Files
ocr_demo/api/paddle_ocr_api.py
2025-09-28 13:37:21 +08:00

56 lines
1.8 KiB
Python

from core.response import SuccessResponse
from fastapi import APIRouter, UploadFile, Form
from schemas.orc_result import ResultInfo, ResultMain
from paddleocr import PaddleOCR
import numpy as np
import cv2
app = APIRouter()
paddle_ocr = PaddleOCR(lang='ch')
def enhance_image(img):
"""增强亮部和暗部,提升数字清晰度"""
lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
cl = clahe.apply(l)
enhanced = cv2.merge((cl, a, b))
return cv2.cvtColor(enhanced, cv2.COLOR_LAB2BGR)
@app.post("/upload")
async def orc(files: list[UploadFile] = Form(...)):
result = []
for file in files:
main = ResultMain()
main.file_name = file.filename
# 读取上传的文件内容
image_data = await file.read()
# 从字节数据读取图像
np_array = np.frombuffer(image_data, np.uint8)
img = cv2.imdecode(np_array, cv2.IMREAD_COLOR)
# 图像增强
img = enhance_image(img)
# 4. 调用 OCR 模型进行识别
datas = paddle_ocr.ocr(img, cls=False)
infos = []
if datas:
for data in datas[0]:
info = ResultInfo()
bounding_boxs = data[0]
left_up = bounding_boxs[0]
right_down = bounding_boxs[2]
info.bounding_box_left_up = [int(left_up[0]), int(left_up[1])]
info.bounding_box_right_down = [int(right_down[0]), int(right_down[1])]
info.text = data[1][0]
info.confidence = round(data[1][1], 4)
infos.append(info)
main.infos = infos
result.append(main.model_dump())
return SuccessResponse(data=result)