提高版本到yolov11
This commit is contained in:
@ -5,10 +5,6 @@ import time
|
||||
import torch
|
||||
from deep_sort.deep_sort import DeepSort
|
||||
from deep_sort.utils.draw import draw_boxes
|
||||
from utils.yolov5.models.common import DetectMultiBackend
|
||||
from utils.yolov5.utils.torch_utils import select_device
|
||||
from utils.yolov5.utils.dataloaders import LoadImages, LoadStreams
|
||||
from utils.yolov5.utils.general import check_img_size, non_max_suppression, cv2, scale_coords, xyxy2xywh
|
||||
|
||||
|
||||
def yolov5_to_deepsort_format(pred):
|
||||
@ -17,11 +13,11 @@ def yolov5_to_deepsort_format(pred):
|
||||
:param pred: YOLOv5的预测结果
|
||||
:return: 转换后的bbox_xywh, confs, class_ids
|
||||
"""
|
||||
pred[:, :4] = xyxy2xywh(pred[:, :4])
|
||||
xywh = pred[:, :4].cpu().numpy()
|
||||
conf = pred[:, 4].cpu().numpy()
|
||||
cls = pred[:, 5].cpu().numpy()
|
||||
return xywh, conf, cls
|
||||
# pred[:, :4] = xyxy2xywh(pred[:, :4])
|
||||
# xywh = pred[:, :4].cpu().numpy()
|
||||
# conf = pred[:, 4].cpu().numpy()
|
||||
# cls = pred[:, 5].cpu().numpy()
|
||||
# return xywh, conf, cls
|
||||
|
||||
|
||||
async def run_deepsort(
|
||||
@ -37,99 +33,99 @@ async def run_deepsort(
|
||||
deep_sort追踪,先经过yolov5对目标进行识别,
|
||||
再调用deepsort对目标进行追踪
|
||||
"""
|
||||
room = 'deep_sort_' + str(detect_id)
|
||||
|
||||
room_count = 'deep_sort_count_' + str(detect_id)
|
||||
|
||||
# 选择设备(CPU 或 GPU)
|
||||
device = select_device('cuda:0')
|
||||
|
||||
model = DetectMultiBackend(weights_pt, device=device, dnn=False, data=data, fp16=False)
|
||||
|
||||
deepsort = DeepSort(
|
||||
model_path="deep_sort/deep/checkpoint/ckpt.t7", # ReID 模型路径
|
||||
max_dist=0.2, # 外观特征匹配阈值(越小越严格)
|
||||
max_iou_distance=0.7, # 最大IoU距离阈值
|
||||
max_age=70, # 目标最大存活帧数(未匹配时保留的帧数)
|
||||
n_init=3 # 初始确认帧数(连续匹配到n_init次后确认跟踪)
|
||||
)
|
||||
stride, names, pt = model.stride, model.names, model.pt
|
||||
img_sz = check_img_size((640, 640), s=stride) # check image size
|
||||
if sort_type == 'video':
|
||||
dataset = LoadImages(video_path, img_size=img_sz, stride=stride, auto=pt, vid_stride=1)
|
||||
else:
|
||||
dataset = LoadStreams(rtsp_url, img_size=img_sz, stride=stride, auto=pt, vid_stride=1)
|
||||
bs = len(dataset)
|
||||
|
||||
count_result = {}
|
||||
for key in idx_to_class.keys():
|
||||
count_result[key] = set()
|
||||
|
||||
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *img_sz))
|
||||
|
||||
time.sleep(3) # 等待3s,等待websocket进入
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
for path, im, im0s, vid_cap, s in dataset:
|
||||
# 检查是否已经超过10分钟(600秒)
|
||||
elapsed_time = time.time() - start_time
|
||||
if elapsed_time > 600: # 600 seconds = 10 minutes
|
||||
print(room, "已达到最大执行时间,结束推理。")
|
||||
break
