAxes, 1, planeYAxis, halfAxes);
|
||
|
BoundingSphere.Matrix3.setColumn(halfAxes, 2, planeZAxis, halfAxes);
|
||
|
|
||
|
var centerOffset = scratchOffset;
|
||
|
centerOffset.x = (minimumX + maximumX) / 2.0;
|
||
|
centerOffset.y = (minimumY + maximumY) / 2.0;
|
||
|
centerOffset.z = (minimumZ + maximumZ) / 2.0;
|
||
|
|
||
|
var scale = scratchScale;
|
||
|
scale.x = (maximumX - minimumX) / 2.0;
|
||
|
scale.y = (maximumY - minimumY) / 2.0;
|
||
|
scale.z = (maximumZ - minimumZ) / 2.0;
|
||
|
|
||
|
var center = result.center;
|
||
|
centerOffset = BoundingSphere.Matrix3.multiplyByVector(halfAxes, centerOffset, centerOffset);
|
||
|
Cartographic.Cartesian3.add(planeOrigin, centerOffset, center);
|
||
|
BoundingSphere.Matrix3.multiplyByScale(halfAxes, scale, halfAxes);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
var scratchRectangleCenterCartographic = new Cartographic.Cartographic();
|
||
|
var scratchRectangleCenter = new Cartographic.Cartesian3();
|
||
|
var scratchPerimeterCartographicNC = new Cartographic.Cartographic();
|
||
|
var scratchPerimeterCartographicNW = new Cartographic.Cartographic();
|
||
|
var scratchPerimeterCartographicCW = new Cartographic.Cartographic();
|
||
|
var scratchPerimeterCartographicSW = new Cartographic.Cartographic();
|
||
|
var scratchPerimeterCartographicSC = new Cartographic.Cartographic();
|
||
|
var scratchPerimeterCartesianNC = new Cartographic.Cartesian3();
|
||
|
var scratchPerimeterCartesianNW = new Cartographic.Cartesian3();
|
||
|
var scratchPerimeterCartesianCW = new Cartographic.Cartesian3();
|
||
|
var scratchPerimeterCartesianSW = new Cartographic.Cartesian3();
|
||
|
var scratchPerimeterCartesianSC = new Cartographic.Cartesian3();
|
||
|
var scratchPerimeterProjectedNC = new Cartesian2.Cartesian2();
|
||
|
var scratchPerimeterProjectedNW = new Cartesian2.Cartesian2();
|
||
|
var scratchPerimeterProjectedCW = new Cartesian2.Cartesian2();
|
||
|
var scratchPerimeterProjectedSW = new Cartesian2.Cartesian2();
|
||
|
var scratchPerimeterProjectedSC = new Cartesian2.Cartesian2();
|
||
|
|
||
|
var scratchPlaneOrigin = new Cartographic.Cartesian3();
|
||
|
var scratchPlaneNormal = new Cartographic.Cartesian3();
|
||
|
var scratchPlaneXAxis = new Cartographic.Cartesian3();
|
||
|
var scratchHorizonCartesian = new Cartographic.Cartesian3();
|
||
|
var scratchHorizonProjected = new Cartesian2.Cartesian2();
|
||
|
var scratchMaxY = new Cartographic.Cartesian3();
|
||
|
var scratchMinY = new Cartographic.Cartesian3();
|
||
|
var scratchZ = new Cartographic.Cartesian3();
|
||
|
var scratchPlane = new Plane.Plane(Cartographic.Cartesian3.UNIT_X, 0.0);
|
||
|
|
||
|
/**
|
||
|
* Computes an OrientedBoundingBox that bounds a {@link Rectangle} on the surface of an {@link Ellipsoid}.
|
||
|
* There are no guarantees about the orientation of the bounding box.
|
||
|
*
|
||
|
* @param {Rectangle} rectangle The cartographic rectangle on the surface of the ellipsoid.
|
||
|
* @param {Number} [minimumHeight=0.0] The minimum height (elevation) within the tile.
|
||
|
* @param {Number} [maximumHeight=0.0] The maximum height (elevation) within the tile.
|
||
|
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the rectangle is defined.
|
||
|
* @param {OrientedBoundingBox} [result] The object onto which to store the result.
|
||
|
* @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if none was provided.
|
||
|
*
|
||
|
* @exception {DeveloperError} rectangle.width must be between 0 and pi.
|
||
|
* @exception {DeveloperError} rectangle.height must be between 0 and pi.
