增加删除推理集合接口

This commit is contained in:
2025-03-14 17:54:21 +08:00
parent 9e79fb6a6d
commit af65911db3
4 changed files with 123 additions and 52 deletions

View File

@ -1,3 +1,5 @@
import time
from sqlalchemy.orm import Session
from typing import List
from fastapi import UploadFile
@ -37,6 +39,24 @@ def add_detect(detect_in: ProjectDetectIn, session: Session):
return detect
def del_detect(detect_id: int, session: Session):
"""
删除推理集合和推理记录
:param detect_id:
:param session:
:return:
"""
folder_url = []
detect = pdc.get_detect_by_id(detect_id, session)
session.delete(detect)
folder_url.append(detect.folder_url)
detect_logs = pdc.get_logs(detect_id, session)
for log in detect_logs:
folder_url.append(log.detect_folder_url)
os.create_folder(folder_url)
session.commit()
def check_image_name(detect_id: int, files: List[UploadFile], session: Session):
"""
校验上传的文件名称是否重复
@ -187,7 +207,6 @@ async def run_detect_rtsp(weights_pt: str, rtsp_url: str, data: str, detect_id:
:return:
"""
room = 'detect_rtsp_' + str(detect_id)
await room_manager.send_to_room(room, '开始推理rtsp视频流')
# 选择设备CPU 或 GPU
device = select_device('cpu')
@ -204,54 +223,60 @@ async def run_detect_rtsp(weights_pt: str, rtsp_url: str, data: str, detect_id:
seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
time.sleep(3)# 等待3s等待websocket进入
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
if model.xml and im.shape[0] > 1:
ims = torch.chunk(im, im.shape[0], 0)
if room_manager.rooms.get(room):
with dt[0]:
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
if model.xml and im.shape[0] > 1:
ims = torch.chunk(im, im.shape[0], 0)
# Inference
with dt[1]:
if model.xml and im.shape[0] > 1:
pred = None
for image in ims:
if pred is None:
pred = model(image, augment=False, visualize=False).unsqueeze(0)
else:
pred = torch.cat((pred, model(image, augment=False, visualize=False).unsqueeze(0)),
dim=0)
pred = [pred, None]
else:
pred = model(im, augment=False, visualize=False)
# NMS
with dt[2]:
pred = non_max_suppression(pred, 0.25, 0.45, None, False, max_det=1000)
# Inference
with dt[1]:
if model.xml and im.shape[0] > 1:
pred = None
for image in ims:
if pred is None:
pred = model(image, augment=False, visualize=False).unsqueeze(0)
else:
pred = torch.cat((pred, model(image, augment=False, visualize=False).unsqueeze(0)),
dim=0)
pred = [pred, None]
else:
pred = model(im, augment=False, visualize=False)
# NMS
with dt[2]:
pred = non_max_suppression(pred, 0.25, 0.45, None, False, max_det=1000)
# Process predictions
for i, det in enumerate(pred): # per image
p, im0, frame = path[i], im0s[i].copy(), dataset.count
annotator = Annotator(im0, line_width=3, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
# Process predictions
for i, det in enumerate(pred): # per image
p, im0, frame = path[i], im0s[i].copy(), dataset.count
annotator = Annotator(im0, line_width=3, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
# Write results
for *xyxy, conf, cls in reversed(det):
c = int(cls) # integer class
label = None if False else (names[c] if False else f"{names[c]} {conf:.2f}")
annotator.box_label(xyxy, label, color=colors(c, True))
# Write results
for *xyxy, conf, cls in reversed(det):
c = int(cls) # integer class
label = None if False else (names[c] if False else f"{names[c]} {conf:.2f}")
annotator.box_label(xyxy, label, color=colors(c, True))
# Stream results
im0 = annotator.result()
# 将帧编码为 JPEG
ret, jpeg = cv2.imencode('.jpg', im0)
if ret:
frame_data = jpeg.tobytes()
await room_manager.send_stream_to_room(room, frame_data)
else:
break
# Stream results
im0 = annotator.result()
# 将帧编码为 JPEG
ret, jpeg = cv2.imencode('.jpg', im0)
if ret:
frame_data = jpeg.tobytes()
await room_manager.send_stream_to_room(room, frame_data)