完成目标追踪的开发和测试
This commit is contained in:
@ -1,19 +1,19 @@
|
||||
from application.settings import yolo_url, detect_url
|
||||
from utils.websocket_server import room_manager
|
||||
from utils import os_utils as os
|
||||
from . import models, crud, schemas
|
||||
from utils.websocket_server import room_manager
|
||||
from application.settings import yolo_url, detect_url
|
||||
from apps.business.train import models as train_models
|
||||
from utils.yolov5.models.common import DetectMultiBackend
|
||||
from utils.yolov5.utils.torch_utils import select_device
|
||||
from utils.yolov5.utils.dataloaders import LoadStreams
|
||||
from utils.yolov5.utils.general import check_img_size, Profile, non_max_suppression, cv2, scale_boxes
|
||||
from utils.yolov5.utils.torch_utils import select_device
|
||||
from ultralytics.utils.plotting import Annotator, colors
|
||||
from utils.yolov5.models.common import DetectMultiBackend
|
||||
from apps.business.deepsort import service as deepsort_service
|
||||
from utils.yolov5.utils.general import check_img_size, Profile, non_max_suppression, cv2, scale_boxes
|
||||
|
||||
import time
|
||||
import torch
|
||||
import asyncio
|
||||
import subprocess
|
||||
from redis.asyncio import Redis
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
|
||||
|
||||
@ -169,16 +169,16 @@ async def run_detect_rtsp(weights_pt: str, rtsp_url: str, data: str, detect_id:
|
||||
model = DetectMultiBackend(weights_pt, device=device, dnn=False, data=data, fp16=False)
|
||||
|
||||
stride, names, pt = model.stride, model.names, model.pt
|
||||
imgsz = check_img_size((640, 640), s=stride) # check image size
|
||||
img_sz = check_img_size((640, 640), s=stride) # check image size
|
||||
|
||||
dataset = LoadStreams(rtsp_url, img_size=imgsz, stride=stride, auto=pt, vid_stride=1)
|
||||
dataset = LoadStreams(rtsp_url, img_size=img_sz, stride=stride, auto=pt, vid_stride=1)
|
||||
bs = len(dataset)
|
||||
|
||||
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz))
|
||||
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *img_sz))
|
||||
|
||||
seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
|
||||
dt = (Profile(device=device), Profile(device=device), Profile(device=device))
|
||||
|
||||
time.sleep(3) # 等待3s,等待websocket进入
|
||||
time.sleep(3) # 等待2s,等待websocket进入
|
||||
|
||||
for path, im, im0s, vid_cap, s in dataset:
|
||||
if room_manager.rooms.get(room):
|
||||
@ -188,25 +188,13 @@ async def run_detect_rtsp(weights_pt: str, rtsp_url: str, data: str, detect_id:
|
||||
im /= 255 # 0 - 255 to 0.0 - 1.0
|
||||
if len(im.shape) == 3:
|
||||
im = im[None] # expand for batch dim
|
||||
if model.xml and im.shape[0] > 1:
|
||||
ims = torch.chunk(im, im.shape[0], 0)
|
||||
|
||||
# Inference
|
||||
with dt[1]:
|
||||
if model.xml and im.shape[0] > 1:
|
||||
pred = None
|
||||
for image in ims:
|
||||
if pred is None:
|
||||
pred = model(image, augment=False, visualize=False).unsqueeze(0)
|
||||
else:
|
||||
pred = torch.cat((pred, model(image, augment=False, visualize=False).unsqueeze(0)),
|
||||
dim=0)
|
||||
pred = [pred, None]
|
||||
else:
|
||||
pred = model(im, augment=False, visualize=False)
|
||||
pred = model(im, augment=False, visualize=False)
|
||||
# NMS
|
||||
with dt[2]:
|
||||
pred = non_max_suppression(pred, 0.45, 0.45, None, False, max_det=1000)
|
||||
pred = non_max_suppression(pred, 0.25, 0.45, None, False, max_det=1000)
|
||||
|
||||
# Process predictions
|
||||
for i, det in enumerate(pred): # per image
|
||||
@ -238,6 +226,41 @@ def run_rtsp_loop(weights_pt: str, rtsp_url: str, data: str, detect_id: int, is_
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
# 运行异步函数
|
||||
loop.run_until_complete(run_detect_rtsp(weights_pt, rtsp_url, data, detect_id, is_gpu))
|
||||
loop.run_until_complete(
|
||||
run_detect_rtsp(
|
||||
weights_pt,
|
||||
rtsp_url,
|
||||
data,
|
||||
detect_id,
|
||||
is_gpu
|
||||
)
|
||||
)
|
||||
# 可选: 关闭循环
|
||||
loop.close()
|
||||
|
||||
|
||||
def run_deepsort_loop(
|
||||
detect_id: int,
|
||||
weights_pt: str,
|
||||
data: str,
|
||||
idx_to_class: {},
|
||||
sort_type: str = 'video',
|
||||
video_path: str = None,
|
||||
rtsp_url: str = None
|
||||
):
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
# 运行异步函数
|
||||
loop.run_until_complete(
|
||||
deepsort_service.run_deepsort(
|
||||
detect_id,
|
||||
weights_pt,
|
||||
data,
|
||||
idx_to_class,
|
||||
sort_type,
|