|
||
|
* @exception {DeveloperError} ellipsoid must be an ellipsoid of revolution (<code>radii.x == radii.y</code>)
|
||
|
*/
|
||
|
OrientedBoundingBox.fromRectangle = function(rectangle, minimumHeight, maximumHeight, ellipsoid, result) {
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
if (!when.defined(rectangle)) {
|
||
|
throw new Check.DeveloperError('rectangle is required');
|
||
|
}
|
||
|
if (rectangle.width < 0.0 || rectangle.width > _Math.CesiumMath.TWO_PI) {
|
||
|
throw new Check.DeveloperError('Rectangle width must be between 0 and 2*pi');
|
||
|
}
|
||
|
if (rectangle.height < 0.0 || rectangle.height > _Math.CesiumMath.PI) {
|
||
|
throw new Check.DeveloperError('Rectangle height must be between 0 and pi');
|
||
|
}
|
||
|
if (when.defined(ellipsoid) && !_Math.CesiumMath.equalsEpsilon(ellipsoid.radii.x, ellipsoid.radii.y, _Math.CesiumMath.EPSILON15)) {
|
||
|
throw new Check.DeveloperError('Ellipsoid must be an ellipsoid of revolution (radii.x == radii.y)');
|
||
|
}
|
||
|
//>>includeEnd('debug');
|
||
|
|
||
|
minimumHeight = when.defaultValue(minimumHeight, 0.0);
|
||
|
maximumHeight = when.defaultValue(maximumHeight, 0.0);
|
||
|
ellipsoid = when.defaultValue(ellipsoid, Cartesian2.Ellipsoid.WGS84);
|
||
|
|
||
|
var minX, maxX, minY, maxY, minZ, maxZ, plane;
|
||
|
|
||
|
if (rectangle.width <= _Math.CesiumMath.PI) {
|
||
|
// The bounding box will be aligned with the tangent plane at the center of the rectangle.
|
||
|
var tangentPointCartographic = Cartesian2.Rectangle.center(rectangle, scratchRectangleCenterCartographic);
|
||
|
var tangentPoint = ellipsoid.cartographicToCartesian(tangentPointCartographic, scratchRectangleCenter);
|
||
|
var tangentPlane = new EllipsoidTangentPlane.EllipsoidTangentPlane(tangentPoint, ellipsoid);
|
||
|
plane = tangentPlane.plane;
|
||
|
|
||
|
// If the rectangle spans the equator, CW is instead aligned with the equator (because it sticks out the farthest at the equator).
|
||
|
var lonCenter = tangentPointCartographic.longitude;
|
||
|
var latCenter = (rectangle.south < 0.0 && rectangle.north > 0.0) ? 0.0 : tangentPointCartographic.latitude;
|
||
|
|
||
|
// Compute XY extents using the rectangle at maximum height
|
||
|
var perimeterCartographicNC = Cartographic.Cartographic.fromRadians(lonCenter, rectangle.north, maximumHeight, scratchPerimeterCartographicNC);
|
||
|
var perimeterCartographicNW = Cartographic.Cartographic.fromRadians(rectangle.west, rectangle.north, maximumHeight, scratchPerimeterCartographicNW);
|
||
|
var perimeterCartographicCW = Cartographic.Cartographic.fromRadians(rectangle.west, latCenter, maximumHeight, scratchPerimeterCartographicCW);
|
||
|
var perimeterCartographicSW = Cartographic.Cartographic.fromRadians(rectangle.west, rectangle.south, maximumHeight, scratchPerimeterCartographicSW);
|
||
|
var perimeterCartographicSC = Cartographic.Cartographic.fromRadians(lonCenter, rectangle.south, maximumHeight, scratchPerimeterCartographicSC);
|
||
|
|
||
|
var perimeterCartesianNC = ellipsoid.cartographicToCartesian(perimeterCartographicNC, scratchPerimeterCartesianNC);
|
||
|
var perimeterCartesianNW = ellipsoid.cartographicToCartesian(perimeterCartographicNW, scratchPerimeterCartesianNW);
|
||
|
var perimeterCartesianCW = ellipsoid.cartographicToCartesian(perimeterCartographicCW, scratchPerimeterCartesianCW);
|
||
|
var perimeterCartesianSW = ellipsoid.cartographicToCartesian(perimeterCartographicSW, scratchPerimeterCartesianSW);
|
||
|