|
||||
if room_manager.rooms.get(room):
|
||||
im0 = im0s[0]
|
||||
im = torch.from_numpy(im).to(model.device)
|
||||
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
||||
im /= 255 # 0 - 255 to 0.0 - 1.0
|
||||
if len(im.shape) == 3:
|
||||
im = im[None] # expand for batch dim
|
||||
pred = model(im, augment=False, visualize=False)
|
||||
# NMS
|
||||
pred = non_max_suppression(pred, 0.25, 0.45, None, False, max_det=1000)[0]
|
||||
|
||||
pred[:, :4] = scale_coords(im.shape[2:], pred[:, :4], im0.shape).round()
|
||||
|
||||
# 使用YOLOv5进行检测后得到的pred
|
||||
bbox_xywh, cls_conf, cls_ids = yolov5_to_deepsort_format(pred)
|
||||
|
||||
mask = cls_ids == 0
|
||||
|
||||
bbox_xywh = bbox_xywh[mask]
|
||||
bbox_xywh[:, 2:] *= 1.2
|
||||
cls_conf = cls_conf[mask]
|
||||
cls_ids = cls_ids[mask]
|
||||
|
||||
# 调用Deep SORT更新方法
|
||||
outputs, _ = deepsort.update(bbox_xywh, cls_conf, cls_ids, im0)
|
||||
|
||||
if len(outputs) > 0:
|
||||
bbox_xyxy = outputs[:, :4]
|
||||
identities = outputs[:, -1]
|
||||
cls = outputs[:, -2]
|
||||
names = [idx_to_class[str(label)] for label in cls]
|
||||
# 开始画框
|
||||
ori_img = draw_boxes(im0, bbox_xyxy, names, identities, None)
|
||||
|
||||
# 获取所有被确认过的追踪目标
|
||||
active_tracks = [
|
||||
track for track in deepsort.tracker.tracks
|
||||
if track.is_confirmed()
|
||||
]
|
||||
|
||||
for tark in active_tracks:
|
||||
class_id = str(tark.cls)
|
||||
count_result[class_id].add(tark.track_id)
|
||||
# 对应每个label进行计数
|
||||
result = {}
|
||||
for key in count_result.keys():
|
||||
result[idx_to_class[key]] = len(count_result[key])
|
||||
# 将帧编码为 JPEG
|
||||
ret, jpeg = cv2.imencode('.jpg', ori_img)
|
||||
if ret:
|
||||
jpeg_bytes = jpeg.tobytes()
|
||||
await room_manager.send_stream_to_room(room, jpeg_bytes)
|
||||
await room_manager.send_to_room(room_count, str(result))
|
||||
else:
|
||||
print(room, '结束追踪')
|
||||
break
|
||||
# room = 'deep_sort_' + str(detect_id)
|
||||
#
|
||||
# room_count = 'deep_sort_count_' + str(detect_id)
|
||||
#
|
||||
# # 选择设备(CPU 或 GPU)
|
||||
# device = select_device('cuda:0')
|
||||
#
|
||||
# model = DetectMultiBackend(weights_pt, device=device, dnn=False, data=data, fp16=False)
|
||||
#
|
||||
# deepsort = DeepSort(
|
||||
# model_path="deep_sort/deep/checkpoint/ckpt.t7", # ReID 模型路径
|
||||
# max_dist=0.2, # 外观特征匹配阈值(越小越严格)
|
||||
# max_iou_distance=0.7, # 最大IoU距离阈值
|
||||
# max_age=70, # 目标最大存活帧数(未匹配时保留的帧数)
|
||||
# n_init=3 # 初始确认帧数(连续匹配到n_init次后确认跟踪)
|
||||
# )
|
||||
# stride, names, pt = model.stride, model.names, model.pt
|
||||
# img_sz = check_img_size((640, 640), s=stride) # check image size
|
||||
# if sort_type == 'video':
|
||||
# dataset = LoadImages(video_path, img_size=img_sz, stride=stride, auto=pt, vid_stride=1)
|
