deep_sort 提升版本
This commit is contained in:
@ -51,21 +51,6 @@ async def before_detect(
|
||||
return detect_log
|
||||
|
||||
|
||||
def run_img_loop(
|
||||
weights: str,
|
||||
source: str,
|
||||
project: str,
|
||||
name: str,
|
||||
detect_id: int,
|
||||
is_gpu: str):
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
# 运行异步函数
|
||||
loop.run_until_complete(run_detect_folder(weights, source, project, name, detect_id, is_gpu))
|
||||
# 可选: 关闭循环
|
||||
loop.close()
|
||||
|
||||
|
||||
def run_detect_folder(
|
||||
weights: str,
|
||||
source: str,
|
||||
@ -111,121 +96,13 @@ async def update_sql(db: AsyncSession, detect_id: int, log_id: int, project, nam
|
||||
await crud.ProjectDetectLogFileDal(db).create_models(detect_log_files)
|
||||
|
||||
|
||||
async def run_detect_rtsp(weights_pt: str, rtsp_url: str, data: str, detect_id: int, is_gpu: str):
|
||||
def run_detect_rtsp(weights_pt: str, rtsp_url: str, room_name: str):
|
||||
"""
|
||||
rtsp 视频流推理
|
||||
:param detect_id: 训练集的id
|
||||
:param room_name: websocket链接名称
|
||||
:param weights_pt: 权重文件
|
||||
:param rtsp_url: 视频流地址
|
||||
:param data: yaml文件
|
||||
:param is_gpu: 是否启用加速
|
||||
:return:
|
||||
"""
|
||||
# room = 'detect_rtsp_' + str(detect_id)
|
||||
# # 选择设备(CPU 或 GPU)
|
||||
# device = select_device('cpu')
|
||||
# # 判断是否存在cuda版本
|
||||
# if is_gpu == 'True':
|
||||
# device = select_device('cuda:0')
|
||||
#
|
||||
# # 加载模型
|
||||
# model = DetectMultiBackend(weights_pt, device=device, dnn=False, data=data, fp16=False)
|
||||
#
|
||||
# stride, names, pt = model.stride, model.names, model.pt
|
||||
# img_sz = check_img_size((640, 640), s=stride) # check image size
|
||||
#
|
||||
# dataset = LoadStreams(rtsp_url, img_size=img_sz, stride=stride, auto=pt, vid_stride=1)
|
||||
# bs = len(dataset)
|
||||
#
|
||||
# model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *img_sz))
|
||||
#
|
||||
# time.sleep(3) # 等待3s,等待websocket进入
|
||||
#
|
||||
# start_time = time.time()
|
||||
#
|
||||
# for path, im, im0s, vid_cap, s in dataset:
|
||||
# # 检查是否已经超过10分钟(600秒)
|
||||
# elapsed_time = time.time() - start_time
|
||||
# if elapsed_time > 600: # 600 seconds = 10 minutes
|
||||
# print(room, "已达到最大执行时间,结束推理。")
|
||||
# break
|
||||
# if room_manager.rooms.get(room):
|
||||
# im = torch.from_numpy(im).to(model.device)
|
||||
# im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
||||
# im /= 255 # 0 - 255 to 0.0 - 1.0
|
||||
# if len(im.shape) == 3:
|
||||
# im = im[None] # expand for batch dim
|
||||
#
|
||||
# # Inference
|
||||
# pred = model(im, augment=False, visualize=False)
|
||||
# # NMS
|
||||
# pred = non_max_suppression(pred, 0.25, 0.45, None, False, max_det=1000)
|
||||
#
|
||||
# # Process predictions
|
||||
# for i, det in enumerate(pred): # per image
|
||||
# p, im0, frame = path[i], im0s[i].copy(), dataset.count
|
||||
# annotator = Annotator(im0, line_width=3, example=str(names))
|
||||
# if len(det):
|
||||
# # Rescale boxes from img_size to im0 size
|
||||
# det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
|
||||
#
|
||||
# # Write results
|
||||
# for *xyxy, conf, cls in reversed(det):
|
||||
# c = int(cls) # integer class
|
||||
# label = None if False else (names[c] if False else f"{names[c]} {conf:.2f}")
|
||||
# annotator.box_label(xyxy, label, color=colors(c, True))
|
||||
#
|
||||
# # Stream results
|
||||
# im0 = annotator.result()
|
||||
# # 将帧编码为 JPEG
|
||||
# ret, jpeg = cv2.imencode('.jpg', im0)
|
||||
# if ret:
|
||||
# frame_data = jpeg.tobytes()
|
||||
# await room_manager.send_stream_to_room(room, frame_data)
|
||||
# else:
|
||||
# print(room, '结束推理')
|
||||
# break
|
||||
|
||||
|
||||
def run_rtsp_loop(weights_pt: str, rtsp_url: str, data: str, detect_id: int, is_gpu: str):
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
# 运行异步函数
|
||||
loop.run_until_complete(
|
||||
run_detect_rtsp(
|
||||
weights_pt,
|
||||
rtsp_url,
|
||||
data,
|
||||
detect_id,
|
||||
is_gpu
|
||||
)
|
||||
)
|
||||
# 可选: 关闭循环
|
||||
loop.close()
|
||||
|
||||
|
||||
def run_deepsort_loop(
|
||||
detect_id: int,
|
||||
weights_pt: str,
|
||||
data: str,
|
||||
idx_to_class: {},
|
||||
sort_type: str = 'video',
|
||||
video_path: str = None,
|
||||
rtsp_url: str = None
|
||||
):
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
# 运行异步函数
|
||||
loop.run_until_complete(
|
||||
deepsort_service.run_deepsort(
|
||||
detect_id,
|
||||
weights_pt,
|
||||
data,
|
||||
idx_to_class,
|
||||
sort_type,
|
||||
video_path,
|
||||
rtsp_url
|
||||
)
|
||||
)
|
||||
# 可选: 关闭循环
|
||||
loop.close()
|
||||
model = YoloModel(weights_pt)
|
||||
model.predict_rtsp(rtsp_url, room_name)
|
Reference in New Issue
Block a user