var perimeterCartesianSC = ellipsoid.cartographicToCartesian(perimeterCartographicSC, scratchPerimeterCartesianSC);
|
||
|
|
||
|
var perimeterProjectedNC = tangentPlane.projectPointToNearestOnPlane(perimeterCartesianNC, scratchPerimeterProjectedNC);
|
||
|
var perimeterProjectedNW = tangentPlane.projectPointToNearestOnPlane(perimeterCartesianNW, scratchPerimeterProjectedNW);
|
||
|
var perimeterProjectedCW = tangentPlane.projectPointToNearestOnPlane(perimeterCartesianCW, scratchPerimeterProjectedCW);
|
||
|
var perimeterProjectedSW = tangentPlane.projectPointToNearestOnPlane(perimeterCartesianSW, scratchPerimeterProjectedSW);
|
||
|
var perimeterProjectedSC = tangentPlane.projectPointToNearestOnPlane(perimeterCartesianSC, scratchPerimeterProjectedSC);
|
||
|
|
||
|
minX = Math.min(perimeterProjectedNW.x, perimeterProjectedCW.x, perimeterProjectedSW.x);
|
||
|
maxX = -minX; // symmetrical
|
||
|
|
||
|
maxY = Math.max(perimeterProjectedNW.y, perimeterProjectedNC.y);
|
||
|
minY = Math.min(perimeterProjectedSW.y, perimeterProjectedSC.y);
|
||
|
|
||
|
// Compute minimum Z using the rectangle at minimum height, since it will be deeper than the maximum height
|
||
|
perimeterCartographicNW.height = perimeterCartographicSW.height = minimumHeight;
|
||
|
perimeterCartesianNW = ellipsoid.cartographicToCartesian(perimeterCartographicNW, scratchPerimeterCartesianNW);
|
||
|
perimeterCartesianSW = ellipsoid.cartographicToCartesian(perimeterCartographicSW, scratchPerimeterCartesianSW);
|
||
|
|
||
|
minZ = Math.min(Plane.Plane.getPointDistance(plane, perimeterCartesianNW), Plane.Plane.getPointDistance(plane, perimeterCartesianSW));
|
||
|
maxZ = maximumHeight; // Since the tangent plane touches the surface at height = 0, this is okay
|
||
|
|
||
|
return fromPlaneExtents(tangentPlane.origin, tangentPlane.xAxis, tangentPlane.yAxis, tangentPlane.zAxis, minX, maxX, minY, maxY, minZ, maxZ, result);
|
||
|
}
|
||
|
|
||
|
// Handle the case where rectangle width is greater than PI (wraps around more than half the ellipsoid).
|
||
|
var fullyAboveEquator = rectangle.south > 0.0;
|
||
|
var fullyBelowEquator = rectangle.north < 0.0;
|
||
|
var latitudeNearestToEquator = fullyAboveEquator ? rectangle.south : (fullyBelowEquator ? rectangle.north : 0.0);
|
||
|
var centerLongitude = Cartesian2.Rectangle.center(rectangle, scratchRectangleCenterCartographic).longitude;
|
||
|
|
||
|
// Plane is located at the rectangle's center longitude and the rectangle's latitude that is closest to the equator. It rotates around the Z axis.
|
||
|
// This results in a better fit than the obb approach for smaller rectangles, which orients with the rectangle's center normal.
|
||
|
var planeOrigin = Cartographic.Cartesian3.fromRadians(centerLongitude, latitudeNearestToEquator, maximumHeight, ellipsoid, scratchPlaneOrigin);
|
||
|
planeOrigin.z = 0.0; // center the plane on the equator to simpify plane normal calculation
|
||
|
var isPole = Math.abs(planeOrigin.x) < _Math.CesiumMath.EPSILON10 && Math.abs(planeOrigin.y) < _Math.CesiumMath.EPSILON10;
|
||
|
var planeNormal = !isPole ? Cartographic.Cartesian3.normalize(planeOrigin, scratchPlaneNormal) : Cartographic.Cartesian3.UNIT_X;
|
||
|
var planeYAxis = Cartographic.Cartesian3.UNIT_Z;
|
||
|
var planeXAxis = Cartographic.Cartesian3.cross(planeNormal, planeYAxis, scratchPlaneXAxis);
|
||
|
plane = Plane.Plane.fromPointNormal(planeOrigin, planeNormal, scratchPlane);
|
||
|
|
||
|
// Get the horizon point relative to the center. This will be the farthest extent in the plane's X dimension.