||||
# else:
|
||||
# dataset = LoadStreams(rtsp_url, img_size=img_sz, stride=stride, auto=pt, vid_stride=1)
|
||||
# bs = len(dataset)
|
||||
#
|
||||
# count_result = {}
|
||||
# for key in idx_to_class.keys():
|
||||
# count_result[key] = set()
|
||||
#
|
||||
# model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *img_sz))
|
||||
#
|
||||
# time.sleep(3) # 等待3s,等待websocket进入
|
||||
#
|
||||
# start_time = time.time()
|
||||
#
|
||||
# for path, im, im0s, vid_cap, s in dataset:
|
||||
# # 检查是否已经超过10分钟(600秒)
|
||||
# elapsed_time = time.time() - start_time
|
||||
# if elapsed_time > 600: # 600 seconds = 10 minutes
|
||||
# print(room, "已达到最大执行时间,结束推理。")
|
||||
# break
|
||||
# if room_manager.rooms.get(room):
|
||||
# im0 = im0s[0]
|
||||
# im = torch.from_numpy(im).to(model.device)
|
||||
# im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
||||
# im /= 255 # 0 - 255 to 0.0 - 1.0
|
||||
# if len(im.shape) == 3:
|
||||
# im = im[None] # expand for batch dim
|
||||
# pred = model(im, augment=False, visualize=False)
|
||||
# # NMS
|
||||
# pred = non_max_suppression(pred, 0.25, 0.45, None, False, max_det=1000)[0]
|
||||
#
|
||||
# pred[:, :4] = scale_coords(im.shape[2:], pred[:, :4], im0.shape).round()
|
||||
#
|
||||
# # 使用YOLOv5进行检测后得到的pred
|
||||
# bbox_xywh, cls_conf, cls_ids = yolov5_to_deepsort_format(pred)
|
||||
#
|
||||
# mask = cls_ids == 0
|
||||
#
|
||||
# bbox_xywh = bbox_xywh[mask]
|
||||
# bbox_xywh[:, 2:] *= 1.2
|
||||
# cls_conf = cls_conf[mask]
|
||||
# cls_ids = cls_ids[mask]
|
||||
#
|
||||
# # 调用Deep SORT更新方法
|
||||
# outputs, _ = deepsort.update(bbox_xywh, cls_conf, cls_ids, im0)
|
||||
#
|
||||
# if len(outputs) > 0:
|
||||
# bbox_xyxy = outputs[:, :4]
|
||||
# identities = outputs[:, -1]
|
||||
# cls = outputs[:, -2]
|
||||
# names = [idx_to_class[str(label)] for label in cls]
|
||||
# # 开始画框
|
||||
# ori_img = draw_boxes(im0, bbox_xyxy, names, identities, None)
|
||||
#
|
||||
# # 获取所有被确认过的追踪目标
|
||||
# active_tracks = [
|
||||
# track for track in deepsort.tracker.tracks
|
||||
# if track.is_confirmed()
|
||||
# ]
|
||||
#
|
||||
# for tark in active_tracks:
|
||||
# class_id = str(tark.cls)
|
||||
# count_result[class_id].add(tark.track_id)
|
||||
# # 对应每个label进行计数
|
||||
# result = {}
|
||||
# for key in count_result.keys():
|
||||
# result[idx_to_class[key]] = len(count_result[key])
|
||||
# # 将帧编码为 JPEG
|
||||
# ret, jpeg = cv2.imencode('.jpg', ori_img)
|
||||
# if ret:
|
||||
# jpeg_bytes = jpeg.tobytes()
|
||||
# await room_manager.send_stream_to_room(room, jpeg_bytes)
|
||||
# await room_manager.send_to_room(room_count, str(result))
|
||||
# else:
|
||||
# print(room, '结束追踪')
|
||||
# break
|
||||
|
Reference in New Issue
Block a user