129 lines
4.7 KiB
Python
129 lines
4.7 KiB
Python
|
||
from utils.websocket_server import room_manager
|
||
|
||
import time
|
||
import torch
|
||
from utils.yolov5.models.common import DetectMultiBackend
|
||
from utils.yolov5.utils.torch_utils import select_device
|
||
from utils.yolov5.utils.dataloaders import LoadImages, LoadStreams
|
||
from utils.yolov5.utils.general import check_img_size, non_max_suppression, cv2, scale_coords, xyxy2xywh
|
||
from deep_sort.deep_sort import DeepSort
|
||
from deep_sort.utils.draw import draw_boxes
|
||
|
||
|
||
def yolov5_to_deepsort_format(pred):
|
||
"""
|
||
将YOLOv5的预测结果转换为Deep SORT所需的格式
|
||
:param pred: YOLOv5的预测结果
|
||
:return: 转换后的bbox_xywh, confs, class_ids
|
||
"""
|
||
pred[:, :4] = xyxy2xywh(pred[:, :4])
|
||
xywh = pred[:, :4].cpu().numpy()
|
||
conf = pred[:, 4].cpu().numpy()
|
||
cls = pred[:, 5].cpu().numpy()
|
||
return xywh, conf, cls
|
||
|
||
|
||
async def run_deepsort(
|
||
detect_id: int,
|
||
weights_pt: str,
|
||
data: str,
|
||
idx_to_class: {},
|
||
sort_type: str = 'video',
|
||
video_path: str = None,
|
||
rtsp_url: str = None
|
||
):
|
||
"""
|
||
deep_sort追踪,先经过yolov5对目标进行识别,
|
||
再调用deepsort对目标进行追踪
|
||
"""
|
||
room = 'deep_sort_' + str(detect_id)
|
||
|
||
room_count = 'deep_sort_count_' + str(detect_id)
|
||
|
||
# 选择设备(CPU 或 GPU)
|
||
device = select_device('cuda:0')
|
||
|
||
model = DetectMultiBackend(weights_pt, device=device, dnn=False, data=data, fp16=False)
|
||
|
||
deepsort = DeepSort(
|
||
model_path="deep_sort/deep/checkpoint/ckpt.t7", # ReID 模型路径
|
||
max_dist=0.2, # 外观特征匹配阈值(越小越严格)
|
||
max_iou_distance=0.7, # 最大IoU距离阈值
|
||
max_age=70, # 目标最大存活帧数(未匹配时保留的帧数)
|
||
n_init=3 # 初始确认帧数(连续匹配到n_init次后确认跟踪)
|
||
)
|
||
stride, names, pt = model.stride, model.names, model.pt
|
||
img_sz = check_img_size((640, 640), s=stride) # check image size
|
||
if sort_type == 'video':
|
||
dataset = LoadImages(video_path, img_size=img_sz, stride=stride, auto=pt, vid_stride=1)
|
||
else:
|
||
dataset = LoadStreams(rtsp_url, img_size=img_sz, stride=stride, auto=pt, vid_stride=1)
|
||
bs = len(dataset)
|
||
|
||
count_result = {}
|
||
for key in idx_to_class.keys():
|
||
count_result[key] = set()
|
||
|
||
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *img_sz))
|
||
|
||
time.sleep(2) # 等待2s,等待websocket进入
|
||
|
||
for path, im, im0s, vid_cap, s in dataset:
|
||
if room_manager.rooms.get(room):
|
||
im0 = im0s[0]
|
||
im = torch.from_numpy(im).to(model.device)
|
||
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
||
im /= 255 # 0 - 255 to 0.0 - 1.0
|
||
if len(im.shape) == 3:
|
||
im = im[None] # expand for batch dim
|
||
pred = model(im, augment=False, visualize=False)
|
||
# NMS
|
||
pred = non_max_suppression(pred, 0.25, 0.45, None, False, max_det=1000)[0]
|
||
|
||
pred[:, :4] = scale_coords(im.shape[2:], pred[:, :4], im0.shape).round()
|
||
|
||
# 使用YOLOv5进行检测后得到的pred
|
||
bbox_xywh, cls_conf, cls_ids = yolov5_to_deepsort_format(pred)
|
||
|
||
mask = cls_ids == 0
|
||
|
||
bbox_xywh = bbox_xywh[mask]
|
||
bbox_xywh[:, 2:] *= 1.2
|
||
cls_conf = cls_conf[mask]
|
||
cls_ids = cls_ids[mask]
|
||
|
||
# 调用Deep SORT更新方法
|
||
outputs, _ = deepsort.update(bbox_xywh, cls_conf, cls_ids, im0)
|
||
|
||
if len(outputs) > 0:
|
||
bbox_xyxy = outputs[:, :4]
|
||
identities = outputs[:, -1]
|
||
cls = outputs[:, -2]
|
||
names = [idx_to_class[str(label)] for label in cls]
|
||
# 开始画框
|
||
ori_img = draw_boxes(im0, bbox_xyxy, names, identities, None)
|
||
|
||
# 获取所有被确认过的追踪目标
|
||
active_tracks = [
|
||
track for track in deepsort.tracker.tracks
|
||
if track.is_confirmed()
|
||
]
|
||
|
||
for tark in active_tracks:
|
||
class_id = str(tark.cls)
|
||
count_result[class_id].add(tark.track_id)
|
||
# 对应每个label进行计数
|
||
result = {}
|
||
for key in count_result.keys():
|
||
result[idx_to_class[key]] = len(count_result[key])
|
||
# 将帧编码为 JPEG
|
||
ret, jpeg = cv2.imencode('.jpg', ori_img)
|
||
if ret:
|
||
jpeg_bytes = jpeg.tobytes()
|
||
await room_manager.send_stream_to_room(room, jpeg_bytes)
|
||
await room_manager.send_to_room(room_count, str(result))
|
||
else:
|
||
print(room, '结束追踪')
|
||
break
|