|
||
|
var horizonCartesian = Cartographic.Cartesian3.fromRadians(centerLongitude + _Math.CesiumMath.PI_OVER_TWO, latitudeNearestToEquator, maximumHeight, ellipsoid, scratchHorizonCartesian);
|
||
|
maxX = Cartographic.Cartesian3.dot(Plane.Plane.projectPointOntoPlane(plane, horizonCartesian, scratchHorizonProjected), planeXAxis);
|
||
|
minX = -maxX; // symmetrical
|
||
|
|
||
|
// Get the min and max Y, using the height that will give the largest extent
|
||
|
maxY = Cartographic.Cartesian3.fromRadians(0.0, rectangle.north, fullyBelowEquator ? minimumHeight : maximumHeight, ellipsoid, scratchMaxY).z;
|
||
|
minY = Cartographic.Cartesian3.fromRadians(0.0, rectangle.south, fullyAboveEquator ? minimumHeight : maximumHeight, ellipsoid, scratchMinY).z;
|
||
|
|
||
|
var farZ = Cartographic.Cartesian3.fromRadians(rectangle.east, latitudeNearestToEquator, maximumHeight, ellipsoid, scratchZ);
|
||
|
minZ = Plane.Plane.getPointDistance(plane, farZ);
|
||
|
maxZ = 0.0; // plane origin starts at maxZ already
|
||
|
|
||
|
// min and max are local to the plane axes
|
||
|
return fromPlaneExtents(planeOrigin, planeXAxis, planeYAxis, planeNormal, minX, maxX, minY, maxY, minZ, maxZ, result);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Duplicates a OrientedBoundingBox instance.
|
||
|
*
|
||
|
* @param {OrientedBoundingBox} box The bounding box to duplicate.
|
||
|
* @param {OrientedBoundingBox} [result] The object onto which to store the result.
|
||
|
* @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if none was provided. (Returns undefined if box is undefined)
|
||
|
*/
|
||
|
OrientedBoundingBox.clone = function(box, result) {
|
||
|
if (!when.defined(box)) {
|
||
|
return undefined;
|
||
|
}
|
||
|
|
||
|
if (!when.defined(result)) {
|
||
|
return new OrientedBoundingBox(box.center, box.halfAxes);
|
||
|
}
|
||
|
|
||
|
Cartographic.Cartesian3.clone(box.center, result.center);
|
||
|
BoundingSphere.Matrix3.clone(box.halfAxes, result.halfAxes);
|
||
|
|
||
|
return result;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Determines which side of a plane the oriented bounding box is located.
|
||
|
*
|
||
|
* @param {OrientedBoundingBox} box The oriented bounding box to test.
|
||
|
* @param {Plane} plane The plane to test against.
|
||
|
* @returns {Intersect} {@link Intersect.INSIDE} if the entire box is on the side of the plane
|
||
|
* the normal is pointing, {@link Intersect.OUTSIDE} if the entire box is
|
||
|
* on the opposite side, and {@link Intersect.INTERSECTING} if the box
|
||
|
* intersects the plane.
|
||
|
*/
|
||
|
OrientedBoundingBox.intersectPlane = function(box, plane) {
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
if (!when.defined(box)) {
|
||
|
throw new Check.DeveloperError('box is required.');
|
||
|
}
|
||
|
|
||
|
if (!when.defined(plane)) {
|
||
|
throw new Check.DeveloperError('plane is required.');
|
||
|
}
|
||
|
//>>includeEnd('debug');
|
||
|
|
||
|
var center = box.center;
|
||
|
var normal = plane.normal;
|
||
|
var halfAxes = box.halfAxes;
|
||
|
var normalX = normal.x, normalY = normal.y, normalZ = normal.z;
|
||
|
// plane is used as if it is its normal; the first three components are assumed to be normalized
|
||
|
var radEffective = Math.abs(normalX * halfAxes[BoundingSphere.Matrix3.COLUMN0ROW0] + normalY * halfAxes[BoundingSphere.Matrix3.COLUMN0ROW1] + normalZ * halfAxes[BoundingSphere.Matrix3.COLUMN0ROW2]) +
|
||
|
Math.abs(normalX * halfAxes[BoundingSphere.Matrix3.COLUMN1ROW0] + normalY * halfAxes[BoundingSphere.Matrix3.COLUMN1ROW1] + normalZ * halfAxes[BoundingSphere.Matrix3.COLUMN1ROW2]) +
|
||
|
Math.abs(normalX * halfAxes[BoundingSphere.Matrix3.COLUMN2ROW0] + normalY * halfAxes[BoundingSphere.Matrix3.COLUMN2ROW1] + normalZ * halfAxes[BoundingSphere.Matrix3.COLUMN2ROW2]);
|
||
|
var distanceToPlane = Cartographic.Cartesian3.dot(normal, center) + plane.distance;
|
||
|
|
||
|
if (distanceToPlane <= -radEffective) {
|
||
|
// The entire box is on the negative side of the plane normal
|
||
|
return BoundingSphere.Intersect.OUTSIDE;
|
||
|
} else if (distanceToPlane >= radEffective) {
|
||
|
// The entire box is on the positive side of the plane normal
|
||
|
return BoundingSphere.Intersect.INSIDE;
|
||
|
}
|
||
|
return BoundingSphere.Intersect.INTERSECTING;
|
||
|
};
|
||
|
|
||
|
var scratchCartesianU = new Cartographic.Cartesian3();
|
||
|
var scratchCartesianV = new Cartographic.Cartesian3();
|
||
|
var scratchCartesianW = new Cartographic.Cartesian3();
|
||
|
var scratchPPrime = new Cartographic.Cartesian3();
|
||
|
|
||
|
/**
|
||
|
* Computes the estimated distance squared from the closest point on a bounding box to a point.
