Files
alembic
application
apps
core
db
deep_sort
logs
utils
yolov5
classify
data
models
segment
utils
aws
docker
flask_rest_api
README.md
example_request.py
restapi.py
google_app_engine
loggers
segment
__init__.py
activations.py
augmentations.py
autoanchor.py
autobatch.py
callbacks.py
dataloaders.py
downloads.py
general.py
loss.py
metrics.py
plots.py
torch_utils.py
triton.py
.dockerignore
.gitattributes
.gitignore
CITATION.cff
CONTRIBUTING.md
LICENSE
README.md
README.zh-CN.md
benchmarks.py
detect.py
export.py
hubconf.py
pyproject.toml
requirements.txt
train.py
tutorial.ipynb
val.py
.gitignore
README.md
alembic.ini
main.py
requirements.txt
aicheckv2-api/yolov5/utils/flask_rest_api
2025-04-17 11:03:05 +08:00
..
2025-04-17 11:03:05 +08:00
2025-04-17 11:03:05 +08:00
2025-04-17 11:03:05 +08:00

Flask REST API

REST APIs are commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API created using Flask to expose the YOLOv5s model from PyTorch Hub.

Requirements

Flask is required. Install with:

$ pip install Flask

Run

After Flask installation run:

$ python3 restapi.py --port 5000

Then use curl to perform a request:

$ curl -X POST -F image=@zidane.jpg 'http://localhost:5000/v1/object-detection/yolov5s'

The model inference results are returned as a JSON response:

[
  {
    "class": 0,
    "confidence": 0.8900438547,
    "height": 0.9318675399,
    "name": "person",
    "width": 0.3264600933,
    "xcenter": 0.7438579798,
    "ycenter": 0.5207948685
  },
  {
    "class": 0,
    "confidence": 0.8440024257,
    "height": 0.7155083418,
    "name": "person",
    "width": 0.6546785235,
    "xcenter": 0.427829951,
    "ycenter": 0.6334488392
  },
  {
    "class": 27,
    "confidence": 0.3771208823,
    "height": 0.3902671337,
    "name": "tie",
    "width": 0.0696444362,
    "xcenter": 0.3675483763,
    "ycenter": 0.7991207838
  },
  {
    "class": 27,
    "confidence": 0.3527112305,
    "height": 0.1540903747,
    "name": "tie",
    "width": 0.0336618312,
    "xcenter": 0.7814827561,
    "ycenter": 0.5065554976
  }
]

An example python script to perform inference using requests is given in example_request.py