增加目标追踪的模块
This commit is contained in:
@ -8,7 +8,7 @@ from utils.yolov5.utils.torch_utils import select_device
|
||||
from ultralytics.utils.plotting import Annotator, colors
|
||||
from utils.yolov5.models.common import DetectMultiBackend
|
||||
from apps.business.deepsort import service as deepsort_service
|
||||
from utils.yolov5.utils.general import check_img_size, Profile, non_max_suppression, cv2, scale_boxes
|
||||
from utils.yolov5.utils.general import check_img_size, non_max_suppression, cv2, scale_boxes
|
||||
|
||||
import time
|
||||
import torch
|
||||
@ -97,7 +97,7 @@ async def run_detect_img(
|
||||
room = 'detect_' + str(detect_id)
|
||||
await room_manager.send_to_room(room, f"AiCheck: 模型训练开始,请稍等。。。\n")
|
||||
commend = ["python", '-u', yolo_path, "--weights", weights, "--source", source, "--name", name, "--project",
|
||||
project, "--save-txt", "--conf-thres", "0.4"]
|
||||
project, "--save-txt", "--conf-thres", "0.6"]
|
||||
# 判断是否存在cuda版本
|
||||
if is_gpu == 'True':
|
||||
commend.append("--device=0")
|
||||
@ -176,25 +176,20 @@ async def run_detect_rtsp(weights_pt: str, rtsp_url: str, data: str, detect_id:
|
||||
|
||||
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *img_sz))
|
||||
|
||||
dt = (Profile(device=device), Profile(device=device), Profile(device=device))
|
||||
|
||||
time.sleep(3) # 等待2s,等待websocket进入
|
||||
time.sleep(3) # 等待3s,等待websocket进入
|
||||
|
||||
for path, im, im0s, vid_cap, s in dataset:
|
||||
if room_manager.rooms.get(room):
|
||||
with dt[0]:
|
||||
im = torch.from_numpy(im).to(model.device)
|
||||
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
||||
im /= 255 # 0 - 255 to 0.0 - 1.0
|
||||
if len(im.shape) == 3:
|
||||
im = im[None] # expand for batch dim
|
||||
im = torch.from_numpy(im).to(model.device)
|
||||
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
||||
im /= 255 # 0 - 255 to 0.0 - 1.0
|
||||
if len(im.shape) == 3:
|
||||
im = im[None] # expand for batch dim
|
||||
|
||||
# Inference
|
||||
with dt[1]:
|
||||
pred = model(im, augment=False, visualize=False)
|
||||
pred = model(im, augment=False, visualize=False)
|
||||
# NMS
|
||||
with dt[2]:
|
||||
pred = non_max_suppression(pred, 0.25, 0.45, None, False, max_det=1000)
|
||||
pred = non_max_suppression(pred, 0.25, 0.45, None, False, max_det=1000)
|
||||
|
||||
# Process predictions
|
||||
for i, det in enumerate(pred): # per image
|
||||
|
Reference in New Issue
Block a user