|
||
|
*
|
||
|
* @param {OrientedBoundingBox} box The box.
|
||
|
* @param {Cartesian3} cartesian The point
|
||
|
* @returns {Number} The estimated distance squared from the bounding sphere to the point.
|
||
|
*
|
||
|
* @example
|
||
|
* // Sort bounding boxes from back to front
|
||
|
* boxes.sort(function(a, b) {
|
||
|
* return Cesium.OrientedBoundingBox.distanceSquaredTo(b, camera.positionWC) - Cesium.OrientedBoundingBox.distanceSquaredTo(a, camera.positionWC);
|
||
|
* });
|
||
|
*/
|
||
|
OrientedBoundingBox.distanceSquaredTo = function(box, cartesian) {
|
||
|
// See Geometric Tools for Computer Graphics 10.4.2
|
||
|
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
if (!when.defined(box)) {
|
||
|
throw new Check.DeveloperError('box is required.');
|
||
|
}
|
||
|
if (!when.defined(cartesian)) {
|
||
|
throw new Check.DeveloperError('cartesian is required.');
|
||
|
}
|
||
|
//>>includeEnd('debug');
|
||
|
|
||
|
var offset = Cartographic.Cartesian3.subtract(cartesian, box.center, scratchOffset);
|
||
|
|
||
|
var halfAxes = box.halfAxes;
|
||
|
var u = BoundingSphere.Matrix3.getColumn(halfAxes, 0, scratchCartesianU);
|
||
|
var v = BoundingSphere.Matrix3.getColumn(halfAxes, 1, scratchCartesianV);
|
||
|
var w = BoundingSphere.Matrix3.getColumn(halfAxes, 2, scratchCartesianW);
|
||
|
|
||
|
var uHalf = Cartographic.Cartesian3.magnitude(u);
|
||
|
var vHalf = Cartographic.Cartesian3.magnitude(v);
|
||
|
var wHalf = Cartographic.Cartesian3.magnitude(w);
|
||
|
|
||
|
Cartographic.Cartesian3.normalize(u, u);
|
||
|
Cartographic.Cartesian3.normalize(v, v);
|
||
|
Cartographic.Cartesian3.normalize(w, w);
|
||
|
|
||
|
var pPrime = scratchPPrime;
|
||
|
pPrime.x = Cartographic.Cartesian3.dot(offset, u);
|
||
|
pPrime.y = Cartographic.Cartesian3.dot(offset, v);
|
||
|
pPrime.z = Cartographic.Cartesian3.dot(offset, w);
|
||
|
|
||
|
var distanceSquared = 0.0;
|
||
|
var d;
|
||
|
|
||
|
if (pPrime.x < -uHalf) {
|
||
|
d = pPrime.x + uHalf;
|
||
|
distanceSquared += d * d;
|
||
|
} else if (pPrime.x > uHalf) {
|
||
|
d = pPrime.x - uHalf;
|
||
|
distanceSquared += d * d;
|
||
|
}
|
||
|
|
||
|
if (pPrime.y < -vHalf) {
|
||
|
d = pPrime.y + vHalf;
|
||
|
distanceSquared += d * d;
|
||
|
} else if (pPrime.y > vHalf) {
|
||
|
d = pPrime.y - vHalf;
|
||
|
distanceSquared += d * d;
|
||
|
}
|
||
|
|
||
|
if (pPrime.z < -wHalf) {
|
||
|
d = pPrime.z + wHalf;
|
||
|
distanceSquared += d * d;
|
||
|
} else if (pPrime.z > wHalf) {
|
||
|
d = pPrime.z - wHalf;
|
||
|
distanceSquared += d * d;
|
||
|
}
|
||
|
|
||
|
return distanceSquared;
|
||
|
};
|
||
|
|
||
|
var scratchCorner = new Cartographic.Cartesian3();
|
||
|
var scratchToCenter = new Cartographic.Cartesian3();
|
||
|
|
||
|
/**
|
||
|
* The distances calculated by the vector from the center of the bounding box to position projected onto direction.