||||
video_path,
|
||||
rtsp_url
|
||||
)
|
||||
)
|
||||
# 可选: 关闭循环
|
||||
loop.close()
|
@ -9,17 +9,16 @@
|
||||
from utils import os_utils as osu
|
||||
from core.dependencies import IdList
|
||||
from core.database import redis_getter
|
||||
from . import schemas, crud, params, service, models
|
||||
from utils.websocket_server import room_manager
|
||||
from . import schemas, crud, params, service, models
|
||||
from apps.business.train.crud import ProjectTrainDal
|
||||
from apps.business.project.crud import ProjectInfoDal, ProjectLabelDal
|
||||
from apps.vadmin.auth.utils.current import AllUserAuth
|
||||
from apps.vadmin.auth.utils.validation.auth import Auth
|
||||
from utils.response import SuccessResponse, ErrorResponse
|
||||
|
||||
import os
|
||||
import shutil
|
||||
import zipfile
|
||||
import tempfile
|
||||
import threading
|
||||
from redis.asyncio import Redis
|
||||
from fastapi.responses import FileResponse
|
||||
@ -121,27 +120,52 @@ async def run_detect_yolo(
|
||||
if file_count == 0 and detect.rtsp_url is None:
|
||||
return ErrorResponse("推理集合中没有内容,请先到推理集合中上传图片")
|
||||
is_gpu = await rd.get('is_gpu')
|
||||
if detect.file_type == 'img' or detect.file_type == 'video':
|
||||
detect_log = await service.before_detect(detect_log_in, detect, train, auth.db, auth.user.id)
|
||||
thread_train = threading.Thread(target=service.run_img_loop,
|
||||
args=(detect_log.pt_url, detect_log.folder_url,
|
||||
detect_log.detect_folder_url, detect_log.detect_version,
|
||||
detect_log.detect_id, is_gpu))
|
||||
thread_train.start()
|
||||
await service.update_sql(
|
||||
auth.db, detect_log.detect_id,
|
||||
detect_log.id, detect_log.detect_folder_url,
|
||||
detect_log.detect_version)
|
||||
elif detect.file_type == 'rtsp':
|
||||
room = 'detect_rtsp_' + str(detect.id)
|
||||
if not room_manager.rooms.get(room):
|
||||
if detect_log_in.pt_type == 'best':
|
||||
weights_pt = train.best_pt
|
||||
else:
|
||||
weights_pt = train.last_pt
|
||||
thread_train = threading.Thread(target=service.run_rtsp_loop,
|
||||
args=(weights_pt, detect.rtsp_url, train.train_data, detect.id, is_gpu,))
|
||||
# 判断一下是单纯的推理项目还是跟踪项目
|
||||
project_info = await ProjectInfoDal(auth.db).get_data(data_id=detect.project_id)
|
||||
if project_info.type_code == 'yolo':
|
||||
if detect.file_type == 'img' or detect.file_type == 'video':
|
||||
detect_log = await service.before_detect(detect_log_in, detect, train, auth.db, auth.user.id)
|
||||
thread_train = threading.Thread(target=service.run_img_loop,
|
||||
args=(detect_log.pt_url, detect_log.folder_url,
|
||||
detect_log.detect_folder_url, detect_log.detect_version,
|
||||
detect_log.detect_id, is_gpu))
|
||||
thread_train.start()
|
||||
await service.update_sql(
|
||||
auth.db, detect_log.detect_id,
|
||||
detect_log.id, detect_log.detect_folder_url,
|
||||
detect_log.detect_version)
|
||||
elif detect.file_type == 'rtsp':
|
||||
room = 'detect_rtsp_' + str(detect.id)
|
||||
if not room_manager.rooms.get(room):
|
||||
if detect_log_in.pt_type == 'best':
|
||||
weights_pt = train.best_pt
|
||||
else:
|
||||
weights_pt = train.last_pt
|
||||
thread_train = threading.Thread(target=service.run_rtsp_loop,
|
||||
args=(weights_pt, detect.rtsp_url, train.train_data, detect.id, is_gpu,))
|
||||
thread_train.start()
|
||||
elif project_info.type_code == 'deepsort':
|
||||
room = 'deep_sort_' + str(detect.id)
|
||||
if not room_manager.rooms.get(room):
|
||||
# 查询项目所属标签,返回两个 id,name一一对应的数组
|
||||
label_id_list, label_name_list = await ProjectLabelDal(auth.db).get_label_for_train(project_info.id)
|
||||
idx_to_class = {str(i): name for i, name in enumerate(label_name_list)}
|
||||
# if detect_log_in.pt_type == 'best':
|
||||
# weights_pt = train.best_pt
|
||||
# else:
|
||||
# weights_pt = train.last_pt
|
||||
if detect.file_type == 'rtsp':
|
||||
threading_main = threading.Thread(
|
||||
target=service.run_deepsort_loop,
|
||||
args=(detect.id, train.best_pt, train.train_data,
|
||||
idx_to_class, 'rtsp', None, detect.rtsp_url))
|
||||
threading_main.start()
|
||||
elif detect.file_type == 'video':
|
||||
threading_main = threading.Thread(
|
||||
target=service.run_deepsort_loop,
|
||||
args=(detect.id, train.best_pt, train.train_data,
|
||||
idx_to_class, 'video', detect.folder_url, None))
|
||||
threading_main.start()
|
||||
return SuccessResponse(msg="执行成功")
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user