from sqlalchemy.orm import Session from typing import List from fastapi import UploadFile import subprocess from yolov5.models.common import DetectMultiBackend from yolov5.utils.torch_utils import select_device from yolov5.utils.dataloaders import LoadStreams from yolov5.utils.general import check_img_size, Profile, non_max_suppression, cv2, scale_boxes import torch from pathlib import Path from ultralytics.utils.plotting import Annotator, colors, save_one_box import platform from app.model.crud import project_detect_crud as pdc from app.model.schemas.project_detect_schemas import ProjectDetectIn, ProjectDetectOut, ProjectDetectLogIn from app.model.bussiness_model import ProjectDetect, ProjectDetectImg, ProjectTrain, ProjectDetectLog, ProjectDetectLogImg from app.util.random_utils import random_str from app.config.config_reader import detect_url from app.util import os_utils as os from app.util import random_utils as ru from app.config.config_reader import yolo_url from app.websocket.web_socket_server import room_manager def add_detect(detect_in: ProjectDetectIn, session: Session): """ 新增训练集合信息,并创建文件夹 :param detect_in: :param session: :return: """ detect = ProjectDetect(**detect_in.dict()) detect.detect_no = random_str(6) detect.detect_version = 0 detect.detect_status = '0' url = os.create_folder(detect_url, detect.detect_no, 'images') detect.folder_url = url detect = pdc.add_detect(detect, session) return detect def check_image_name(detect_id: int, files: List[UploadFile], session: Session): """ 校验上传的文件名称是否重复 :param detect_id: :param files: :param session: :return: """ for file in files: if not pdc.check_img_name(detect_id, file.filename, session): return False, file.filename return True, None def upload_detect_imgs(detect: ProjectDetectOut, files: List[UploadFile], session: Session): """ 上传推理集合的照片,保存原图,并生成缩略图 :param detect: :param files: :param session: :return: """ images = [] for file in files: image = ProjectDetectImg() image.detect_id = detect.id image.file_name = file.filename # 保存原图 path = os.save_images(detect.folder_url, file=file) image.image_url = path # 生成缩略图 thumb_image_url = os.file_path(detect.folder_url, 'thumb', ru.random_str(10) + ".jpg") os.create_thumbnail(path, thumb_image_url) image.thumb_image_url = thumb_image_url images.append(image) pdc.add_detect_imgs(images, session) def del_detect_img(detect_img_id: int, session: Session): """ 删除训练集合图片 :param detect_img_id: :param session: :return: """ detect_img = session.query(ProjectDetectImg).filter_by(id=detect_img_id).first() if detect_img is None: return 0 os.delete_file_if_exists(detect_img.image_url, detect_img.thumb_image_url) session.delete(detect_img) session.commit() return 1 def run_detect_yolo(detect_in: ProjectDetectLogIn, detect: ProjectDetect, train: ProjectTrain, session: Session): """ 开始推理 :param detect: :param detect_in: :param train: :param session: :return: """ # 推理版本 version_path = 'v' + str(detect.detect_version + 1) # 权重文件 pt_url = train.best_pt if detect_in.pt_type == 'best' else train.last_pt # 推理集合文件路径 img_url = detect.folder_url out_url = os.file_path(detect_url, detect.detect_no, 'detect') # 构建推理记录数据 detect_log = ProjectDetectLog() detect_log.detect_name = detect.detect_name detect_log.detect_id = detect.id detect_log.detect_version = version_path detect_log.train_id = train.id detect_log.train_version = train.train_version detect_log.pt_type = detect_in.pt_type detect_log.pt_url = pt_url detect_log.folder_url = img_url detect_log.detect_folder_url = out_url detect_log = pdc.add_detect_log(detect_log, session) return detect_log async def run_commend(weights: str, source: str, project: str, name: str, log_id: int, detect_id: int, session: Session): """ 执行yolov5的推理 :param weights: 权重文件 :param source: 图片所在文件 :param project: 推理完成的文件位置 :param name: 版本名称 :param log_id: 日志id :param detect_id: 推理集合id :param session: :return: """ yolo_path = os.file_path(yolo_url, 'detect.py') room = 'detect_' + str(detect_id) await room_manager.send_to_room(room, f"stdout: 模型训练开始,请稍等。。。