|
||
|
* <br>
|
||
|
* If you imagine the infinite number of planes with normal direction, this computes the smallest distance to the
|
||
|
* closest and farthest planes from position that intersect the bounding box.
|
||
|
*
|
||
|
* @param {OrientedBoundingBox} box The bounding box to calculate the distance to.
|
||
|
* @param {Cartesian3} position The position to calculate the distance from.
|
||
|
* @param {Cartesian3} direction The direction from position.
|
||
|
* @param {Interval} [result] A Interval to store the nearest and farthest distances.
|
||
|
* @returns {Interval} The nearest and farthest distances on the bounding box from position in direction.
|
||
|
*/
|
||
|
OrientedBoundingBox.computePlaneDistances = function(box, position, direction, result) {
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
if (!when.defined(box)) {
|
||
|
throw new Check.DeveloperError('box is required.');
|
||
|
}
|
||
|
|
||
|
if (!when.defined(position)) {
|
||
|
throw new Check.DeveloperError('position is required.');
|
||
|
}
|
||
|
|
||
|
if (!when.defined(direction)) {
|
||
|
throw new Check.DeveloperError('direction is required.');
|
||
|
}
|
||
|
//>>includeEnd('debug');
|
||
|
|
||
|
if (!when.defined(result)) {
|
||
|
result = new BoundingSphere.Interval();
|
||
|
}
|
||
|
|
||
|
var minDist = Number.POSITIVE_INFINITY;
|
||
|
var maxDist = Number.NEGATIVE_INFINITY;
|
||
|
|
||
|
var center = box.center;
|
||
|
var halfAxes = box.halfAxes;
|
||
|
|
||
|
var u = BoundingSphere.Matrix3.getColumn(halfAxes, 0, scratchCartesianU);
|
||
|
var v = BoundingSphere.Matrix3.getColumn(halfAxes, 1, scratchCartesianV);
|
||
|
var w = BoundingSphere.Matrix3.getColumn(halfAxes, 2, scratchCartesianW);
|
||
|
|
||
|
// project first corner
|
||
|
var corner = Cartographic.Cartesian3.add(u, v, scratchCorner);
|
||
|
Cartographic.Cartesian3.add(corner, w, corner);
|
||
|
Cartographic.Cartesian3.add(corner, center, corner);
|
||
|
|
||
|
var toCenter = Cartographic.Cartesian3.subtract(corner, position, scratchToCenter);
|
||
|
var mag = Cartographic.Cartesian3.dot(direction, toCenter);
|
||
|
|
||
|
minDist = Math.min(mag, minDist);
|
||
|
maxDist = Math.max(mag, maxDist);
|
||
|
|
||
|
// project second corner
|
||
|
Cartographic.Cartesian3.add(center, u, corner);
|
||
|
Cartographic.Cartesian3.add(corner, v, corner);
|
||
|
Cartographic.Cartesian3.subtract(corner, w, corner);
|
||
|
|
||
|
Cartographic.Cartesian3.subtract(corner, position, toCenter);
|
||
|
mag = Cartographic.Cartesian3.dot(direction, toCenter);
|
||
|
|
||
|
minDist = Math.min(mag, minDist);
|
||
|
maxDist = Math.max(mag, maxDist);
|
||
|
|
||
|
// project third corner
|
||
|
Cartographic.Cartesian3.add(center, u, corner);
|
||
|
Cartographic.Cartesian3.subtract(corner, v, corner);
|
||
|
Cartographic.Cartesian3.add(corner, w, corner);
|
||
|
|
||
|
Cartographic.Cartesian3.subtract(corner, position, toCenter);
|
||
|
mag = Cartographic.Cartesian3.dot(direction, toCenter);
|
||
|
|
||
|
minDist = Math.min(mag, minDist);
|
||
|
maxDist = Math.max(mag, maxDist);
|
||
|
|
||
|
// project fourth corner
|
||
|
Cartographic.Cartesian3.add(center, u, corner);
|
||
|
Cartographic.Cartesian3.subtract(corner, v, corner);
|
||
|
Cartographic.Cartesian3.subtract(corner, w, corner);
|
||
|
|
||
|
Cartographic.Cartesian3.subtract(corner, position, toCenter);
|
||
|
mag = Cartographic.Cartesian3.dot(direction, toCenter);
|
||
|
|
||
|
minDist = Math.min(mag, minDist);
|
||
|
maxDist = Math.max(mag, maxDist);
|
||
|
|
||
|
// project fifth corner
|
||
|
Cartographic.Cartesian3.subtract(center, u, corner);
|
||
|
Cartographic.Cartesian3.add(corner, v, corner);
|
||
|
Cartographic.Cartesian3.add(corner, w, corner);
|
||
|
|
||
|
Cartographic.Cartesian3.subtract(corner, position, toCenter);
|
||
|
mag = Cartographic.Cartesian3.dot(direction, toCenter);
|
||
|
|
||
|
minDist = Math.min(mag, minDist);
|
||
|
maxDist = Math.max(mag, maxDist);
|
||
|
|
||
|
// project sixth corner
|
||
|
Cartographic.Cartesian3.subtract(center, u, corner);
|
||
|
Cartographic.Cartesian3.add(corner, v, corner);
|
||
|
Cartographic.Cartesian3.subtract(corner, w, corner);
|
||
|
|
||
|
Cartographic.Cartesian3.subtract(corner, position, toCenter);
|
||
|
mag = Cartographic.Cartesian3.dot(direction, toCenter);
|
||
|
|
||
|
minDist = Math.min(mag, minDist);
|
||
|
maxDist = Math.max(mag, maxDist);
|
||
|
|
||
|
// project seventh corner
|
||
|
Cartographic.Cartesian3.subtract(center, u, corner);
|
||
|
Cartographic.Cartesian3.subtract(corner, v, corner);
|
||
|
Cartographic.Cartesian3.add(corner, w, corner);
|
||
|
|
||
|
Cartographic.Cartesian3.subtract(corner, position, toCenter);
|
||
|
mag = Cartographic.Cartesian3.dot(direction, toCenter);
|
||
|
|
||
|
minDist = Math.min(mag, minDist);
|
||
|
maxDist = Math.max(mag, maxDist);
|
||
|
|
||
|
// project eighth corner
|
||
|
Cartographic.Cartesian3.subtract(center, u, corner);
|
||
|
Cartographic.Cartesian3.subtract(corner, v, corner);
|
||
|
Cartographic.Cartesian3.subtract(corner, w, corner);
|
||
|
|
||
|
Cartographic.Cartesian3.subtract(corner, position, toCenter);
|
||
|
mag = Cartographic.Cartesian3.dot(direction, toCenter);
|
||
|
|
||
|
minDist = Math.min(mag, minDist);
|
||
|
maxDist = Math.max(mag, maxDist);
|
||
|
|
||
|
result.start = minDist;
|
||
|
result.stop = maxDist;
|
||
|
return result;
|
||
|
};
|
||
|
|
||
|
var scratchBoundingSphere = new BoundingSphere.BoundingSphere();
|
||
|
|
||
|
/**
|
||
|
* Determines whether or not a bounding box is hidden from view by the occluder.
|
||
|
*
|
||
|
* @param {OrientedBoundingBox} box The bounding box surrounding the occludee object.
|
||
|
* @param {Occluder} occluder The occluder.
|
||
|
* @returns {Boolean} <code>true</code> if the box is not visible; otherwise <code>false</code>.
|
||
|
*/
|
||
|
OrientedBoundingBox.isOccluded = function(box, occluder) {
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
if (!when.defined(box)) {
|
||
|
throw new Check.DeveloperError('box is required.');
|
||
|
}
|
||
|
if (!when.defined(occluder)) {
|
||
|
throw new Check.DeveloperError('occluder is required.');
|
||
|
}
|
||
|
//>>includeEnd('debug');
|
||
|
|
||
|
var sphere = BoundingSphere.BoundingSphere.fromOrientedBoundingBox(box, scratchBoundingSphere);
|
||
|
|
||
|
return !occluder.isBoundingSphereVisible(sphere);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Determines which side of a plane the oriented bounding box is located.