\n") commend = ["python", '-u', yolo_path, "--weights", weights, "--source", source, "--name", name, "--project", project, "--save-txt"] # 启动子进程 with subprocess.Popen( commend, bufsize=1, # bufsize=0时,为不缓存;bufsize=1时,按行缓存;bufsize为其他正整数时,为按照近似该正整数的字节数缓存 shell=False, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, # 这里可以显示yolov5训练过程中出现的进度条等信息 text=True, # 缓存内容为文本,避免后续编码显示问题 encoding='utf-8', ) as process: while process.poll() is None: line = process.stdout.readline() process.stdout.flush() # 刷新缓存,防止缓存过多造成卡死 if line != '\n': await room_manager.send_to_room(room, line + '\n') # 等待进程结束并获取返回码 return_code = process.wait() if return_code != 0: pdc.update_detect_status(detect_id, -1, session) else: await room_manager.send_to_room(room, 'success') pdc.update_detect_status(detect_id, 2, session) detect_imgs = pdc.get_img_list(detect_id, session) detect_log_imgs = [] for detect_img in detect_imgs: detect_log_img = ProjectDetectLogImg() detect_log_img.log_id = log_id image_url = os.file_path(project, name, detect_img.file_name) detect_log_img.image_url = image_url detect_log_img.file_name = detect_img.file_name detect_log_imgs.append(detect_log_img) pdc.add_detect_imgs(detect_log_imgs, session) def run_detect_rtsp(weights_pt: str, rtsp_url: str, data: str): """ rtsp 视频流推理 :param weights_pt: 权重文件 :param rtsp_url: 视频流地址 :param data: yaml文件 :return: """ # 选择设备(CPU 或 GPU) device = select_device('cpu') # 加载模型 model = DetectMultiBackend(weights_pt, device=device, dnn=False, data=data, fp16=False) stride, names, pt = model.stride, model.names, model.pt imgsz = check_img_size((640, 640), s=stride) # check image size dataset = LoadStreams(rtsp_url, img_size=imgsz, stride=stride, auto=pt, vid_stride=1) bs = len(dataset) model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device)) for path, im, im0s, vid_cap, s in dataset: with dt[0]: im = torch.from_numpy(im).to(model.device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim if model.xml and im.shape[0] > 1: ims = torch.chunk(im, im.shape[0], 0) # Inference with dt[1]: if model.xml and im.shape[0] > 1: pred = None for image in ims: if pred is None: pred = model(image, augment=False, visualize=False).unsqueeze(0) else: pred = torch.cat((pred, model(image, augment=False, visualize=False).unsqueeze(0)), dim=0) pred = [pred, None] else: pred = model(im, augment=False, visualize=False) # NMS with dt[2]: pred = non_max_suppression(pred, 0.25, 0.45, None, False, max_det=1000) # Process predictions for i, det in enumerate(pred): # per image seen += 1 p, im0, frame = path[i], im0s[i].copy(), dataset.count s += f"{i}: " p = Path(p) # to Path s += "{:g}x{:g} ".format(*im.shape[2:]) # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = im0.copy() if False else im0 # for save_crop annotator = Annotator(im0, line_width=3, example=str(names)) if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, 5].unique(): n = (det[:, 5] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): c = int(cls) # integer class label = names[c] if False else f"{names[c]}" confidence = float(conf) confidence_str = f"{confidence:.2f}" c = int(cls) # integer class label = None if False else (names[c] if False else f"{names[c]} {conf:.2f}") annotator.box_label(xyxy, label, color=colors(c, True)) # Stream results im0 = annotator.result() if platform.system() == "Linux" and p not in windows: windows.append(p) cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) cv2.imshow(str(p), im0) cv2.waitKey(1) # 1 millisecond