|
||
|
*
|
||
|
* @param {Plane} plane The plane to test against.
|
||
|
* @returns {Intersect} {@link Intersect.INSIDE} if the entire box is on the side of the plane
|
||
|
* the normal is pointing, {@link Intersect.OUTSIDE} if the entire box is
|
||
|
* on the opposite side, and {@link Intersect.INTERSECTING} if the box
|
||
|
* intersects the plane.
|
||
|
*/
|
||
|
OrientedBoundingBox.prototype.intersectPlane = function(plane) {
|
||
|
return OrientedBoundingBox.intersectPlane(this, plane);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Computes the estimated distance squared from the closest point on a bounding box to a point.
|
||
|
*
|
||
|
* @param {Cartesian3} cartesian The point
|
||
|
* @returns {Number} The estimated distance squared from the bounding sphere to the point.
|
||
|
*
|
||
|
* @example
|
||
|
* // Sort bounding boxes from back to front
|
||
|
* boxes.sort(function(a, b) {
|
||
|
* return b.distanceSquaredTo(camera.positionWC) - a.distanceSquaredTo(camera.positionWC);
|
||
|
* });
|
||
|
*/
|
||
|
OrientedBoundingBox.prototype.distanceSquaredTo = function(cartesian) {
|
||
|
return OrientedBoundingBox.distanceSquaredTo(this, cartesian);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* The distances calculated by the vector from the center of the bounding box to position projected onto direction.
|
||
|
* <br>
|
||
|
* If you imagine the infinite number of planes with normal direction, this computes the smallest distance to the
|
||
|
* closest and farthest planes from position that intersect the bounding box.
|
||
|
*
|
||
|
* @param {Cartesian3} position The position to calculate the distance from.
|
||
|
* @param {Cartesian3} direction The direction from position.
|
||
|
* @param {Interval} [result] A Interval to store the nearest and farthest distances.
|
||
|
* @returns {Interval} The nearest and farthest distances on the bounding box from position in direction.
|
||
|
*/
|
||
|
OrientedBoundingBox.prototype.computePlaneDistances = function(position, direction, result) {
|
||
|
return OrientedBoundingBox.computePlaneDistances(this, position, direction, result);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Determines whether or not a bounding box is hidden from view by the occluder.
|
||
|
*
|
||
|
* @param {Occluder} occluder The occluder.
|
||
|
* @returns {Boolean} <code>true</code> if the sphere is not visible; otherwise <code>false</code>.
|
||
|
*/
|
||
|
OrientedBoundingBox.prototype.isOccluded = function(occluder) {
|
||
|
return OrientedBoundingBox.isOccluded(this, occluder);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Compares the provided OrientedBoundingBox componentwise and returns
|
||
|
* <code>true</code> if they are equal, <code>false</code> otherwise.
|
||
|
*
|
||
|
* @param {OrientedBoundingBox} left The first OrientedBoundingBox.
|
||
|
* @param {OrientedBoundingBox} right The second OrientedBoundingBox.
|
||
|
* @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
|
||
|
*/
|
||
|
OrientedBoundingBox.equals = function(left, right) {
|
||
|
return (left === right) ||
|
||
|
((when.defined(left)) &&
|
||
|
(when.defined(right)) &&
|
||
|
Cartographic.Cartesian3.equals(left.center, right.center) &&
|
||
|
BoundingSphere.Matrix3.equals(left.halfAxes, right.halfAxes));
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Duplicates this OrientedBoundingBox instance.
|
||
|
*
|
||
|
* @param {OrientedBoundingBox} [result] The object onto which to store the result.
|
||
|
* @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if one was not provided.
|
||
|
*/
|
||
|
OrientedBoundingBox.prototype.clone = function(result) {
|
||
|
return OrientedBoundingBox.clone(this, result);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Compares this OrientedBoundingBox against the provided OrientedBoundingBox componentwise and returns
|
||
|
* <code>true</code> if they are equal, <code>false</code> otherwise.
|
||
|
*
|
||
|
* @param {OrientedBoundingBox} [right] The right hand side OrientedBoundingBox.
|
||
|
* @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
|
||
|
*/
|
||
|
OrientedBoundingBox.prototype.equals = function(right) {
|
||
|
return OrientedBoundingBox.equals(this, right);
|
||
|
};
|
||
|
|
||
|
exports.OrientedBoundingBox = OrientedBoundingBox;
|
||
|
|
||
|
});
|